-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathcalc_MCC_TFR_PLV_surg_noise_org.m
303 lines (261 loc) · 20.3 KB
/
calc_MCC_TFR_PLV_surg_noise_org.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
function [metrics] = calc_MCC_TFR_PLV_surg_noise(FC_true, FC_true_noise_surg, FC_true_noise_surg_std, FC_seed, FC_comp, FC_comp_noise_surg, FC_comp_noise_surg_std, std_step_size, std_stop, plv_comp_indices, plv_comp_idx, plv_true_locs, plv_seed_locs, plv_comp_locs, vol, freq_int, time_int, ROI_freq_int, ROI_time_int, freqs, lat, plot_flag, fc_scale, fc_map_scale, ROI_only_flag)
% This calculates MCC for all the sample points and all frequencies
% within the FC data scanning through threshold based on standard deviations from values "thresh_vals"
%
% INPUT:
% FC_true = true FC [freqs x comparisons x samps]
% FC_seed = observed FC for the seed FCs (Hits) with same order as FC true [freqs x comparisons x samps]
% FC_comp = observed FC for other comparisons (Correct Rejections) [freqs x comparisons x samps]
% FC_comp_noise_surg = mean of surrogate (noise) for other comparisons for thresholding the data to calculate metrics [freqs x comparisons x samps]
% FC_comp_noise_surg_std = standard deviation of surrogate (noise) for other comparisons for thresholding the data to calculate metrics [freqs x comparisons x samps]
% std_step_size = step size of standard deviations starting from 0 until only correct rejections are found: thresholds = FC_comp_noise_surg +/- (std_val * FC_comp_noise_surg_std).
% plv_comp_idx = indices of plv_comp_locs that correspond to the plv_comp_idx;
% plv_comp_indices = indices of FC comparisons within the plv_comp_locs
% thresh_vals = (t) FC thresholds for calculating MCC. This will be for negative and positive values for searching for hits, misses, CRs, FAs.
% freq_int = freq of interest interval for summing across to get a global metrics across this interval.
% time_int = time of interest interval for summing across to get a global metrics across this interval.
% lat = latency of samps
% plot_flag = (1) plots some results (0) no plots
% ROI_only_flag = (0) calculate stats across all freq_int and time_int and calculate for ROI (1) calculate only for ROI
%
% OUTPUT:
% metrics.accruacy(t).hit_idx = accuracy for hits, miss, cr_seed, cr_comp, fa_seed, and fa_comp for each [freqs x comparisons x samps].
%
% metrics.perf(std_iter).MCC = Mathew's Correlation Coefficient
% .true_positives = True positives (Hits) for each thresh_vals
% .false_positives = False positives (False Alarms) for each thresh_vals
% .true_negatives = True positives (Correct Rejections) for each thresh_vals
% .false_negatives = True positives (Misses) for each thresh_vals
%
%
% metrics.hit = hits summed across seeds [freqs x samps x std_iter threshold]
% .miss = miss summed across seeds [freqs x samps x std_iter threshold]
% .cr = cr summed across seeds [freqs x samps x std_iter threshold]
% .fa = fa summed across seeds [freqs x samps x std_iter threshold]
% thresh_vals = 0:.1:1;
% FC_data = inv_soln(a).TFR_results.plv_based;
% FC_true = cfg.source.TFR_results.plv_based;
num_seeds = size(FC_true,2);
plv_true_idx = nchoosek(1:size(FC_true,2),2);
plv_seed_idx = nchoosek(1:num_seeds,2);
% find and maintain order of seeds within FC_comp
for v=1:size(plv_seed_idx,1)
plv_comp_seed_idx(v) = find(ismember(plv_comp_idx,plv_seed_idx(v,:),'rows'));
end
%% freq/time interval of interest for calculating metrics
ss = find(freqs>=freq_int(1)); fx(1) = ss(1); ss = find(freqs<=freq_int(2)); fx(2) = ss(end); fsamps = fx(1):fx(2);
ss = find(lat>=time_int(1)); sx(1) = ss(1); ss = find(lat<=time_int(2)); sx(2) = ss(end); tsamps = sx(1):sx(2);
%% ROI freq/time interval of interest for summing across to calculate metrics
ss = find(freqs(fsamps)>=ROI_freq_int(1)); rfx(1) = ss(1); ss = find(freqs(fsamps)<=ROI_freq_int(2)); rfx(2) = ss(end); ROI_fsamps = rfx(1):rfx(2);
ss = find(lat(tsamps)>=ROI_time_int(1)); rsx(1) = ss(1); ss = find(lat(tsamps)<=ROI_time_int(2)); rsx(2) = ss(end); ROI_tsamps = rsx(1):rsx(2);
metrics.lat = lat(tsamps);
wbar = waitbar(0);
cr_seed_idx = zeros(size(FC_true(fsamps,:,tsamps))); % correct rejections found = 1;
std_val = 0; std_iter = 0;
while nansum(nansum(nansum(cr_seed_idx)))< numel(cr_seed_idx) || std_val>=std_stop
std_iter = std_iter + 1;
metrics.accuracy(std_iter).std_val = std_val;
metrics.std_val(std_iter) = std_val;
FC_comp_noise_surg_thresh = FC_comp_noise_surg + (std_val*FC_comp_noise_surg_std);
FC_true_noise_surg_thresh = FC_true_noise_surg + (std_val*FC_true_noise_surg_std);
%% Thresholding FC data
%% hits
metrics.accuracy(std_iter).hit_idx = double (squeeze( (FC_true(fsamps,:,tsamps) > FC_true_noise_surg_thresh(fsamps,:,tsamps)) & (FC_seed(fsamps,:,tsamps) > FC_comp_noise_surg_thresh(fsamps,plv_comp_seed_idx,tsamps)) ) | ...
squeeze( (FC_true(fsamps,:,tsamps) < -FC_true_noise_surg_thresh(fsamps,:,tsamps)) & (FC_seed(fsamps,:,tsamps) < -FC_comp_noise_surg_thresh(fsamps,plv_comp_seed_idx,tsamps)) ) );
%% Miss
metrics.accuracy(std_iter).miss_idx = double (squeeze( (FC_true(fsamps,:,tsamps) > FC_true_noise_surg_thresh(fsamps,:,tsamps)) & (FC_seed(fsamps,:,tsamps) < FC_comp_noise_surg_thresh(fsamps,plv_comp_seed_idx,tsamps)) & (FC_seed(fsamps,:,tsamps) > -FC_comp_noise_surg_thresh(fsamps,plv_comp_seed_idx,tsamps)) ) | ...
squeeze( (FC_true(fsamps,:,tsamps) < -FC_true_noise_surg_thresh(fsamps,:,tsamps)) & (FC_seed(fsamps,:,tsamps) < FC_comp_noise_surg_thresh(fsamps,plv_comp_seed_idx,tsamps)) & (FC_seed(fsamps,:,tsamps) > -FC_comp_noise_surg_thresh(fsamps,plv_comp_seed_idx,tsamps)) ) );
%% CR seed
metrics.accuracy(std_iter).cr_seed_idx = double (squeeze( (FC_true(fsamps,:,tsamps) < FC_true_noise_surg_thresh(fsamps,:,tsamps)) & (FC_true(fsamps,:,tsamps) > -FC_true_noise_surg_thresh(fsamps,:,tsamps)) & ...
(FC_seed(fsamps,:,tsamps) < FC_comp_noise_surg_thresh(fsamps,plv_comp_seed_idx,tsamps)) & (FC_seed(fsamps,:,tsamps) > -FC_comp_noise_surg_thresh(fsamps,plv_comp_seed_idx,tsamps)) ) ) ;
cr_seed_idx = metrics.accuracy(std_iter).cr_seed_idx; % needed for stoping criteria that all time-freq samples have been correctly rejected
%% FA seed
metrics.accuracy(std_iter).fa_seed_idx = double (squeeze( (FC_seed(fsamps,:,tsamps) > FC_comp_noise_surg_thresh(fsamps,plv_comp_seed_idx,tsamps)) & (FC_true(fsamps,:,tsamps) < FC_true_noise_surg_thresh(fsamps,:,tsamps)) & (FC_true(fsamps,:,tsamps) > -FC_true_noise_surg_thresh(fsamps,:,tsamps)) ) | ...
squeeze( (FC_seed(fsamps,:,tsamps) < -FC_comp_noise_surg_thresh(fsamps,plv_comp_seed_idx,tsamps)) & (FC_true(fsamps,:,tsamps) < FC_true_noise_surg_thresh(fsamps,:,tsamps)) & (FC_true(fsamps,:,tsamps) > -FC_true_noise_surg_thresh(fsamps,:,tsamps)) ) );
%% FA comp
metrics.accuracy(std_iter).fa_comp_idx = double (squeeze( (FC_comp(fsamps,:,tsamps) > FC_comp_noise_surg_thresh(fsamps,:,tsamps)) ) | ...
squeeze( (FC_comp(fsamps,:,tsamps) < -FC_comp_noise_surg_thresh(fsamps,:,tsamps)) ) );
%% CR comp
metrics.accuracy(std_iter).cr_comp_idx = (metrics.accuracy(std_iter).fa_comp_idx-1)~=0; % not a false alarm then must be a correct rejection
%% metrics for each time/freq sample
if length(unique(fx))>1
hit_sum = squeeze(nansum(metrics.accuracy(std_iter).hit_idx,2));
miss_sum = squeeze(nansum(metrics.accuracy(std_iter).miss_idx,2));
cr_sum = squeeze(nansum(metrics.accuracy(std_iter).cr_seed_idx,2) + nansum(metrics.accuracy(std_iter).cr_comp_idx,2));
fa_sum = squeeze(nansum(metrics.accuracy(std_iter).fa_seed_idx,2) + nansum(metrics.accuracy(std_iter).fa_comp_idx,2));
else
hit_sum = squeeze(nansum(metrics.accuracy(std_iter).hit_idx,1));
miss_sum = squeeze(nansum(metrics.accuracy(std_iter).miss_idx,1));
cr_sum = squeeze(nansum(metrics.accuracy(std_iter).cr_seed_idx,1) + nansum(metrics.accuracy(std_iter).cr_comp_idx,1));
fa_sum = squeeze(nansum(metrics.accuracy(std_iter).fa_seed_idx,1) + nansum(metrics.accuracy(std_iter).fa_comp_idx,1));
end
[metrics.perf(std_iter)]=calc_classifier_performance(hit_sum,miss_sum,cr_sum,fa_sum);
metrics.struct_xx_sum = '[freq x samps x std_iter threshold]';
metrics.hit(:,:,std_iter) = hit_sum;
metrics.miss(:,:,std_iter) = miss_sum;
metrics.cr(:,:,std_iter) = cr_sum;
metrics.fa(:,:,std_iter) = fa_sum;
%% ROI time-freq metrics summed across time_int and freq_int
if length(unique(fx))>1
hit_sum2 = squeeze(nansum(nansum(nansum(metrics.accuracy(std_iter).hit_idx(ROI_fsamps,:,ROI_tsamps),2))));
miss_sum2 = squeeze(nansum(nansum(nansum(metrics.accuracy(std_iter).miss_idx(ROI_fsamps,:,ROI_tsamps),2))));
cr_sum2 = squeeze(nansum(nansum(nansum(metrics.accuracy(std_iter).cr_seed_idx(ROI_fsamps,:,ROI_tsamps),2))) + nansum(nansum(nansum(metrics.accuracy(std_iter).cr_comp_idx(ROI_fsamps,:,ROI_tsamps),2))));
fa_sum2 = squeeze(nansum(nansum(nansum(metrics.accuracy(std_iter).fa_seed_idx(ROI_fsamps,:,ROI_tsamps),2))) + nansum(nansum(nansum(metrics.accuracy(std_iter).fa_comp_idx(ROI_fsamps,:,ROI_tsamps),2))));
else
hit_sum2 = squeeze(nansum(nansum(metrics.accuracy(std_iter).hit_idx(:,ROI_tsamps),1)));
miss_sum2 = squeeze(nansum(nansum(metrics.accuracy(std_iter).miss_idx(:,ROI_tsamps),1)));
cr_sum2 = squeeze(nansum(nansum(metrics.accuracy(std_iter).cr_seed_idx(:,ROI_tsamps),1)) + nansum(nansum(metrics.accuracy(std_iter).cr_comp_idx(:,ROI_tsamps),1)));
fa_sum2 = squeeze(nansum(nansum(metrics.accuracy(std_iter).fa_seed_idx(:,ROI_tsamps),1)) + nansum(nansum(metrics.accuracy(std_iter).fa_comp_idx(:,ROI_tsamps),1)));
end
[metrics.ROI_perf(std_iter)]=calc_classifier_performance(hit_sum2,miss_sum2,cr_sum2,fa_sum2);
metrics.ROI_struct_xx_sum = '[std_iter threshold]';
metrics.ROI_hit(std_iter) = hit_sum2;
metrics.ROI_miss(std_iter) = miss_sum2;
metrics.ROI_cr(std_iter) = cr_sum2;
metrics.ROI_fa(std_iter) = fa_sum2;
%% Plotting
%% plotting combined data
if plot_flag==1
figure(101); clf; set(gcf,'color','w');
ax = subplot_axes(2,4,.035,.075,0,0,0);
plv_axis = fc_scale;
mcc_axis = [-1 1];
min_max = [-.6 .6];
%% plot true FC TFR averaged across
axes(ax(2)); cla; hold on; axis on; box on;
xdata = FC_true(fsamps,:,tsamps); xdata(metrics.accuracy(std_iter).hit_idx==0) = nan;
xdata = double(squeeze(nanmean(xdata,2)));
surf(lat(tsamps),freqs(fsamps),xdata); view(0,90); shading flat; colormap(jet); colorbar; axis tight; caxis(plv_axis);
plot3([0 0],[freqs(fsamps([1 end]))],[ax(2).CLim(end)*2 ax(2).CLim(end)*2],'k--','LineWidth',2);
axis([lat(tsamps([1 end])) freqs(fsamps([1 end]))']);
ax(2).XTick = ax(1).XTick;
title ('True FC');
ylabel('Frequency (Hz)');
%% plot FC waves
clear p1 p2 p3 p4
axes(ax(1)); cla; hold on; axis on; box on;
for v=1:size(FC_comp,2)
p1(v,:) = plot(lat(tsamps),[squeeze(FC_comp_noise_surg_thresh(fsamps,v,tsamps)); -squeeze(FC_comp_noise_surg_thresh(fsamps,v,tsamps))],'color',[0 0 0]);
p2(v,:) = plot(lat(tsamps),squeeze(FC_comp(fsamps,v,tsamps)),'r');
end
for v=1:num_seeds
% p1(v,:) = plot(lat(tsamps),[squeeze(FC_comp_noise_surg_thresh(fsamps,plv_comp_seed_idx(v),tsamps)); -squeeze(FC_comp_noise_surg_thresh(fsamps,plv_comp_seed_idx(v),tsamps))],'color',[0 0 0]);
% p2(v,:) = plot(lat(tsamps),squeeze(FC_comp(fsamps,plv_comp_seed_idx(v),tsamps)),'color',[1 0 0]);
p3(v,:) = plot(lat(tsamps),squeeze(FC_true(fsamps,v,tsamps)),'g');
p4(v,:) = plot(lat(tsamps),squeeze(FC_seed(fsamps,v,tsamps)),'b');
end
% p3 = plot(lat(tsamps), squeeze(nansum(nansum(metrics.accuracy(std_iter).hit_idx))/(size(metrics.accuracy(std_iter).hit_idx,1)*size(metrics.accuracy(std_iter).hit_idx,2)))+(.8*fc_scale(1)),'go'); % False positive rate
% p4 = plot(lat(tsamps), squeeze(nansum(nansum(metrics.accuracy(std_iter).miss_idx))/(size(metrics.accuracy(std_iter).miss_idx,1)*size(metrics.accuracy(std_iter).miss_idx,2)))+(.84*fc_scale(1)),'bo'); % False positive rate
% p5 = plot(lat(tsamps), squeeze(nansum(nansum(metrics.accuracy(std_iter).cr_seed_idx))/(size(metrics.accuracy(std_iter).cr_seed_idx,1)*size(metrics.accuracy(std_iter).cr_seed_idx,2)))+(.82*fc_scale(1)),'gs'); % False positive rate
% p6 = plot(lat(tsamps), squeeze(nansum(nansum(metrics.accuracy(std_iter).fa_comp_idx))/(size(metrics.accuracy(std_iter).fa_comp_idx,1)*size(metrics.accuracy(std_iter).fa_comp_idx,2)))+(.82*fc_scale(1)),'r*'); % False positive rate
% p7 = plot(lat(tsamps), squeeze(nansum(nansum(metrics.accuracy(std_iter).fa_seed_idx))/(size(metrics.accuracy(std_iter).fa_seed_idx,1)*size(metrics.accuracy(std_iter).fa_seed_idx,2)))+(.82*fc_scale(1)),'rs'); % False positive rate
axis([lat(tsamps([1 end])) min_max])
% plot(lat([1 end]),[thresh_vals(t) thresh_vals(t)],'k--','LineWidth',2); plot(lat([1 end]),[-thresh_vals(t) -thresh_vals(t)],'k--','LineWidth',2);
plot([0 0],[-ax(1).YLim(end)*2 ax(1).YLim(end)*2],'k--','LineWidth',2);
% legend([p3(1,1);p4(1,1);p5(1);p6(1,1);p1(1,1);p2(1,1);p7(1,1);],{'Hit' 'CR' 'Miss' 'FA' 'true' 'seed' 'other' },'Location','southwest','NumColumns',2,'Orientation','horizontal');
legend([p3(1,1);p4(1,1);p2(1);p1(1,1)],{'true' 'seed' 'other' 'thresholds' },'Location','southwest','NumColumns',2,'Orientation','horizontal');
xlabel('Time (sec)'); ylabel('FC');
title(sprintf('FC waves (Std Dev = %.2f)',std_val));
ax(1).Position(3:4) = ax(2).Position(3:4);
%% plot hit FC TFR averaged across
axes(ax(3)); cla; hold on; axis on; box on;
xdata = FC_seed(fsamps,:,tsamps);
xdata(metrics.accuracy(std_iter).hit_idx==0)=nan;
% xdata(abs(xdata)<thresh_vals(t)) = nan;
xdata = double(squeeze(nanmean(xdata,2)));
surf(lat(tsamps),freqs(fsamps),xdata); view(0,90); shading flat; colormap(jet); axis tight; caxis(plv_axis);
cx = colorbar; cx.Label.String = 'FC value';
plot3([0 0],[freqs([1 end])],[ax(2).CLim(end)*2 ax(2).CLim(end)*2],'k--','LineWidth',2);
axis([lat(tsamps([1 end])) freqs(fsamps([1 end]))']);
ax(3).XTick = ax(1).XTick;
title ('True-Positive FC');
%% plot false-alarm FC TFR averaged across
axes(ax(4)); cla; hold on; axis on; box on;
xdata = FC_comp(fsamps,:,tsamps);
xdata(metrics.accuracy(std_iter).fa_comp_idx==0) = nan; %xdata(abs(xdata)<thresh_vals(t)) = nan;
xdata = double(squeeze(nanmean(xdata,2)));
surf(lat(tsamps),freqs(fsamps),xdata); view(0,90); shading flat; colormap(jet); colorbar; axis tight; caxis(plv_axis);
plot3([0 0],[freqs([1 end])],[ax(2).CLim(end)*2 ax(2).CLim(end)*2],'k--','LineWidth',2);
axis([lat(tsamps([1 end])) freqs(fsamps([1 end]))']);
ax(3).XTick = ax(1).XTick;
title ('False-Positive FC');
%% plot MCC TFR
xdata = double(metrics.perf(std_iter).MCC); %xdata(isnan(xdata)) = 0;
axes(ax(6)); cla; hold on; axis on; box on;
surf(lat(tsamps),freqs(fsamps),xdata); view(0,90); shading flat; colormap(jet); colorbar; axis tight; caxis(mcc_axis);
plot3([0 0],[freqs([1 end])],[ax(2).CLim(end)*2 ax(2).CLim(end)*2],'k--','LineWidth',2);
axis([lat(tsamps([1 end])) freqs(fsamps([1 end]))']);
ax(5).XTick = ax(1).XTick;
title ('Mathew''s Correlation Coefficient (MCC)');
ylabel('Frequency (Hz)');
%% plot TPR TFR
axes(ax(7)); cla; hold on; axis on; box on;
% surf(lat(tsamps),freqs(fsamps),squeeze(comb(:,v,:))); view(0,90); shading flat; colormap(jet); axis tight; caxis([-2 2]);
xdata = squeeze(metrics.perf(std_iter).TPR); xdata(squeeze(nansum(metrics.accuracy(std_iter).hit_idx,2))==0)=nan;
surf(lat(tsamps),freqs(fsamps),xdata); view(0,90); shading flat; colormap(jet); colorbar; axis tight; caxis([0 1]);
plot3([0 0],[freqs([1 end])],[ax(3).CLim(end)*2 ax(3).CLim(end)*2],'k--','LineWidth',2);
axis([lat(tsamps([1 end])) freqs(fsamps([1 end]))']);
ax(3).XTick = ax(1).XTick;
title ('True Positive Rate');
%% plot FPR TFR
axes(ax(8)); cla; hold on; axis on; box on;
% surf(lat(tsamps),freqs(fsamps),squeeze(comb(:,v,:))); view(0,90); shading flat; colormap(jet); axis tight; caxis([-2 2]);
xdata = squeeze(metrics.perf(std_iter).FPR); xdata(squeeze(nansum(metrics.accuracy(std_iter).fa_comp_idx,2))==0)=nan;
surf(lat(tsamps),freqs(fsamps),xdata); view(0,90); shading flat; colormap(jet); colorbar; axis tight; caxis([0 1]);
plot3([0 0],[freqs([1 end])],[ax(4).CLim(end)*2 ax(4).CLim(end)*2],'k--','LineWidth',2);
axis([lat(tsamps([1 end])) freqs(fsamps([1 end]))']);
ax(4).XTick = ax(1).XTick;
title ('False Positive Rate');
%% plot FC graph averaged across time freq that had present MCC values
axes(ax(5)); cla; hold on; axis off; box off;
opt.vol_nums = 1:length(vol); vw_angle = [-90 90];
fc_scale = plv_axis;
%% false-alarm FC map
fc_contrasts = plv_comp_indices;
fc_data = FC_comp(fsamps,:,tsamps);
fc_data(metrics.accuracy(std_iter).fa_comp_idx==0) = nan; %xdata(abs(xdata)<thresh_vals(t)) = nan;
fc_data = squeeze( nanmean( nanmean( fc_data,1) ,3));
[p1, s1] = bl_plot_FC_graph(fc_data, vol, plv_comp_locs, fc_contrasts, 0, fc_map_scale);
p1=handle(p1); for p=1:length(p1); try; p1(p).Color = 'r'; p1(p).LineStyle = '-'; p1(p).Color(4) = .25; end; end
title(sprintf('FC map'));
%% true FC map
fc_contrasts = plv_true_idx;
mcc_idx = double(metrics.perf(std_iter).MCC); mcc_idx(abs(mcc_idx)>0) = 1; mcc_idx(isnan(mcc_idx))=0;
mcc_idx = permute(repmat(mcc_idx,[1 1 size(fc_contrasts,1)]),[1 3 2]);
fc_data = FC_true(fsamps,:,tsamps); fc_data(mcc_idx==0)=nan; % masking based on existing MCC data
fc_data = squeeze( nanmean( nanmean( fc_data,1) ,3));
bl_plot_mesh(vol,opt); view(vw_angle);
[p1, s1] = bl_plot_FC_graph(fc_data, vol, plv_true_locs, fc_contrasts, 0, fc_map_scale);
p1=handle(p1); for p=1:length(p1); p1(p).Color = 'g'; p1(p).Color(4) = 1;end
s1.MarkerEdgeColor = [0 1 0]; s1.MarkerFaceColor = [0 1 0];
title(sprintf('FC map averaged over existing MCC samples'));
%% hit FC map
fc_contrasts = plv_seed_idx;
mcc_idx = double(metrics.perf(std_iter).MCC); mcc_idx(abs(mcc_idx)>0) = 1; mcc_idx(isnan(mcc_idx))=0;
mcc_idx = permute(repmat(mcc_idx,[1 1 size(fc_contrasts,1)]),[1 3 2]);
fc_data = FC_seed(fsamps,:,tsamps); fc_data(mcc_idx==0)=nan; % masking based on existing MCC data
fc_data = squeeze( nanmean( nanmean( fc_data,1) ,3));
[p1, s1] = bl_plot_FC_graph(fc_data, vol, plv_seed_locs, fc_contrasts, 0, fc_map_scale);
p1=handle(p1); for p=1:length(p1); p1(p).Color = 'b'; p1(p).LineStyle = ':'; p1(p).Color(4) = 1;end
title(sprintf('FC map'));
end
%% stepping up std deviation value
std_val = std_val + std_step_size;
if std_val > std_stop; break; end
% fprintf('StdDev = %.2f, Percent CRs = %.3f\n',std_val, 100*nansum(nansum(nansum(cr_seed_idx)))/numel(cr_seed_idx))
waitbar(nansum(nansum(nansum(cr_seed_idx)))/numel(cr_seed_idx), wbar, sprintf('%.2f %% Seeded CRs found at StdDev = %.2f',100*nansum(nansum(nansum(cr_seed_idx)))/numel(cr_seed_idx), std_val));
end
if ROI_only_flag == 1 % removing results to reduce memory storage
metrics = rmfield(metrics,'accuracy');
metrics = rmfield(metrics,'perf');
metrics = rmfield(metrics,'struct_xx_sum');
metrics = rmfield(metrics,'hit');
metrics = rmfield(metrics,'miss');
metrics = rmfield(metrics,'cr');
metrics = rmfield(metrics,'fa');
end
close(wbar)
% for t=1:length(thresh_vals); figure(103); clf; surf(metrics(a).perf(std_iter).MCC); view(0,90); shading flat; colormap(jet); colorbar; axis tight; axis([1 size(metrics(a).perf(std_iter).MCC,2) 1 size(metrics(a).perf(std_iter).MCC,1)]); caxis([-1 1]); title(thresh_vals(t)); pause; end
%% Mean-Squared and Absolute Errors for FC waves within ROI
metrics.ROI_FC_wave_error_mse = squeeze( nanmean( nanmean( (FC_true(fsamps,:,tsamps)-FC_seed(fsamps,:,tsamps)).^2 ,1) ,3) ); % mean squared error
metrics.ROI_FC_wave_error_abs = squeeze( nanmean( nanmean( abs(FC_true(fsamps,:,tsamps)-FC_seed(fsamps,:,tsamps)) ,1) ,3) ); % mean absolute error