-
Notifications
You must be signed in to change notification settings - Fork 11
/
DESCRIPTION
59 lines (59 loc) · 1.98 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
Package: semtree
Type: Package
Title: Recursive Partitioning for Structural Equation Models
Authors@R: c(person("Andreas M. Brandmaier", email="andy@brandmaier.de", role=c("aut","cre")), person("John J. Prindle", email="jprindle@usc.edu",role=c("aut")),person("Manuel Arnold", email="arnoldmz@hu-berlin.de",role=c("aut")),person("Caspar J. Van Lissa", email="C.J.vanLissa@uu.nl",role=c("aut")))
Author: Andreas M. Brandmaier [aut, cre],
John J. Prindle [aut],
Manuel Arnold [aut],
Caspar J. Van Lissa [aut]
Maintainer: Andreas M. Brandmaier <andy@brandmaier.de>
Depends:
R (>= 2.10),
OpenMx (>= 2.6.9),
Imports:
rpart,
rpart.plot (>= 3.0.6),
lavaan,
cluster,
ggplot2,
tidyr,
dplyr,
methods,
strucchange,
sandwich,
zoo,
crayon,
clisymbols,
future.apply,
data.table,
expm,
gridBase
Suggests:
knitr,
rmarkdown,
viridis,
MASS,
psychTools,
testthat,
future,
ctsemOMX
Description: SEM Trees and SEM Forests -- an extension of model-based decision
trees and forests to Structural Equation Models (SEM). SEM trees hierarchically
split empirical data into homogeneous groups each sharing similar data patterns
with respect to a SEM by recursively selecting optimal predictors of these
differences. SEM forests are an extension of SEM trees. They are ensembles of
SEM trees each built on a random sample of the original data. By aggregating
over a forest, we obtain measures of variable importance that are more robust
than measures from single trees. A description of the method was published by
Brandmaier, von Oertzen, McArdle, & Lindenberger (2013) <doi:10.1037/a0030001>
and Arnold, Voelkle, & Brandmaier (2020) <doi:10.3389/fpsyg.2020.564403>.
License: GPL-3
Encoding: UTF-8
LazyLoad: yes
Version: 0.9.20
Date: 2024-03-25
RoxygenNote: 7.2.3
VignetteBuilder: knitr
BugReports: https://github.com/brandmaier/semtree/issues
URL: https://github.com/brandmaier/semtree
Language: en-US