This repository has been archived by the owner on Feb 12, 2024. It is now read-only.
forked from felipeaq/xr-cv19-diagnosis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresnet-50.py
202 lines (138 loc) · 4.35 KB
/
resnet-50.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
#!/usr/bin/env python
# coding: utf-8
# ## Using ResNet50
# In[27]:
import glob
import numpy as np
from tensorflow.keras.applications.resnet50 import ResNet50
from tensorflow.keras.preprocessing import image
from tensorflow.python.keras import layers
from tensorflow.keras.applications.resnet50 import preprocess_input, decode_predictions
from tensorflow.python.keras import models
import tensorflow as tf
from sklearn.preprocessing import LabelBinarizer
import sys
# ### Print the device configuration
# In[28]:
tf.keras.backend.clear_session()
from tensorflow.python.client import device_lib
print(device_lib.list_local_devices()[0], end='')
# ### Get the images of train dataset
# In[29]:
def read_many(path):
"""
Read all imagens in directory.
Parameters
----------
path: str
Dataset path of a class (COVID or NON-COVID).
Returns
-------
out : [ndarray]
List of images.
"""
# Get the path of all images
list_imgs = list(glob.glob(path))
out = []
# Load all images of the given paths
for i in range(len(list_imgs)):
# Read the image in shape of (244, 244, 3)
try:
img = image.load_img(list_imgs[i], target_size=(224, 224, 3))
x = image.img_to_array(img)
out.append(x)
# Print error
except ValueError:
print('Error reading the following image:', list_imgs[i])
# Return the loaded images
return out
def load_dir(paths):
"""
Read images of COVID and NON-COVID cases.
Parameters
----------
paths: [str]
Original and augmented dataset paths.
Returns
-------
X : [ndarray]
List of images.
Y : [str]
Labels of the images (i.e., 0 - NON-COVID; 1 - COVID).
"""
# Arrays of images of COVID and NON-COVID cases
covid = []
non_covid = []
# Read images
for path in paths:
# Read images of covid cases
covid.extend(read_many('{}/COVID/*'.format(path)))
# Read images of non-covid cases
non_covid.extend(read_many('{}/NON_COVID/*'.format(path)))
# Set COVID classes
y_covid = np.asarray([1] * len(covid))
y_non_covid = np.asarray([0] * len(non_covid))
# Merge the read images
X = np.concatenate([np.array(covid), np.array(non_covid)]) / 255
Y = np.concatenate([np.array(y_covid), np.array(y_non_covid)])
lb = LabelBinarizer()
Y=lb.fit_transform(Y)
assert len(X) == len(Y), 'The number of images and the number of classes are different!'
print('Images read:', len(X))
# Return the read images and their labels
return (X, Y)
# In[30]:
TrainX, TrainY = load_dir(['Dataset/Train', 'Augmented/Train/{}'.format(sys.argv[1])])
print ("-->",TrainX.shape)
# In[ ]:
# ### Convolutional Neural Network
# In[32]:
def CNN():
"""
Return a Convolutional Neural Network (CNN) architecture.
Returns
-------
model : Model
The CNN model architeture.
"""
# Create a new ResNet50
conv_base = ResNet50(weights='imagenet',
# include_top = False,
# input_shape = (224,224, 3)
)
conv_base.trainable = True
# conv_base.summary()
# model = conv_base
# Instance of a sequential neural network
model = models.Sequential()
# Add the resnet50 to the sequential CNN
model.add(conv_base)
# Add a flaterns layer
model.add(layers.Flatten())
# Add a droput layer to avoid overfiting and minimize complexity
model.add(layers.Dropout(0.5))
model.add(layers.Dense(256, activation = 'relu'))
# Add a final sigmoid layer for binary classification
model.add(layers.Dense(1, activation = 'sigmoid'))
# model.summary()
# Compile the CNN model
model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy'],
weighted_metrics=['accuracy']
# model configuration
)
# Return the built CNN model
return model, conv_base
# In[33]:
model,base = CNN()
model.summary()
#base.summary()
# In[ ]:
# ### Train the CNN
# In[34]:
model.fit(x=TrainX, y=TrainY, epochs=int(sys.argv[2]),batch_size=32)
#
# In[36]:
model.save('{}.h5'.format(sys.argv[1]))
print(model.predict(TrainX))