Skip to content

Commit

Permalink
Deployed bb16a0d with MkDocs version: 1.6.0
Browse files Browse the repository at this point in the history
  • Loading branch information
cornhundred committed Jan 3, 2025
1 parent c7f7f3e commit 5b3c6ce
Show file tree
Hide file tree
Showing 4 changed files with 33 additions and 12 deletions.
2 changes: 1 addition & 1 deletion search/search_index.json

Large diffs are not rendered by default.

Binary file modified sitemap.xml.gz
Binary file not shown.
29 changes: 22 additions & 7 deletions technologies/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -998,9 +998,9 @@
</li>

<li class="md-nav__item">
<a href="#clustergrammer-visualization" class="md-nav__link">
<a href="#clustergrammer-visualization-approaches" class="md-nav__link">
<span class="md-ellipsis">
Clustergrammer Visualization
Clustergrammer Visualization Approaches
</span>
</a>

Expand All @@ -1021,6 +1021,15 @@
<nav class="md-nav" aria-label="Data Analysis Technologies">
<ul class="md-nav__list">

<li class="md-nav__item">
<a href="#scanpy-and-squidpy" class="md-nav__link">
<span class="md-ellipsis">
Scanpy and Squidpy
</span>
</a>

</li>

<li class="md-nav__item">
<a href="#geopandas" class="md-nav__link">
<span class="md-ellipsis">
Expand All @@ -1040,9 +1049,9 @@
</li>

<li class="md-nav__item">
<a href="#clustergrammer-data-analysis" class="md-nav__link">
<a href="#clustergrammer-data-analysis-approaches" class="md-nav__link">
<span class="md-ellipsis">
Clustergrammer Data Analysis
Clustergrammer Data Analysis Approaches
</span>
</a>

Expand Down Expand Up @@ -1086,12 +1095,18 @@ <h3 id="parquetwasm-and-apache-arrow">ParquetWASM and Apache Arrow</h3>
<h3 id="webp">WebP</h3>
<p>A modern image format developed by Google, offering efficient lossless compression and designed specifically for the web.</p>
<h3 id="deep-zoom">Deep Zoom</h3>
<p>We utilize the Deep Zoom image schema, developed by Microsoft, to enable efficient visualization of large multi-channel microscopy image. Deep Zoom tile images are stored using the WebP image format.</p>
<h3 id="clustergrammer-visualization">Clustergrammer Visualization</h3>
<p>We utilize the Deep Zoom image schema, developed by Microsoft, to enable efficient visualization of large multi-channel microscopy images. Deep Zoom tile images are stored using the WebP image format.</p>
<h3 id="clustergrammer-visualization-approaches">Clustergrammer Visualization Approaches</h3>
<p>The Celldega Matrix visualization builds upon the visualization approaches developed in the <a href='https://clustergrammer.readthedocs.io/' target='_blank'>Clustergrammer</a> project. This enables users to interactively explore high-dimensional datasets (e.g., single-cell gene expression data) alongside spatial data (e.g., cell distributions within a tissue).</p>
<h2 id="data-analysis-technologies">Data Analysis Technologies</h2>
<h3 id="scanpy-and-squidpy">Scanpy and Squidpy</h3>
<p>Celldega is built to interface with the AnnData and SpatialData objects, which enables users to easily import analysis results from Scanpy and Squidpy, respectively, into Celldega for downstream analysis and/or visuaization.</p>
<h3 id="geopandas">GeoPandas</h3>
<p>Celldega uses GeoPandas for efficient spatial operations and storing collections of spatial objects (e.g., neighborhood multi-polygons) as GeoDataFrames.</p>
<h3 id="libpysal-python-spatial-analysis-library-core"><a href='https://pysal.org/libpysal/' target='_blank'>LibPySal</a>: Python Spatial Analysis Library Core</h3>
<h3 id="clustergrammer-data-analysis">Clustergrammer Data Analysis</h3>
<p>Celldega uses the Python Spatial Analysis Library (libpysal) for spatial analysis - namely for calculating alpha shape cell type neighborhoods.</p>
<h3 id="clustergrammer-data-analysis-approaches">Clustergrammer Data Analysis Approaches</h3>
<p>The Celldega Cluster module build upon the hierarchical clustering approaches developed in the <a href='https://clustergrammer.readthedocs.io/' target='_blank'>Clustergrammer</a> project. This enables users to perform hierarchical clustering on observations (e.g., single cells) and measurements (e.g., genes) and easily visualize these two orthogonal clustering results interactively using Celldega's Matrix visualization method.</p>



Expand Down
14 changes: 10 additions & 4 deletions technologies/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -25,15 +25,21 @@ ParquetWASM is a JavaScript library for reading Parquet files into Apache Arrow
A modern image format developed by Google, offering efficient lossless compression and designed specifically for the web.

### Deep Zoom
We utilize the Deep Zoom image schema, developed by Microsoft, to enable efficient visualization of large multi-channel microscopy image. Deep Zoom tile images are stored using the WebP image format.

### Clustergrammer Visualization
We utilize the Deep Zoom image schema, developed by Microsoft, to enable efficient visualization of large multi-channel microscopy images. Deep Zoom tile images are stored using the WebP image format.

### Clustergrammer Visualization Approaches
The Celldega Matrix visualization builds upon the visualization approaches developed in the <a href='https://clustergrammer.readthedocs.io/' target='_blank'>Clustergrammer</a> project. This enables users to interactively explore high-dimensional datasets (e.g., single-cell gene expression data) alongside spatial data (e.g., cell distributions within a tissue).

## Data Analysis Technologies

### Scanpy and Squidpy
Celldega is built to interface with the AnnData and SpatialData objects, which enables users to easily import analysis results from Scanpy and Squidpy, respectively, into Celldega for downstream analysis and/or visuaization.

### GeoPandas
Celldega uses GeoPandas for efficient spatial operations and storing collections of spatial objects (e.g., neighborhood multi-polygons) as GeoDataFrames.

### <a href='https://pysal.org/libpysal/' target='_blank'>LibPySal</a>: Python Spatial Analysis Library Core
Celldega uses the Python Spatial Analysis Library (libpysal) for spatial analysis - namely for calculating alpha shape cell type neighborhoods.

### Clustergrammer Data Analysis
### Clustergrammer Data Analysis Approaches
The Celldega Cluster module build upon the hierarchical clustering approaches developed in the <a href='https://clustergrammer.readthedocs.io/' target='_blank'>Clustergrammer</a> project. This enables users to perform hierarchical clustering on observations (e.g., single cells) and measurements (e.g., genes) and easily visualize these two orthogonal clustering results interactively using Celldega's Matrix visualization method.

0 comments on commit 5b3c6ce

Please sign in to comment.