From 63f9c28614f1b9c08f28ceaf1ebadfd8c6491ba3 Mon Sep 17 00:00:00 2001 From: Yanzhou-Wang Date: Tue, 6 Aug 2024 21:53:21 +0300 Subject: [PATCH] 2 link references are corrected --- .../tutorial-checkpoint.ipynb | 526 ++++++++++++++++++ .../diffusive/tutorial.ipynb | 8 +- 2 files changed, 530 insertions(+), 4 deletions(-) create mode 100644 examples/04_Carbon_thermal_transport_nemd_and_hnemd/diffusive/.ipynb_checkpoints/tutorial-checkpoint.ipynb diff --git a/examples/04_Carbon_thermal_transport_nemd_and_hnemd/diffusive/.ipynb_checkpoints/tutorial-checkpoint.ipynb b/examples/04_Carbon_thermal_transport_nemd_and_hnemd/diffusive/.ipynb_checkpoints/tutorial-checkpoint.ipynb new file mode 100644 index 000000000..937c662a0 --- /dev/null +++ b/examples/04_Carbon_thermal_transport_nemd_and_hnemd/diffusive/.ipynb_checkpoints/tutorial-checkpoint.ipynb @@ -0,0 +1,526 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Thermal Transport from HNEMD\n", + "## Introduction\n", + "In this tutorial, we use the HNEMD method to study heat transport in graphene at 300 K and zero pressure. Here we consider the diffusive regime. The ballistic regime can be found in the NEMD example. The spectral decomposition method as described in [[Fan 2019]](https://doi.org/10.1103/PhysRevB.99.064308) is used here." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Importing Relevant Functions\n", + "The inputs/outputs for GPUMD are processed using the [Atomic Simulation Environment (ASE)](https://wiki.fysik.dtu.dk/ase/) and the [gpyumd](https://github.com/AlexGabourie/gpyumd) package." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from pylab import *\n", + "from ase.build import graphene_nanoribbon\n", + "from gpyumd.atoms import GpumdAtoms\n", + "from ase.io import write\n", + "from gpyumd.load import load_shc, load_kappa\n", + "from gpyumd.math import running_ave\n", + "from gpyumd.calc import calc_spectral_kappa" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Preparing the Inputs\n", + "We consider a graphene sheet of size of about 25 nm x 25 nm (24000 atoms). The transport is in the $y$ direction. We divide the length in the $y$ direction into 2 groups, with 4000 atoms in group 0 and 20000 atoms in group 1\n", + "We use a Tersoff-style potential ([Tersoff (1989)](https://doi.org/10.1103/PhysRevB.39.5566)) parameterized by Lindsay *et al.* [[Lindsay 2010]](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.81.205441).\n", + "\n", + "### Generate the [model.xyz](https://gpumd.org/gpumd/input_files/model_xyz.html) file:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "GpumdAtoms(symbols='C24000', pbc=[True, True, False], cell=[245.95121467478057, 255.6, 3.35])" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gnr = GpumdAtoms(graphene_nanoribbon(100, 60, type='armchair', sheet=True, vacuum=3.35/2))\n", + "gnr.euler_rotate(theta=90)\n", + "l = gnr.cell.lengths()\n", + "gnr.cell = gnr.cell.new((l[0], l[2], l[1]))\n", + "l = l[2]\n", + "gnr.center()\n", + "gnr.pbc = [True, True, False]\n", + "gnr" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Add Groups" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Atoms per group: [ 4000 20000]\n", + "Total atoms: 24000\n" + ] + } + ], + "source": [ + "Ly = 3*1.42*10\n", + "split = [0, Ly, 255.6]\n", + "group_method, ncounts = gnr.group_by_position(split, direction='y')\n", + "print(\"Atoms per group:\", ncounts)\n", + "print(\"Total atoms:\", sum(ncounts))" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "gnr.arrays[\"group\"] = gnr.group_methods[0].groups\n", + "write(\"model.xyz\", gnr)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### The `run.in` file:\n", + "The [run.in input file](https://gpumd.org/gpumd/input_files/run_in.html) is given below:
\n", + "```\n", + "potential ../../../../potentials/tersoff/Graphene_Lindsay_2010_modified.txt\n", + "velocity 300\n", + "\n", + "ensemble nvt_nhc 300 300 100\n", + "time_step 1 \n", + "dump_thermo 1000 \n", + "run 1000000\n", + "\n", + "ensemble nvt_nhc 300 300 100\n", + "compute_hnemd 1000 0 0.00001 0\n", + "compute_shc 2 250 1 1000 400.0 group 0 0\n", + "run 10000000\n", + "```\n", + "The first line uses the [potential](https://gpumd.org/gpumd/input_parameters/potential.html) keyword to define the potential to be used, which is specified in the file [Graphene_Lindsay_2010_modified.txt](https://github.com/brucefan1983/GPUMD/blob/master/potentials/tersoff/Graphene_Lindsay_2010_modified.txt).\n", + "\n", + "The second line uses the [velocity](https://gpumd.org/gpumd/input_parameters/velocity.html) keyword and sets the velocities to be initialized with a temperature of 300 K. \n", + "\n", + "There are two runs. The first [run](https://gpumd.org/gpumd/input_parameters/run.html) serves as the equilibration stage.\n", + "\n", + " - Here, the NVT [ensemble](https://gpumd.org/gpumd/input_parameters/ensemble.html) (the Nose-Hoover chain thermostat) is used. The target temperature is 300 K and the thermostat coupling constant is 0.1 ps (100 time steps). \n", + " - The [time_step](https://gpumd.org/gpumd/input_parameters/time_step.html) for integration is 1 fs. \n", + " - The thermodynamic quantities will be output every 1000 steps. \n", + " - There are $10^6$ steps (1 ns) for this run. \n", + "- The second [run](https://gpumd.org/gpumd/input_parameters/run.html) is for production. \n", + " - Here, the global temperature is controlled by the Nose-Hoover chain thermostat ([ensemble](https://gpumd.org/gpumd/input_parameters/ensemble.html)) with the same parameters as in the equilibration stage.\n", + " - The [compute_hnemd](https://gpumd.org/gpumd/input_parameters/compute_hnemd.html) is used to add a driving force and compute the thermal conductivity using the HNEMD method [[Fan 2019]](https://doi.org/10.1103/PhysRevB.99.064308). Here, the conductivity data will be averaged for each 1000 steps before written out, and the driving force parameter is $10^{-5}$ A-1 and is in the $y$ direction. \n", + " - The line with the [compute_shc](https://gpumd.org/gpumd/input_parameters/compute_shc.html) keyword is used to compute the spectral heat current (SHC). The SHC will be calculated for group 0 in grouping method 0. The relevant data will be sampled every 2 steps and the maximum correlation time is $250 \\times 2 \\times 1~{\\rm fs} = 500~{\\rm fs}$. The transport directions is 1 ($y$ direction). The number of frequency points is 1000 and the maximum angular frequncy is 400 THz.\n", + " - There are $10^7$ steps (10 ns) in the production [run](https://gpumd.org/gpumd/input_parameters/run.html). This is just an example. To get more accurate results, we suggest you use $2 \\times 10^7$ steps (20 ns) and do a few independent runs and then average the relevant data." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Results and Discussion\n", + "### Computation Time\n", + "Using a GeForce RTX 2080 Ti GPU, the HNEMD simulation takes about 1.5 hours." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Figure Properties" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "aw = 2\n", + "fs = 16\n", + "font = {'size' : fs}\n", + "matplotlib.rc('font', **font)\n", + "matplotlib.rc('axes' , linewidth=aw)\n", + "\n", + "def set_fig_properties(ax_list):\n", + " tl = 8\n", + " tw = 2\n", + " tlm = 4\n", + " \n", + " for ax in ax_list:\n", + " ax.tick_params(which='major', length=tl, width=tw)\n", + " ax.tick_params(which='minor', length=tlm, width=tw)\n", + " ax.tick_params(which='both', axis='both', direction='in', right=True, top=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Plot HNEMD Results\n", + "The [kappa.out](https://gpumd.org/gpumd/output_files/kappa_out.html) output file is loaded and processed to create the following figure." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "dict_keys(['kxi', 'kxo', 'kyi', 'kyo', 'kz'])" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "kappa = load_kappa()\n", + "kappa.keys()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "t = np.arange(1,kappa['kxi'].shape[0]+1)*0.001 # ns\n", + "kappa['kyi_ra'] = running_ave(kappa['kyi'],t)\n", + "kappa['kyo_ra'] = running_ave(kappa['kyo'],t)\n", + "kappa['kxi_ra'] = running_ave(kappa['kxi'],t)\n", + "kappa['kxo_ra'] = running_ave(kappa['kxo'],t)\n", + "kappa['kz_ra'] = running_ave(kappa['kz'],t)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0sAAAK7CAYAAAAjoRTbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9d3ib13X4/zkANykuUXvvZXlbnrEjp82qY6fNapOmGW3apm060pkm3zrOTpPuzDb5dSRps4eTtHGWLC8Ny5ZkDVubWtQmKXGTAO7vjxegQBAAXwDvBM7nefCAfHHf+5533XvPPeeeI8YYFEVRFEVRFEVRlIlE/BZAURRFURRFURQliKiypCiKoiiKoiiKkgVVlhRFURRFURRFUbKgypKiKIqiKIqiKEoWVFlSFEVRFEVRFEXJgipLiqIoiqIoiqIoWVBlSVEURVEURVEUJQuqLClKiBCRqIjsF5HvFLl/s4h0i8jfOi2boiiKUnlk65dE5FERsZ3IU0TeJyJ9IjLTHSkVpXhUWVKUcPFbwGrgoWJ2NsZcAf4BeJeILHRSMEVRFKUiKalfSvLPwBjwficEUhQnUWVJUUKCiFQB/w/4qTFmVwlVfQrr3X+PE3IpiqIolYlT/VJyIu8LwDtEZL5D4imKI6iypCjh4T5gHvCVUioxxvQA/wu8SUSanBBMURRFqUgc6ZeSfAWoAn7TgboUxTFUWVKU8PBWIAFMWK8kIjeJyKdFZJ+IXBGRARF5VkR+T0QkR13fBKYBr3VXZEVRFKWMeStZ+qUUIlIvIn8nIqdEZFhEdovIm7OVNcbsBg4n61SUwKDKkqKEABGJAPcA+5PuCum8A3gA2A18DvgvoAX4NNb6pGxsSX7f67y0iqIoSrkzRb+U4hvAa4CvY7nZzQH+S0T+JEf5LcBiEVnqtLyKUiyqLClKOFgDtALPZPntI8BCY8wbjTF/YYx5J7AKeAQrkMOizB2MMUeBHuBO90RWFEVRyph8/VKKJcA1xph3G2P+ALgeOA98VETmZim/I/mtfZMSGFRZUpRwkFrwei7zB2PMCWNMImNbDPhXrHd8Y446z6XVqyiKoiiFkLNfSuPDxpj+1D/GmC7gn4Ba4A1Zyqfq0r5JCQyqLClKOGhPfvdm/iAitSLy5yKyI5mnwiTzW3wrWWROjjq7gRoRmea8uIqiKEqZk7NfSuPxLNueSH5fl+W37uR3R5EyKYrjVPktgKIothhOftdl+e3bwCuBF4D/Bi4AMWAx8BasGbxs1AMGGHJSUEVRFKUiyNcvpTifZVvKetSS5bf65PdgsUIpitOosqQo4eBC8rs9faOI3IKlKP0I+KV0dzwReQOWspSLdqA36bKnKIqiKIWQtV/KYCZwMmPbrOT35SzlU3VdyPKboviCuuEpSjjYh2UFWpGxfVny+4eZ65bIs0BWRBqxfML3OCahoiiKUknk6pfSeVGWbXclv3dn+W1V8lv7JiUwqLKkKCEgmUh2L3BLxk8nkt8TFCMRuQ347TxV3gREgc1OyagoiqJUDnn6pXTem578XETmAH8EjGCFE8/kVmAU2OqgqIpSEqosKUp4+B7QLiI3pm3bhhVq9VdFZJOI/K2IfBN4DPhBnrp+Ifn9XVckVRRFUSqBbP1SOseAvcnEtP+CZU2aCbzHGHM6vWBSqboNeMQYo2tplcBQFsqSiPwoGQHsQxnb20TkCyJyUUQGROSnIrI+y/51IvIJETkjIkMiskVE7s5SLiIi7xGRzrRM1K9x89wUJY0vYGVK//XUBmNMHLgP+E8s94U/wMpr8VbgU3nqeiPwjDHmWbeEVZRKR/smpQKY1C9l8DqsyKxvwPJ2OAe8xRiTLWH6L2MFePhXF+RUlKIJvbIkIr9GlvCTIiLA94GXA+/CyiBdDWwSkcz4/V8E3gH8DdbA8wzwiIhcn1Hug8D7sQahr8AyE39DRF7p0OkoSk6MMcexIt+9SUTq07afM8a81Rgz1xjTYIy5yRjz38aYR40xYox5f3o9InIP1lqnbJ2VoigOoH2TUgnk6ZdenOx/howxf2qMmW+MqTXGrDfG/FeO6t4OHAD+zwPRFcU2YozxW4aiEZE24HngT7BCJn/YGPO+5G8PYLkY3WuM2ZTc1oJlEv6yMeYPk9uuA3YBbzfG/HtyWxXWwsUDxpj7k9tSEV0+Zox5ME2GnwEzjDHXun7CSsUjIiuxns0/N8b8Y5F1/AxoA24yYW4AFCWgaN+kVBIO9UsvwnIf/2VjzHedk05RSifslqWPA3uNMf+T5bf7ga5UZwRgjLmMNaP3QEa5MeBraeViwFeBl4lIKkfNy4Aa4MsZx/kysF5ElpR4LooyJcaYg1gudsNTFM2KiDRjdUjvUEVJUVxD+yalYii1X0rSBvyZKkpKEAltniURuQv4DbJngAZYhxWlJZN9wG+ISJMxpj9Z7pgxJjMB2j6sDmh58u91WNFbDmcpB7AWa2YwJZ8ORBVXEZHPlrD7+y1vIEVxDmNMxT9U2jcplUyJ/RIi8kmnZFGUFKX2TaG0LIlIDfB54JPGmAM5irUDPVm2dye/22yWa0/77s0yG59ZTlEURalAtG9SFEUpP8JqWfoLrIgpH/ZbkKmw6+m0aZPlkbFx40Y3xfGMlNUizJ5exd4TJ8/97NmzPP/888yaNYu1a9eWLJvbpJ97UGUsBLvncPbsWX71V3+Vzs5OOjs7PZDMHo899hjxeNz1e6BWynHKrm8qN8qhbyqWMJ37Cy+8wJkzZ1i9ejVz5swpub4wnbvT6LmXTuiUJRFZCLwX+C2gNs1vm+T/rUAf1oxc2+QaxmfZetK+F+Up151WrlVEJGMGL7OcoigVRiwWA6C6utpnSSYSj8f9FqFi0L5JUZzjzJkzfougKOOE0Q1vKVCHtXi1J+0D8GfJv9dz1Zc7k7XAiaRPOMlyS0SkIUu5Ua76ge8DarFCLmeWA9hfzMkoiqIoZYH2TYqiKGVIGJWlXcDGLB+wOqmNWJ3Iw8C8ZE4ZYDwS2KuSv6X4PlaOi9ellavCSqD2Y2PMSHLzj7AiE70pQ55fx4p6dAxFURSlUtmF9k2KUhIHDhzgySef9FsMRZlA6NzwjDG9wKOZ25N+iceNMY8m/38Y2AJ8WUT+HGtW7z2AAH+bVt9OEfka8I8iUo0VNeidwBLSOh9jzHkR+XvgPSLSBzyL1WndixXiVUmjurpaXYAURakYtG9SlNLp6uryWwRFmUTolCW7GGMSInIf8EngM1juEVuAjcaYkxnF34a1IPdDQCuwG3i5MebZjHLvBfqBPwJmY2Wafr0x5gdunUdYueOOO+jv75+6oKIoSgWhfZOi2KcSgxIowaNslKVsMdSNMd3A25OffPsOAe9OfvKVi2N1Wh8qXtLKoampyW8RFEVRfEX7JkVRlHBTNsqSEiwefPBBv0XwjUqeCavkc3/wwQeZN2+e32IoipKHSm6jwnjuToV+DuO5O0Uln7tThDHAg6IoiqIoilLm6EBfCQJqWVIURVEURVF8Y2BggMHBQb/FUJSsqGXJB0ZGRqYulEFXVxe7d+92QRqlEjlz5gy9vb1+i1FRHD16lH379rlSd1dXF6dPn3albkVRFLfZvn07e/fu9VsMRcmKKksec/HiRZ566ikuXbpU0H4HDhygu1sTsSvO8MILL7Bz505Pjzk8PMyVK1c8PWaQOH78OOfPn3el7gMHDnDw4EFX6laUSiGRSKjbl6Iok1BlyWP6+voAKnrQqFQmW7Zs4ZlnnvFbDEVRlAkkEgkGBgbYvHmza9ZfRVHCi65Z8piLFy8CxbniKYqiKIriLIcPHx53Y71w4YLP0iiKEjTUsuQxqUStKQuToiiKoij+oes3g4tTocMVpRTUsuQyiUSCsbExamtr/RZFUTxhdHRU3UwVRQkNOiAPLrqGTAkCqiy5zPPPP8/58+dZs2bNuFVJUcqZPXv2qLKkKIqiKEpZoG54LpNao/T8889z8uRJn6VRKoGenh4SiYRvxx8aGvLt2GHh2LFjbN261W8xFEVRFEWZAlWWfEJNy+VNLBbzRWG5cuUKu3bt4ujRo54fu5yJx+OO1tfZ2alKpaJUCLt27eLs2bN+i6EoSpGosqQAMDY2xhNPPKELXR0gkUjw+OOPc+jQIc+PPTY2BljZ0BVFURT36Ovrs+Ux0tPTw/PPP++BRIqiuIEqSwpgWSTGxsY4fvy436J4TjweH1cynCBlNdSZxPJBF4AripLJjh07OHz4sN9iKEogSSQSDA8P+y2GI6iypFQ8u3fv5oknnnCsvtTAWl0tFUVRgo9OhiiK87zwwgts2bLF1zXUTqHKklLxXL582W8RHEOj0CmKoiiK4jeXLl0CnF/z6weqLPmEWh3KH6/vcU9PD52dnQB0d3d7emzFHfr6+ojFYiXXo+2NoiiK4iXl5GWjylIACMKDlApxHhYSiQQ9PT1+ixEoysU3WLGIxWLs2LGD/fv3l1xXOVlPFSWRSHDy5MmycO9RlHIlErFUjHJ4T1VZUgDo6uryW4SCOHLkCLt27aKvr89vURTFFVIdjLpWKspETp06xeHDh0vutwYGBojFYpowXlFcwC3LUiKR4MKFC47WORWqLCmhJBUa28kodoozBMFSqihK+ZJyTS3VRXX79u3s3r1b2yxFcQG3lKVjx46xd+9eT5cbqLKkKEpejDGMjIzYKjs8POz7wKNckvI6GaHL73uiKEGlWMttpeckHBwcLIuF+0r4SC058HKyXJUll8k14NHBy9RcvHjR9iBdcY+zZ8/y1FNPTTmoGB0dZcuWLb53oD09PWWVL0zbCkUJHjt37vRbBF/Ztm0be/fu9VsMRfEEVZYCgA6GJpNIJNizZw+7d+/2W5SKJzWDmnJ9zIUTUduCir6jiqIoFqn2UKOuKpWCKktKoBkcHPTsWMPDw45E2NOBdeVw9OjRinfHUZSgYYzhxIkTgYgQWo79gdfn1N/fX9aTceVOObwDqiyVGfF4vKxc17x8ybZv386uXbs8O17Y0Cz3kzl+/Hgo3HHKobNSFLsMDQ1x5MgRz9zE9P1yl6effpo9e/b4LYYSMLwck6iy5BNuNa7PPfccTz31lCt1B5WRkRHOnTtXcj1+r7Vxm4MHD7Jp06aC99OBQHlhjNFZWqWsSbVZQWjTy7H9TJ2Tl4NVzRWn+IkqSwHAyca0El2C9uzZw/79+zWM+BScPn3abxGUANDV1cXjjz/uqYurogSNclRiyhm9X0qKVH5NLydDVFkKAOUQ5thPUn7p2pj6gzGGrq4uvf4BJv3eXLx4EbBclRRFCSdjY2OMjo76cuyUlceLNl/7FSWTVN/V2dnp2TFVWfKY5uZmANra2sa3lTLDu2nTpry+vAMDAzz77LPEYjHi8TiJRKLoYylWw3306NGyWhdWKmfPnuXAgQOcPHnS9j6bN29m+/btGGPYv3+/rVwn8XicLVu2cOnSJVvHUFez7LiVKFBRwoSTz78f79JTTz3Fk08+6flxwdvAS4p7DAwMsGnTptC6OHrZx6uy5DEtLS0ANDQ0jG8r1e83NVOcjaNHj3L58mV6enp47LHHQrNIMqgDuStXrnD8+HGef/55v0UJDCn3x0LcIBOJBAMDA4yOjnLu3Dlbz+XQ0BDDw8McOXLEVqLc/v5+2/KUO0F9nxSl3HHr3dOJTwXgxIkTU6b1yEUq9Pv58+edFKksUWUpYCQSCVfDnWpehNJIdXzaUTlDsVaOzs5OnnrqqUCEBg4DqiwpiuIU2p4Eg3g8zpEjRwIfkdWt50Wj4VUY6Tf86NGjbNmyRd28Aoq6MOWmmIar2OuZcsXzy2ffC0rpCOLxuLohKooP9Pb22p7p7+zsZMuWLS5LpJQrqX6z2OBWYU8H4uU4rMqzIym2SFl+xsbGqK2t9VkaxW/8aMwSiQSRiLfzKKp8XiUWi024B8Vcmx07duRcV6AKv6K49/ynZvk3btw4Zdljx465IoPbaNuhVBqhtCyJyMtE5OciclZERkTklIh8XUTWZpRbICLfFJHLInJFRL4tIguz1NcmIl8QkYsiMiAiPxWR9VnK1YnIJ0TkjIgMicgWEbnbzXN1Cq+S8/mJXcUikUiEbtbdq87p3LlzbN68ecJA24kcVukUey6FKo5h7dC3bt1a8sJtOwuwC72euqhbURQlmPjhjdTb2+urF5S64U1NO/AM8AfAS4H3AOuArSKyCEBEGoCfA6uBtwBvBlYAm0SkMVWRWFf7+8DLgXcBrwGqk+XmZxz3i8A7gL8B7gPOAI+IyPWlnEy2Gx5282iQ2bdvH48//njO370cZHd3dwcqEs2FCxeA7MERdJ2WN7idL6yY5/vcuXNs27bNdiRCRfGCMPSTYZ20UYJP+vNfSr9R7DO6c+dOduzYUfRxw0QolSVjzP8YY/7cGPNNY8xmY8yXgF8BpgGvTRZ7B7AUeLUx5rvGmO8B9wOLgN9Jq+5+4E7gzcl6f5TcFgH+IlVIRK4D3gj8iTHm34wxPwNeD5wAPlDK+YShwZ+Ks2fP+matKfRFzxc9MB+JRGLCseLxeMkD2927d/Pss8+WVIdXeKksGWM4ceJE1gAOOvjwnlQSwGKjLilKEDDG0N3djTFGg8OEBCfb+1gsxqZNmzhx4oRjdVY65bxuOJ1QKks5SE15pkbs9wNbjTGHUwWMMceAJ4EH0va7H+gyxmxKK3cZy9qUWW4M+FpauRjwVeBlIlKxC4yuXLnC888/z8GDB/0WxRFyNc6PP/74hKgzO3bs4IknnvBKrLLBTuc3NDTEkSNH2LdvX95y5TDRUCxOKOt20XVOSpBITdwUYukcGRnh0UcfZffu3Zw7d27ciq4UTlVVOJe7pwb2XV1dPkuihI1wPvFJRCQKRLGsRR8DzgL/k/x5HfC9LLvtA16X9v86INuCnn3Ab4hIkzGmP1numDEm03F/H1ADLE/+PYH3vve9RKPR8f9PnjzJggULOHLkSEFJPP0gkUhw9OhRFi1aRHV1dc5y8Xgc8Mdn1g2OHTvGsmXLJm3PtKw4vYZjbGyMoaGh8cTFlUDm4PvChQvs3buX6667DghOYtkgKgnPPvss/f39thaSl4qI8NBDD3Hs2DGdlVV8J2UVKsSF+dSpU+N/Dw0NORrEJojtg5s0NlorGerq6nyWpDB00scfyuF6h92ytA0YAQ4C1wL3GmNS2bXagZ4s+3QDbWn/5ytHWtmpyrXbFzv3jHiQHqqLFy9y8uRJDh8+PHVhh/HzOpw4ccKX9Tm7du3imWee8fy4QSD1Ppw5cwa4umYqDO+JX6Su0aZNm6YoqShKOolEInBW6UKsxEFJuJ0+EewF2u7nxutrs3XrVk+P5zehtixhBW1oxlqb9GfAT0TkLmNMp69SpfGRj3xkwuz4ggULOHnyZFbLRdDQBKze4lUHWGxi4nLrqFLnY2fQdPHiRWbPnu22SIHmwQcfZMmSJSxevHjSb0EbeCpKULDTbvb19bFjxw5Wr17NnDlzpix/4MCBvL/39/dz4cIFlixZMmVdY2NjeT1H/Ca1XhLg0Ucf9cSSrljPUE9PDwsWLMj6+9DQkMcSTcbLMUmoLUvGmOeNMduMMf8DvARoAv4q+XMPEy1IKTItRPnKkVZ2qnJZR6BBcSOyy5UrVwreJzVQ6u3tBcpvUF1u+L2wOd/zkZLNiUACUz2Hjz766JSDjhTZfNzLZWGrMcaztU+K4hdBVuhT7V1PTzbnlcJ59tln6ezsHHeRz8XZs2d54okniur3veLs2bN+i1CR7Nixw3GvorGxMbZs2RLo5y0XoVaW0jHG9AKHsdYOgbV+aF2WomuB/Wn/5yt3IrleKVVuSTIkeWa50eSxQ0/YlDu/CHLHm+K5554LxLq4zA4739q21KAhWwfphr95yu2vGMpFWerq6uKJJ57QSHeK4hNOTzDarS+lnBXq1RDWCdEw9NvF4tczVAiXL19meHiYzs5Ox+t2m7JRlkRkFlZOpSPJTQ8Dt4nI0rQyi7HChD+ctuvDwDwRuSetXDPwqoxy38fKv/S6tHJVwBuAHxtjyiO6gVI2XLp0KevMkNcdXaZSUahb5+DgIKdPn3ZSJCWNlFumJp1VypkgD5SdtuzabeNT3iAHDhzQCHEhJKxKazZisVigJ+tDuWZJRL4DPAs8B1wBVgJ/ghU2/O+Sxf4NK2nt90TkfYABPgicBD6fVt3DwBbgyyLy51judu8BBPjbVCFjzE4R+RrwjyJSDRwD3gksAd5U7LkMDQ2F0iSpKMVSaNjZnTt3Mjo6yoYNG1ySqHD6+/td76jKqSNUlKDh1eSAH++x3WOmW/kPHTrE3Llz3RJJCSnGGMcmGvJ5hzz++OMAgV2TFlbL0lbg1cB/Aj8E3g1sBq43xhwEMMYMAPdiRcr7EvAVLAXn3jTXOowxCeA+4CfAZ4DvAHFgozEm04fpbcC/Ax9KHncB8HJjTNFZRbdu3er7GhKn8bpzSB1vz549rgSjeP755x2vs5JJX7Br51kpZNa1FLe6qRgeHmZ0dJTBwUGefvrpislcrijlQPqAzxjjaluRjhuz5XYHr+fPn5+6UAUShImoeDzOCy+8UDbu3PnIDKYUhOtfKKG0LBljPg583Ea5E8BrbJTrBt6e/OQrN4SlmL3bnqSKE8RiMSKRyJR5MS5fvszo6KjjuR/Onj3LmjVrHK3TS0ZHR6mpqSm5nmIbuMyOfe/ebGnNcu8rIraP/cILLxQkWyFs2bIFEeGGG24oqZ7MGe3Ozk6OHTvG3XffnTUUb+a5Dw0NUV9fX5IMhZJy11GUMJFLqfAywmshAQqcHkRq4BZ/OH/+PAMDA3mjEZ45c4YzZ84QiURYuXKlh9IVhpOWJafRaHhlTFAfumwEZRbg8ccfZ//+/VMXzMLw8PB4gIFYLFbQQL1Y/L5emezcudOReqY6r6DlRHLjuE7UuW3btgn/p9Zj2ZmBvnTpElu3bi14xrhUuQtJ/qkoQcGrtidobX4Kt+QK6vkGhX379oUyiIHbBGVMWQyqLHlM+kMS5MVs6Uyl4LkxS5f5Ml24cCFrORGZcPxMWbds2cKePXvG68hVT5go1G2zWN/8/v7+Cc/oiRMniqrHKcLYwDpNKmpVuiujH/T19amLjxJYUm1krjajktqSixcvZo1AmkgkXLsO8Xi8oq5xKWjwouJRy1KF4IWVwwuKeWBHRkYcUVwGBwenPL5TuSuCwrPPFr1EriCefvrpcUUTplbuc92HMFlT7eBWA23nOrl5LQupe8eOHezbt881WRSlFFL504KQONPOe3XkyJEpyxRDPB5nz5497N69e9Jvbk1+GWN47LHHOHjwYN5yo6OjU+aBUuwTROW0mPevECVelaUyJr3hLLdBfCHs3r2bvXv3ltxYFmI1cXM9C1gvrtMvb7aONl+eIqcpZK2K20pRoSZ8Jy23QeuICpXn+PHjjtepKEqwSb3T2XKoZQYWcKr9Th1zqgAaTz75pGcTf3YZGRnRdtAluru7ba2h27x5M4cOHbJV51Tr2J1ElSWlIIaGhgpOYJerHr/J5z5YTIP5zDPP8Oijj5YgUW7cbMB7eno8XfCcjpvntX///kmK5XPPPTdplrUcXDOnwol3VlHSOXny5HiOLiU4+NWW26Wvr2/c9SxI7dLAwABPPfUUp06d8luUsiORSLB7927b3gh2XRPnzJlTilgFocqST4Rh9iKbjFu3buXpp5/2QRrn2bx5s6P12VlHcubMmUAl/+zt7WXXrl2hWIxazDuTOXt66dKlSQM8v91hCzkvJxbIXrp0KW/d+QhDu6V4w+HDh7O6dyn+8swzzxS1XyFeHqW0Azt27JjSRc8PUhO4YfX4KeaepNad5rP4ONHm++m67hSqLCmOP8i56ovH4+zcubMskvAW+5K+8MILBeXnyTWwdYqUMhEkBS4TO9c6FosVHTExxd69e11bO1AMXV1dfougKFkpJBy24i3p1hq3XbYHBgY4fPhwIDxFwo4xpmCrYCljt0QiMR7lNMj9fz50zZJSlvT399Pb28uhQ4cczwjtN0ePHrVdtpAZPDcGJeVoHejq6uLcuXMl1XHhwgXfI/6lk3qmjDGurS9QlGIIe6LucmwDs5GvTXTqGpw8eXLCRFWlXNt0BgcHS1Z0Tp8+zebNm4tWcAu97n57VOTDbv+mylIFMNXg2svBkFeZzNNdiMqtQbWzgF4pHLvvQVCVh3g8zrlz50p63o0xPPnkkxWR6V1RnCAI7UHQ1w45SXr7VmjQJmNMoLxNCn12BgcH2bZtW8mu7CnFttDUIMXittdKuVHltwDKRPwwh9qdybAzWPNCCdqxY0fO9UFB6CTtMDY25mkkFycI8rX1O+9QLo4ePcqpU6eorq4uuS638rKV28SFonhNtndobGyM2tpaH6Txl3SLuB1OnTrF4cOH3RRpEiMjI5w7d45Zs2aVXFdqXJQtcuzg4CANDQ1593OKoLXjQZOnVMI1WlMmJQr1kueee66k/QsZbOd70YI6MC6EJ554oqC1S0Ggubk57+9+No6luuBlwwl//1SH6PQsnlfXuq+vryKiBTqFiLxMRH4uImdFZERETonI10VkbUa5BSLyTRG5LCJXROTbIrIwS31tIvIFEbkoIgMi8lMRWZ+lXJ2IfEJEzojIkIhsEZG73TxXJT+p/i7Ik0zFkq/9KdSi5ldEvFLXuKbIF3SnkGBY5faceGEtVDe8MqbUm/v0009njUDkhYtOLqtXobPmxhjP1ywF0SUi/XrayT/gxnFTz6NfCVGDPPuULlupDb/dcLT58ku4tag+/b4mEokJkxE7duwItG97AGkHngH+AHgp8B5gHbBVRBYBiEgD8HNgNfAW4M3ACmCTiDSmKhLrxnwfeDnwLuA1QHWy3PyM434ReAfwN8B9wBngERG53pWz9Jli2g2/BqNNTU2+HLdQ/FpHHBQlwY2+KNu4o7+/n66urpzrY40xHD16tOCgGWHpS8OKuuF5jBNWoWwDt8uXLzNjxoyS6y6GaDSa9/fOzk6mT5/uyLGKTWLrtZm/UPbs2VPUfgcPHqSvr4+bbrrJ9j7pDXghs2utra2FiOYIfllRnaLQgUA+per48eMsX768VJEmkd6RHT16lJMnTyIizJ071/FjlTvGmP8B/id9m4hsB14AXgv8HZZSsxRYZYw5nCzzHHAI+B3g75O73g/cCdxrjNmULLcFOAb8BfCHyW3XAW8E3m6M+ffkts3APuADyXpCybZt24hGo9x8882O1uvl+r9U/+iEK242BgYGaGxsnLrgFDg1oHV7YDw6OkpNTU3OYw8PD1NfX++qDOkU2sZPZW0aHBzk+PHjXLp0iVtuuaUU0RzBb0UnpTzOmjXL14kHtSx5jN8PXjaczLGTeX7GGI4dO8aOHTvGw1QW21FduHCBxx57rOh9C8Hr+5S6NoVy+vRpzxbHOtEhF8rQ0FBJM49u3McgvsPFkO26pqxKxhjbiQGVKUn5YKY0//uBrSlFCcAYcwx4Enggbb/7ga6UopQsdxnL2pRZbgz4Wlq5GPBV4GUiEviFMz09PeM5X9IZHBx0xe3ai8XtxbRbxbQtlTahtH379py/nThxgq1btwYq2W2hpJ6BQp+FMPVL2dZ35WJsbIwTJ06wa9euSb+pG54S6sSv6Q9wekeXGnwVqyxp9JbyJSiuGJWO3gdnEJGoiNSIyArg88BZrlqc1gHZfBv3Aelrm/KVWygiTWnljhljMv2k9wE1QFZzpIjk/HjNrl272Ldvn+3y+QZJIyMjnkUUS2GMCb3S4heFuqDnK5+adMx1/8OkUIDlTWD3vQhDYnm38KItU2XJY+w24oWusTl9+jQDAwPFiDSJ3t5ex9wU3G6c3Ap7Xqy7XxjIdU/6+vro7u7Oud/AwABbt24t6tlwwvoVto6uUtD7kpVtwAhwELgWy5UuZTppB3qy7NMNtKX9n68caWWnKtduX+zwk2/dn1s899xzPP7443nLOPmeBG1So6+vr+jzK5e+1o128OjRo1ktrtkoxQLrpCXuiSeemORO7vS1aWlpAfDU3VKVJY8pxPwYj8dtz1b19PQ4Zo3auXNnVpOnHTJfWLcbdbcCI5w8edKVeoPMjh078nZcJ06cYGhoKK9ClYtnnnmmFNF8IVcDX67PRrETJF1dXQ5LUha8GbgNay3RFeAnIrLYV4kySOW7y/ZRCiPfQNWN65ner/qhOGU7p4sXL3ouR6Vw4MCBrEsQst2HS5cueW5ZTWdsbMz1CYtUSP50l0W32zJVlgLME088MeVsVTpOPhjFWqnCZgrONaNSyMCx0Kg1QcTNDtfpwYLfkQ2zRYXM9RyFYeCZUpAPHDgwZdmRkZFJM51OhFgvN4wxzxtjtiUDPrwEaAL+KvlzDxMtSCkyLUT5ypFWdqpyhc9uBJx875XT75wxhhMnTvg6AA0DxU5clnq/rly5wtatWz2NKOs1XV1dti1wzz33XNGTkyMjI6Hos1LomiUFcG9QaIzh1KlTJflYF+NWlW2Q6feLmcvEPZVc6RZCu2Ghg4Lf1zydQmRJhc72MpKVXXK5g9p1oQgKUynNZ86cKWhtiQLGmF7gMFfXDu3DWmeUyVogPTxlvnInjDH9aeWWJEOSZ5YbTR5bKZKhoSGOHDmiz70P2HGzOnbsGENDQ54FOnKL1HorJyYui+kjh4aGeOqppzh+/HjRx83Vnzs95vDDmqrKUkgpRZHq7u7m0KFDHD58uOjZmFwzF5kvRdB8q+3ip/UiV8MyMjLi2exZNpcKv5WsbMq9G89XIpEgkUjkvNZ+XwclXIjILKycSkeSmx4GbhORpWllFmOFCX84bdeHgXkick9auWbgVRnlvo+Vf+l1aeWqgDcAPzbGqOmvBFLve7GTi6mJtaAFgHDLUlZo+9jTk225ncVUaUkgvGOMXEQi7gzLp3JLSz0P+e5HUMgVMbCnp8eWh0QxaJ6lkFLKgC1lzo3FYiUtrjx//rxj+ZMy8XtAmnldjh496pMkV3nqqaeoqvLmlT137pxjdeXrzPy6z/mOu23btrwDCTuDjFgsZqujV8oLEfkO8CzwHNZapZXAn2CFDf+7ZLF/w0pa+z0ReR9ggA8CJ7Ei56V4GNgCfFlE/hzL3e49gAB/mypkjNkpIl8D/lFEqrHyML0TWAK8yZ0z9ZfW1la6u7s9XeBdLEFd0+d3HxtUytWdb/PmzTQ2Nhacu6mQ5yS9rBcTzsePH2fp0vE5p/G19qtWrXL8WGpZUopm3759PP/883nLBH3WJ5d8mbMrpZimnSRos5OlUqwSWmhHPzIyYjsxcakzrsPDwzz++OMFu2f6vRarGMLu+uICW4FXA/8J/BB4N7AZuN4YcxDAGDMA3IsVKe9LwFewFJx701zrMMYkgPuAnwCfAb4DxIGNxpjMKCNvA/4d+FDyuAuAlxtjnnXlLIsgtfbHiTYsleC1ubm55LrCiN/9qleKViHn6ZRMxeY8DDrGGE/zT5XbWEUtSxVOqY2uGwkDc2E3THh/fz9PP/00GzZscFki98hsaNzunNxcW5NPdju5s5wYGBw8eNCzaE0pZctuIuTUTOZUEw9eUOi1zrYOsZIxxnwc+LiNcieA19go1w28PfnJV24ISzF7tz1Jvae7u5sjR44wMDDAmjVrSqpLrSL2qK6uzmkpCYO7ldNKYbk/N0ENNuX1dTfGOP7sqLIUUpx6+NyYofLyxRCRScdLha20O1h1GifOv5AoiIWSTT4nZPbreufj9OnTTJs2bUqrzZNPPunYMVNKWaEzlE7lSVOUIJJ6B8Mw4+zkYMvPAXp7e7ujLtVeky+5rN/WtSCydevWovZLWWpLpZhnfXBwkLq6OkeO7ybqhqeUhFMNVm9vb0E5qHJhjHGkHsU+Tg4G2tudzZ959uxZent7p3xOnYyw57fSY/d+XLx40XdZFSUdL92E8vHoo4/m7UfsuOr6oSRlhvF3S4a9e/e6Um8mXkY+VeXLPTL7mZRyNDQ0xLZt2zh27Jijx3PjuVdlSXEVuw3Qzp072blzZ8nHC1sYbz/wOpx1ITlRmpqaHD++12uBiu10nWrg7a4D6+rqYvv27Y4cU1Hsku/9cHNwXOh7mc9NbcuWLaWK4wr52jqv8qGVu6tbLmKxmCOTT35cP7ePmUsZSr3vmRMTxpi8bvN+pORQZSkEuBUKsRxmUmpqaib8f+LECZ8k8R+/Oik7uXmcwMnzc/Na2VmH5SanT5/Out3L9YWKUgyHDx8uqA0vxKW42ChnqUk8J/rLUtudCxcucO7cuQlKUSwWY9OmTXR3d0+SMf14YXB/tEux1zFzPyf7gaGhIUcmn1Khw7NFKnZLfjeejVJl27Nnj0OSOIMqSyHArdCjXmjnbs9cO+22FWZKCQNfDIlEwpY7ip3ZNjfDtXp9Xfwm1/nu2LHDY0kU5Sp2Bk8DAwMcOXJkynKFcPnyZS5fvlz0RFqqbXJiYFpqUIW9e/eyf//+CTPxKdfFSp4oLJagWMFisdikdUPZ+tbM6KNeeE0UGzrcDqnn2Omoqm7cVw3wUIEEOZtyf38//f39obJ6Oe06Uuz98fKanT17lkuXLnH+/Hnmz5+ft6zflpZjx46FIh+LE3jp468oflFIG/nss/5ET9+1axdNTU20traOuxS5ncMnn2VJcY69e/fS0dHB7NmzHanP7kRW5kRYLi+CsBCmMO2qLCk5STW0Uw3C0xtkuwt0c81+P/300zalCw6ZFjo/ktp5PUhOD3Pt5LHdiNwUxvxFxVLqsxemSQqlPChX99CBgQEGBgZYtWqV7bQFpSo3+v7m5tFHH2XmzJk5fy/k2l+4cIELFy4UrCzlGvcMDQ3ZikhnjGFwcJCGhobx/ysNv85Z3fDKlE2bNvkScz9I2a/96jjsJj91Ej/9e51svApdhGzn2GEZQDih1BVzL4L0zirlT+bztnv3bkfrL9cB5KZNm7JuT7ktupUSohSGhoZcn6yy274bYyZNxvmR/6cUDh48yLZt20oOJFGqHLnc5gqt1869K0ZWjYanFIRfJk6/G2i/8cOSUQnJQcP4XBWyps4vC5iGD1fsEovF2LVrV1H7pt7fsKR2cKq9CWO7VSzGmAnWk61bt7oyeRhExdALUuuY/Eo+e+jQITZt2lTyOmA7a52DhipLIeWZZ54pel+7oYVTrlbnzp3LOavlN/miuAQ1OlxYyXU9dbB9FbeVVj9CpuajEgYoylV6enqKDlLgxmRAZp1Xrlyhu7vb8eOEFS/zVhlj6OrqmnT9Sw1qoThPse2206lZUpOJjY2NtvdRN7wCEJHXisi3ROS4iAyJyAER+aiITMso1yYiXxCRiyIyICI/FZH1WeqrE5FPiMiZZH1bROTuLOUiIvIeEekUkWER2S0ir3HzXHNRyqCsWK0+22yC34rBhQsXfD1+WHAzbGwlWLXs4vbAwOmoQaVy8uRJv0VQQkKu2ehSBj+Za4FKmUQMO9muo1e5lcBSXO2uzQoKlTjZY+ecnQrNPhVVVVbYhEKUJTfksEMolSXgz4A48NfAy4HPAu8EfiIiEQCxRvHfT/7+LuA1QDWwSUQyw3d9EXgH8DfAfcAZ4BERuT6j3AeB9wOfAl4BbAW+ISKvdPb0lDBT6otarPtkPsX1ueeeK1Yc39E1NcFFrYqKXerq6hyrK0yDXK9kjcfjniT5zoWX9yRM9z9onDlzhs2bN9sub+da+9VHe5k6JqzR8F5ljEk3KWwWkW7gP4EXAz8H7gfuBO41xmwCEJEtwDHgL4A/TG67Dngj8HZjzL8nt20G9gEfSNaDiMzEUtI+Zoz5ZPK4m0RkOfAx4H9dO9sS8NIMrzhDsZaafI1aGEJ0urVmxxjjuwXUK1SxVIJKKoG4E7PIXuROy1wX4lQbcurUKWbMmEFtba0j9aXI1tenEpx6RRDb2c7OTqZNm5b1t0pUuuzk4yr0uhw9epRVq1ZN2OaUl0WmLHv37rVVzmlCaVnKUJRSpGJOz0t+3w90pRSl5H6XsaxND6Ttdz8wBnwtrVwM+CrwMhFJtWgvA2qAL2cc98vAehFZUtzZuIuXZnjFIleHUYkNcyF4mTzWrwWyblPs4ntF8Yti2sVjx465IMlE3FgfODg4yKFDh6Z0F7xy5QoHDx4suc/QPsd6VtzyrOjv758yEq3de1BM8tdilFM7fd9UHgOZsmaT3S2X8fS8jenHzbXdKcJqWcrGPcnvVAKYdUA2FXQf8Bsi0mSM6U+WO2aMyZzO34elHC1P/r0OGAEyQ7vsS36vxbJaTeChhx7KKfCDDz6Y8zel/HA7n0jYrQpuRcnK1qFs377dlWOVM7naMjszlYqSIqwD+HS5Z8yYYXu9bPp+qb+nmsTctWsX8XicpUuXjq/r8AI7Vngv719LS0tWr4h0GVKD//T+w6vIogcPHpwyz6BdzwY31xUXwsjISNFrz7I9606Sz0Mm22Srk+upy0JZEpF5WC5zPzXGpFIhtwOdWYqnQrW0Af3Jctnshaly7WnfvWbyE5BZLlSEteMKMrk6QrvWjGItLJ2dnUXtVyh+PTP6rCpOIiK3Ya1pvQ2YC9QDF4EDwGbgu8YYDeXlELneXzvv9eXLl+nu7mbBggWeKw/ZKDawUNDz+sTjcU+v71Q0NTVN6UKesoKcO3du3NVz3759eRPQpgji/bAr08WLFx2VP6X0DQ0NeTaWSGHHijs2Nsazzz5bUL3btm0rVqRJBOetKBIRaQK+B8SAt/ksziQq0XpU6YPaUhe9p5IMBhUvXGCykW2AEvZnzUvXw1LJ1ZYtWrSIZcuWeSxN8YjIW7DWn64D+oDdwCFgCGvS61bgzcCnReTrwEPGGH8e+hAwNDREJBJxfA1OOvv372d4eJhEIuH7s5bPkhr29sgOpSi9hZJLKa30NBY9PT2cPn3a0TrD1BdNxdDQ0Lji7BShXLOUQkTqsdYgLQVeZoxJDwLfg2U9yqQ97Xc75brTyrXKZHtqZjnPCGruo0JIJBIcPHjQlbrtNN5uL0gtx7UxYVsH5+cAZqpjd3V1eSSJAiAiz3E1IM9NQKsx5m5jzGuMMb9ujHmlMWYNVrv+DmAmsF9E3uCf1MFm69atPPXUU7bLDw4OFtyGpNJdeD2gy/b+FpprJsjtj9M47f42lYubWzh5HoXeAztjklLcy5xQIpxSmEu9zunHS79uhVqg7BBaZUlEqoFvAjcDrzTGZK6yS60zymQtcCK5XilVbomINGQpN8rVNUr7gFogc1prbfJ7f8En4TI9PT2Bn+lyY4YkSJTTbE1YCWKEphRe+dYr43wRWGKM+UtjzM4sbtWAFQzIGPMVY8wrsdz0er0UMqjke5cKUYDcGMx49S7luwZB7m/tyGZnrUq+erKtm/XrmsRisYLW8abf1/T1xf39/Z4m1rVzvexGOYzFYpPcGHMpS06vmbIjox0vmqC8U6FUlpK5lL4C3Au82hizNUuxh4F5InJP2n7NwKuSv6X4Plb+pdellasC3gD82BiT6gF+hBU1700Zx/l1YG8Q3TTOnj3rtwiKQwSlwQgjQb52QVnUWykYY/7JGFNQVm5jzG5jzCNuyVQuTDXwSX8P0xOjl/p+pqJuPfbYYyXVU44Us2apFKZKVeLU5KGd89q2bRtPPPFEycd6+umnHYsy6lRfVF1dbavc3r17efbZZ231M7mi17mZoDZMQalCqSwBn8ZSbv4OGBCR29I+qYSzDwNbgC+LyK+KyMuS2wT421RFxpidWGHD/1FEfktEXoIVNnwJ8GBaufPA3wPvEZF3i8iLReSzWArbe9w+4aAS5Fl7pXwpxDc9yM9omDqLXARZGc1ERGwH4hGRX3VTlnLDr+cg5Rbn9vHttCPZZAhKsla3E5N3d0+9EuHAgQOuypCOXy58QWoPUxYyp5ck2LHiep3jM1N+p6PrhlVZekXy+71YClH657cAjDEJ4D7gJ8BngO8AcWCjMeZkRn1vA/4d+BDwQ2AB8HJjTKavwHuTZf4IeAQr6e3rjTE/cPLkwkaxkYHcJn1ArRHcKpd4PF50KFSl7PhJ0sMgLyLyVuBL7oujlIqXbWx/f39Jx/N6ciRdVqfWmuY6/8zBaV1d3aQybgZgiEQiNDU1OVKX3XucLVJf5noiN8JpF1qPExa2dHJZqoI03tm5c6ej9YUyGp4xZrHNct3A25OffOWGgHcnP/nKxbGUpQ/ZErQCiMViE6Kj2TUPe0EluTgF2XriNlMF0fBrhhGmzmJeyffNJ5YAPxKRl6atW52AiPw28Fng/zyVrMwJe6SywcFBnn766bxlphosnjlzpqT9C6XQ+oJgnbNDNjkXLlxYcCJhrxWZqcKgF0pVVVVFjXMy6e3ttZ3HqlTCallSAkJmw9Da2lrS/m4RBHcnHRi7w9at2ZYshgOvXRUUXoYVlOeHyWiqExCRPwQ+h+Wy/csey1bWuBX11E2cGEz7OduevjbMKYJkPUgnKPmh8ikvTl27c+fOOVofQENDZoyzYDDVOXoVRGtKZUl9vJVCKeQFzpezQlHKnVyLahV3MMY8DbwSuAF4WETGkwOJyJ8D/wh8A3itMcb/GRYPuHjxIocPH566oMPE43G2bt1aUH+RrWyYJ6EaGxv9FmECQVWEwsQLL7yQ87f6+knzM4EhGo2WXEc5Pz92LEvq463YJh6PF2QWDlvOnkJxw8yfjSBYzvygnBtnP6iEUObGmKewoqLeAXxbRKpF5EHg41hRVn8t6XJdEezZs4eTJzOX8RZOoe/i0NBQwXnoYrHYlK5sfuKE29v+/fvLNuWEU5auILf7+Z5puyG//aDUSQugoHbEDaunm9ixW6qPt2Kb7u5uW1FxgkL6eitFqXTC9O6WgjFms4i8Gsvdbh9W/rwvAr+dK/eSUhyxWMwxF6nz588XvC4lbKRcrMB7pcDO8UqRyW0lMOhWRjsTyUFbN1ZIhMdC3MpLSaybydjYmOtjOTst2MuwIsr9UERengyGME7Sx/sfge8Br3dcQkUpkqCNeYLekPtNpVrHFO8QkaVp/x4B/hKr//oB8DGsBOXjBYwxR72Ur1y4cOECdXV1RCIRtm/fnrXMvn37PJbKfbL1OeU0Idff3z8hYWuhFNonFxrAoBRrhRfjBTsR2sLsmu2X7EeOHHE9gMyUypIx5mkReSVWUtaHReS+VKLWpI/3x7F8vN9YSa4L5YLfCkUlR3IphHJ3VwRvc3AoFcthIFujdx/wS1m2l+7IXyGkp5DYu3cvAOvWrctZ3smZZbfwu38slFLlnWr/qaIBOkFDQwMzZsxg8eLFbNmyJWuZXHJ64drldoTBrq6ugsrnYmxszLXxlVfvhTHG1mSDF+7jtmzjxpinRORVwP9i+Xi/GvhrrKStXwHeksxrpISMUkNZqrUkP4ODg8Tjcdra2kqqR6OmKYojvM1vAZTwUOhMeSGDyIsXL06pMIZNWXOC5cuXM336dMD98UU5X99Dhw4VVL6UNUvFWpQaGxvzWoR6enpsud16cR9tOxKrj3d5ooNwd3n++ecB2Lhxo8+SKIoCHEoGeFBCTENDgyeWqd27d7tW9549e6Ysc+zYMVatWuWaDJn4PZRrb28fV5Ty4Ucgmu7u7pInPb3ETa+dzDDjxbrAzZs3j4MHDzJz5syi1yIaYzx5HuyEDl+a+nDVx3s58EOu+ninl1FChN+No6Io3lFO6yeK5HEROSMi/yoirxCRGr8FUgqnUvqtYgehS5f6PxQrxiVu0aJFtso56Q4Yi8Xo7++f8pnavXs3jz76aGiePScCObhN6pi5ZLV7DhcvXnRMplzYsSypj7eilEh/fz+XLl3yWwylwuns7PRbBL+ZB7waeAD4DjAiIo8k//6hMSa8q6sDgtdhr4PkCu70gLNY96aamnDOAWSG1vbi3j7++OMArFmzxvVjOY1filuQ1lB7FYLcjrL0drIrS4oSaIIUPMKLhbGVyLPPPuu3CL6gindxGGPOAp8DPici07Am/B7ASn1RLyKbsRSn7xljnFlpXWE888wz43+Hzc07Eon4mmssc+BX6GDYbp6bXPUeO3aMxYsXF3TMcsEtxePUqVMsWbLElbrzPatOKZrZrkt1dbUjdTuBV1E17UTD+w8P5FBCSpBm9TIJW0etKHYpNJmnMhljTB/wVeCrIlINvARLcXof8CkReQb4jjHmoz6KGTrSXceOHz/uoyTe47eL1unTp4GpZ/69TOxbyDUJ8niiWLq7u11TloJEMX2SE1Zor/pCO2uW7vBCEEVRFEXxA2PMmDHmR8aYdxpj5gF3Aj8H3uyzaIGiHAez6ZSq7Jw6dcohSUojPbFtNsIQth28jYZn997nyhsWdqJR+ytosiUvT7co2+Xo0fxp7II04W3HDe9xETkPfB/LPeFnxphRd8VSvGJ0VG+loijF45XPuJcYY7YCW4G/8lsWxTvKRVnKxf79++nt7WXWrFl+ixII0l31M+/98PBw1rYtLFb9QtPCFKKYZssFVUpS+VwWpsOHDxddp9PYUZZ0QWwZM9UMlKIoSj6KDfkaFERkAbAAqMv8zRjzc+8lUpTSyDXw1f5+IunKbaaytG3bNl/Xr5VKrolwrwOw2MGLaHalYmfNki6IVRRFUcqKZKqLrwAbUpuS3yb5t0Gju/pGWGbwnSSbZauvr49p06b5IM1EnHDd83tNVybp8mQqF34pStOmTaOvr8+1+gu9j0G7Z34x5ZqldIwxfcaYrxpjfg2YgaU0HcFaEHtSRLaLyHtckFMJKOXuw64oStnyBWAh8MfAy4GNyc+9ad+KT+zcudNWubNnz7osib/YjXBXCD09PQWXL9StqxgyxxOFjC9KHdQHJRhJEBRjZTJ23PCyYowZA36U/LxTRG4FfhlrQaxGD1IUj2lsbCw6iaGiVCC3AG81xnzLb0GCyODgILW1tQUt/HYSt9bTNjU1BWrheDrZrrUbE5KFWi527drluAxKsFALUn4KsiylEJEFInKHiNyb+gCNwI+NMWudFVFRFDuENRGhovjEKUAj3GQhFouxbds2Dhw44LcojpOZ+BSgrq6OG264wQdpJqIDVm/R663YpSDLkvp4K0pw0YZfUQriI8BfisjPjTFqkk0jtQi8UHetsDJ//nxaW1v9FqOsKaZ/Kgc3/0LP269+/MiRI74cNywU6oaX7uP9AjorpyiKooQQY8yXRGQ10CkiW4FMzcAYY97ig2i+U84TL365FXpJEJWMzs5OV+sv5pkN4nNejEyzZs1yLdJhEK+RHxSqLKmPt6IEFG3UFMU+IvJW4D1AHLiRyZN/FflCxeNxtmzZ4rcYrrF27VqefPLJrL/V1tYyMjLisUThZfr06Vy6dMlWWTtWyqAoeb29vY7XGfYUC2FJZOwWha5ZUh9vRVEUpRx4CCvtxQxjzDxjzJKMz1K/BfSDMCQqz5wYKiRgQb61nStXrixaJicIyoTXwMCArWt67bXXeiCN95w4ccLxOvft2+d4nV5x6dIltm3b5midblxjNylUWUr5eDe6IYyiKMUTlI5WUULCdOAzxphevwUJC0GZ+c9kx44djtSTLfiDlwSlDd++ffv4NfUyiWnm+bv9vOW63n4mbg3KM5COG9Ejw7YesiA3PPXxVjKpxMSBiqKUBU8Aa4Cf+S2I4i9BVQLBf9lisZiv+9sliEoGWFZPt5Uvv5+RSqDQaHhvRX28FSWQXLlyxW8RFCVM/BHwdRHpwcoXOGmq0xiT8FwqBbAGgEEdAKfT1tbm2Cx5GM63UApRlryOHOfV9T58+LDtskF7BoImj18UGuAh5eP9m+q6oCiKooSY55Pf/5Xjd0MJidvLER04Taa6utqxunJd30Kvu1oagkWhSYCDhj5PhXcE6uOtKIqilAMfoIK9IWKxGGfOnPFbjJyERTGbMWOG65HOBgYqIw1Y5j1PrSGbPXs2Z8+ezVs+yM9LIcpSEPNRBfnaekWhypL6eCuKoiihRETuMMY8BWCMeb/P4vjKoUOHChqADg0NkUh455WYb4AWlMHbxo0bHbUaDA8PT9o2MjLi68y+l9c617FaWlqyPqul0t3d7XidSnlSqLKkPt6KoihKWHlcRM4D38dyKf+ZMSb4sbJdoJBF58YYtm7d6tmgff/+/Z4cJwyMjY25ft3nzp1LV1cXAEePHnXlGJcvX56yTKGK2cWLF4sVp6jjecGFCxf8FmECxphAXievKVRZUh9vRVEUJazMA14NPIClLI2IyCPJv39ojNEoKVlIKVZeDZrOnTtHVVWVZ5HUSlFGvFAgCz1GoeUXLlw4riwdP358wm+5lOpp06YVdIxiWLt2LadOnaKpro6qkyeJXrhI1YULYBIM1DfQOVaR8xyT0DVF7lOoYlPRPt6KoihKeDHGnAU+B3xORKYBv4SlOH0WqBeRzViK0/eMMV3+Seo+mQMsY0zOQdexY8e8EGkC+QaAOjjMj5PK1blz57Jur6pyfl58ggvo2BgjP3qEup/+lK6tW+nIWLd14nsP0xSNUjt/PqaujqH586ldvozYnDlQVUWisRFTV+e4jJWIp5YlYyAWQ0bHMHW1EI3mLCcjI5hoFHIFWXFQ7kLzLL3fsSMriqIoik8YY/qArwJfFZFq4CVYitP7gE+JyDPAd4wxH/VRTNcoZP3R6GiwZvCzre0phXJTvvxOrlssjY2NmNFRer/7XS59/l8ZO316/LfYrFnEZs4kPmMGJOJMv3CRof37qUlawmIHDtD2s4nL6U11NYlp04hPm4ZpaAAMMjyCxGIQi5FobiY+cyaJuloQAWOI9l7G1NYSn97O2IIFxGfPJt7amnvQXipjY0R7ezHRKDI2Zsnc1AQ1Ndbv8TgyNISMjiJjY9ZndAyJjWEiESQWwzz2GM2dnUg8QeTyZWR4mERrC4mGBpAIiGCqqzH19STq6yAata7DyDDRy1eIXLkMEiFRV4dpbMBUVUHCEBkepvfnmxhtbaGmoYFEfQNURa3fgeilS0QvXEDicYhEMBKBiBAZGrLqHx4m0t9PpL/PknlwkMjwMDI6CrEYRJN1JZ9XicWQ4WHr/gBGBNPQgKmpseSvqoLqKogniF68SCTZDiQaGjC1NZAwliyxmFWHg/mtplSW0hfEBgURmQ/8JXAzcB1QDywxxnRmlKsDPgj8OtAK7AL+0hjzWEa5SLK+3wFmAweADxhjvpXl2O8A/hRYAnQC/2CM+ZxjJ6coiqJ4ijFmDGsd7o+Ad4rIbVjuem8GbCtLIvJa4New+qaZwAng28BHkspZqlwb8InkMeqBLcCfGGP2ZNTneB+WopD1HuWmTISNQq9/Q0OD/dxP8ThDW7Yy7ZvfxFTXMDZ/PrGFC4h3dBQhaZEkEtyxcCGX/+3f6P3mt4glozTWLF5M+9vehlx3LTszIjfevHEj2x59lNgLL0A8zuzBIfp/+lOiyYAbkb4+ZGyMaHc30VyBHM6cgQMHphTPiFiKVVsbibY2EvV1mJoaqKq2BvfDw8jIiDVQTyQgEbcUl4F+TDRKormFREsLpipqKT8jo0R7ey1lI8darkRdHaa+jsjlK8gUExsGaMjceDxLwSIY2LYNgHZnqrOFqarCVFVZitXAAOSIBpmoqUFiMSKDgzA46KpMdixLQVwQuxx4PfAM8Djw0hzlvojlZvHnwFHg94FHROR2Y8yutHIfBP4MeG+yzl8FviEi9xlj/jdVKKkofR6r8/wp1kzkZ0REjDGfde70FEVRFKcRkbXGmCmjBxhjtgJbgb8q8BB/hqUg/TVwCrgBeD+wMTnxmBBr5Pt9YDHwLqxASe8BNonI9caYU2n1OdqHTXHOqhSVCSJC1alTVB8/TqSnl9qkQmBqa0nU1WJq60hMm0b08mVqd+/m7NAQjRl1JBoaOH3vvcRvuB6ZPh1TWzvpGGPnzlO7Zw9VJ08R7emxBrhXrlB16SKR7h7LqjNrFt2nu5DWFkyjdZRIby9VXV3UHD1K9dFjVHd2cnRoaLzumuXL6Pjdd9L8ipcj0agVOj1LmHtTV8foqlXJfZbTffNNaT9ablqRvn5LcRoaHN8nZc2oGRiArjNIbMxy2UokiLe2ERkZIXr+PNUnT1oWjMuXiSY/dHYWfkNO5/boNZEIidZWSCQw1dXI2BiRvj7LajI8bClqjY2WZaW6GlNTjamusVzP4nHAULt2Lb3NLVAVJd7SgqmtJXL5CpHhIUgY61qMjSJDw0SGhiAew9RayliisZF4axtgiAwNI4MDVy1FNTUsmD6d3n37iB09Nm4RklgMjCHe3kZ85kxMVTUkEohJQMJg6upI1Ndj6moxDQ3Em5st2RsbLSWwNuleF49bdSUSlnUpErWsfGlWtcjAIIyNWlansbFxq1Ns+nTMtGnWcQcGLNlEoKoak7J+VVXBL/xC4fcrC3aUpSAuiH3MGDMLQER+iyzKkohcB7wReLsx5t+T2zYD+7DWXt2f3DYTq5P5mDHmk8ndN4nIcuBjwP8my1UBHwa+ZIx5b1q5ucAHReQLydlJRVEUJZjsFZGLWGkwNgOPAbuMc075rzLGpIez2iwi3cB/Ai8Gfo7V99wJ3GuM2QQgIluAY8BfAH+Y3OZoH2aXoES+GhvzrjudNWtW0fsWpGCOjRHtvUzkci/xGTNI1NfT8Njj1O7bR+SKZUEYmz+f+PR2RlevIVFfD4sWZq8rkWDF6BindjwNkSiRK5eJzZ6Nqakh/p//RcfWrbbFql62jJ4VywGoOnWa6uPHifb1ceUHP4Af/ICZVVXEOzoYXbGCxLRpyMgIVZ2dHD5yhLY89Ub7+qju6uLczp3MFLEGyWK5aWVSNWcODTffTMsDD9B4x+2IDVfCobR6Jj23Ipi6OuJ1dcRnZLeSNba02IrSRzxuKUzd3UR7ey0rUtKdL1Ffh6mrx9TWWOtnolFL0YhGMfUNEI8RvXyZyJUrluISjWKqq4m3NBOfPt1SlDJd/IxBBgaIDA0Tb23JvSYnybx58xhKc1l0kqYbb2Tw/HnOnzo16TcRKbm9yLt3NEqieYpAIpEIZto014MpTKksBXFBrM3w5PcDY8DX0vaLichXgb8SkVpjzAjwMqAG+HLG/l8G/j8RWWKMOQbcDszIUu5LwNuAu4BNxZyPoiiK4gnvAl6U/Lwaq6++IiJPYilOjwFPG2OKcnbPUJRSPJ38npf8vh/oSilKyf0ui8j3sfrWP0wr52Qf5jpBUbQKJZocrJYk/9jY+KC2+tgxag4eAoHh9etp/NnPqd2zh+iViXPLJhKZ5GJVlcon9MiPrTLRKGfvfhG1y5dDdTWRpFtZ7b799J0+TUsWUQyWi9LItdeSaGlmdPlyEo2NllvT8AgyPESkrw+iVQxfdy23/sqvcPKptNUWxhC9cIG1Pb1c/N//hYMHqTp79qpsSSKNjQzNm0dswQJiMzqQeNyyVMyYQby1lUhfH9Wnu5h75DD927ZfXWNSX09s7lzGFi9idOlSxpYu5Z5f/uXir32R2L7f0SiJ9nYS7e0Uo8Lnium4bNkyjhw5MvkHEUxTE/GmpiKOprhBoQEewrQgdh1wzBiT6ci4D6tjWZ78ex0wAhzOUg5gLdaM37rk/3vzlJukLD300EM5BXzwwQfznoCiKEpQyNeWhQVjzKeBTwMkLS/3AHdjKU+vxBpnDorIVmCzMeZDDhz2nuR3KvXGOib3I2D1Jb8hIk3GmH6c78MmkHk/H3vsMYwx1NfX88Mf/hAIr/LjFfG+Pno/9zlmfOe7RLu7Ldegmhqq01zGpn3nu+N/m0iEREsLieZpVHWdQcbGGFuwgP6XvYz4rJkQT1B96iTVR49Sfeo0xGNUdZ1haNOjtG16dNLxIzNnMrB0KSQSJBobqDpzlsjAALNf/nKeX7aUREs2VWoyk6xjIsRnzqTjDW+g72Uv5fgLL1DVdYaaQweRsTESNbU0zJ3Dut/8TTYn17RkI9HeTmzRIha+96/Z9NOfWq5S8bgVbCGkQSicorW1lTqN1ucIXvRNdgI8ZPXxdmpBrIu0kyVpLtCd9nvquzeLG0a2cmSpM7NcSVwZNXzr4CgzGiK8ckkVEfUhVxRFcRxjzGEsBeOLACIyD0uxeT3wKuBeoCRlKVnnB4CfGmN2JDe3YwUHyiTVl7QB/Tjfh+UlGo3mzGtU7Fqm9vZ2unMtrg850TNn6HzDrzJ69CgpJ6qqS5cAa3H+8M03Ee3uoerECeIzZ9D3mtcytmjhVZer0VEkHsfU10+oN7ZoIUN33jn+f6S3l7rtT1P33HOWi930duLt7VQvWMD8V7+arsOZOjJcu3Ejx59+mv7+fkfO1dTVMbZ0CWNLl4xvq58+nUjDpLACuYlGJ52rXXQtnX9oUloLO5YlWz7eJSyILWsKsR7tvxTnEztGkv/FaasV7pynOX4VRfGffG3Zvffe66EkziIiC7GsS6nPSixlZUuJ9TYB38PywnlbiWI6Tub9XLNmDbNnz2ZgYIDt27ePbz937hxnM9yvcnHixIkJ/9ekFmqHjOrOTiKXukm0tRGbO8ey+BzvhESCyMAANUeOULf9aUZHRqhetpSzDzzA2JIlRC9cIHrlCmPz548HM8hJTY2tdRaJ1lYGX/qLDL70FydsX7t2LZInnPXixYvZuzebAbM8CduAXkRC+36kcGLNkhN40TfZGYm76uPtIj3AoizbU7Ns3WnlWpMR7cwU5cCa9TuTp9wEhmOG7Wfj3DgzSlNN7tmR7xwe5eEjE2f1vrB3lAtDCR5YVk3CQP8YnO5P8IOjY3TUC7+6qoaGap1xURRFsYuIrOSqYvQirH7iPNaE4GeT3zttro3NdYx6rIh3S4F7MiLc9UDWdfGZ3gtO92F5yTXo2b9/yuCB4xw9etR22SAy/LOf0fHP/0JVRlh1I4JkuT7N993HtL/8C04mlZL4nDnE58zxRFYRcczi4rXlZtmyZUQiEQ4dOuTpcTPxe6Df2trq6/HtcP78eb9FCAR2Ajz44ePtBPuAXxaRhgyf77XAKFf9u/cBtcAyJvp8r01+708rB5Z/+Jk85SbwjYNj/PxkjCe7IrxnQ3b/1NG4maAoNVbBQPLf7x2JcXbA0Fgt/PzkRGXq8dND/P09dbTVVbbvr6Ioih1E5AxW/qMjwJNYIbcfN8Y4NmpLruf9JlaupV/MzJ2E1ZdkS3exFjiRXK+UKudkH6bkoe/nm7jy0AeoisdJ1NUxtnAh0d5eqs6fBxFGly7F1NZiamoYW7iA0ZUrWfNbv5XV1a2jo4NYLEZvb6/3JxICFi5cyJWMYBd+0NfXN3WhEOCm0nf69OmcSl1LS4v9fF4hp9AAD677eDvI94GHgNdhhW1Nhf9+A/DjZBQhsNZcjQFvSpZP8evA3rQoQluAi8lyP80o143V8U5iz0XL4HawJ/ck5fnBqw/6+26tZVlrlE/sGGb/JWufbWdzG+3evdmKLlMVgZn1wh1zq3jlkqpJM0WXRwyXhhPURoWowPQ6oTp6tUzPcIJ9lxJcGErQUR9hep2wdrpLGasVRVH8YRYwiBVsYV/y41ikuGRy2K9g9YX3Jd3TM3kYeJuI3GOM2ZzcrxmrD/3vtHJO92FKDvqffJJTf/RHEI8zsPHF9L3mNdbaImOInj1Lorl5are6NGbNmmXbddEtmpubbZW77bbbiqrfyeAEK1asyPu7HcuX31aiQnHSmnfhQrYgnM6RS+lfunQphw4dCoTi6zZFLYhxy8e7QBlem/wzlYXsFSJyAbhgjNlsjNkpIl8D/jE503cMeCewBKtTAcAYc15E/h54j4j0Ac9idUb3ksxjkSw3JiL/DysJ7Wkshele4O3Au3Il6q1KM/r863MjvGpZNa21wqMnY9RG4d6F1ZwbtJSiazsiLGu1FJQ/v7kOYwyf2jXKs+evKktLWyL8zrU1/OxEjB8fv2ppiiWga8DwzUNjfPPQGPOahDmNEd6ytoZ9l+J87rnJ4q1uj/CSBVXMaYrw0W3D49asFEuaI9RWQUe9kDBwbUeUG2dGJyhZiqIoIWI2V/utX8fKQzQsItuwEpw/DmzJEoHOLp/GUm4+DAwkAx+lOJV0x3sYq6/8soj8OVeT0grwt6nCTvdhymRqamowBw5w6lOfhrEx6l/3Ws5u3GgltwQrKlyRbnWXksEe/KI2I4lsLurr64vKabVoUTYP0eKYP3++rXLRaJR4PGgrPvzHy5xk6YgITU1Nqiyl8MLHuwi+kfH/Z5Lfm7GS/4G1qPbDWNauVmA38HJjzLMZ+74XS9n7I6zO9ADwemPMD9ILGWM+JyIG+FOsjOongD8wxnyGHKTrFVvOxDnYk+DS8NUZkM2nYtw6x7oNsxomutOJCO+6oZavHxjl/zpjvG1dDXfPt8r+2uoalrVG+OxuSwlqrxNaa4Wjl61bcLrfcLo/zjPnhnIuIn2hO8EL3ZOVqJoIjCbg2JWJt/OprquN1PQ6QQTumlvFA8ut3BLdwwlqIkJTjbXoL2agOuKdYjWWMFSJdd1iCUNEKDqaYMIYTvUZnjkfo3vYYAwsaYnQUR8hAlweNbTUCK11wsx6obZq4nGGYoa+UcOMeuf8yhWlWIwxxA0534mEsZ7xaI73NZ6w3udYIvUxJIyVY7EmRAZoY8x5LBe5bwKISAtX+7WXA3+d3L4TK/n5nxd4iFckv9+b/KTzEPB+Y0xCRO4DPonVb9VhKU8bjTEnM/ZxtA/Lx7lz5zhx4gTr1q2bunCZsOD4cYY+93kSg4O0PHA/NX/4h1BgUAS/LBqtra2+upHl6tfcVGii0Sh1dXUMDAy4Ur+XlMu4YHCw2HmlcGEndLjrPt7FYIyZ8kkzxgwB705+8pWLY3VGU7oQGmM+D3zepphURYT0HMXpihLAiT7DiT5rVmBOU/ZTev2qGl6/anLUlA2zq9gw++otNMaw+VSczadixBKGU/1m/Mh3zYvywLJqptUIp/sTbO2K03klwfG+BKNxWN0W4fevrx0PQtE/anj6nKUoRIC+Mdh1Pk7PiJlwHt89Msap/gRRsdwFBWirE7qHDdURuHdhFSvbIkRFiCcMB3sSXBwy1FfDaNyylK2bHmU0bkgAM+ojiEBzjZAwhnMDhp0X4hzsibO0JUptFBqqhaZq6BuFxmqIivBI5xgHehK01gnGQO+IoakaXjSviptnR1k4LUJVROgbNYzEDSf7EhgDS1ujxBKG7mHDC90Jtp2J0TNiGI1DPKMPfLIrewdQX2Wdx5kBw3DMUBWxZDPAwmnCtTOiLEueZy6rXCxhuDhk6B0xdNRLUhkNf2NqjPUMpgboxhiG49YgG6xrPBwzDMesQffMBmFgDHqGLbfRvqQuPxq36qmKWAp4dQSqo1ATETrqBQESWPX2jxouDVvX8+JQguE4tNYI7fVClVjh+RurhXlNEeqrrOcnIhCNQARrUjlhoDZqua92DRiGYoaGpEI8lrAU86hAfZUwlrCU4+oIDMUsWccSMK1GaKm1ZAUYiVvH7hs1xBIwMGYpHB31QlUkKYPAaMLQNwr9Y4bBMcNQDAZjhqExg4hQF4XqiPUe1FVZ1yAilgzWtQbBen+ujFrHvDJiKTtgmS9Sx0rpRiPJR3tajdVmxRJmXDEaS0yRZT3EGGMuY7m7fR8gaQn6KyyXuJuxJsUKqW+xzXLdWF4Jb5+inON9WC5Saw/SB/+5QomXA7W7djHw+X8FoGnjRuZ86EN0OzRDXkjbXV1dTXNzc8GWqJqaGsf6CLcVPifXtbS2tjI6mtWRRwGampocCxmvXMWOZclVH+9ypxCPtcXNpQVqEBFevKCKFy+wbuuFwQTbzsaZ3SDcOCs6PmBd2hJlaYs1HXx2IMHxKwlumhVNKnYWTTXCxgXVE+p/42pLqTjZl6C1VnjuQpwfHoux49xVJUIEupOK1FgCHumM8Uhnbpm3n41DlpzYTdUwHLcGayl2X5jacNmTpoz2j8H/dcb4v86YNbisgssFtLGttcI1HRGWtkQYjsHuC3FiBuIJy5J3diDBSNxSHPddmihbVKwBraUMXx1wtNUKQzFDe53QWC2MxK1rOhi7qkCApYDNqBcWNUc4N2gpb/OarMH3wmkRogLnBq1BfyxhELEUzfoqONyb4NygNdA+O5BABFa3R5ndKIymXdO+UcNo4urxZjdGGIkZaqJCVQRakorzzAahd8SyTFRHrIFzY5UwkoChMcNQ3DA4BoNjliLUPZxgYMxSWk4klfHmWqG+KqUs2L8HSiYmx99TE0kqgQZLSc2cDBDgymj2egVLUbWU1asKZkQs5TCMJNcX3chVr4m7sKLUCZbnxGP+SecfTg6cgzjhE+8foPF//5em//sRANN/93eY8a53IdEokQpNlFpVlXsoGM0RnryQe3vq1KmpC+VB1yzlp7a2lpERawmjlyHjRcS2u2fYsaMsue3jXdZU5Wl706PeASyY5mxDPaMhwn1L89c5uzHC7EZ7x62KCDMbhJlJd8FlrVHunFfFz0/E6B8zbFxQxYJpEY5fSXDsshVMYteFOKf7EySMpawsaI6wrCXCWMJSKJ7qitM3ZmisBmMsxSOesBQdsAbxK1ojrGyLcqo/QURgOGbNyldFYGDMGpzfM7+Ku+dXMRyDuipLKTl2JcGjJ2Mc6k1wftBweRSqxFIEZzUIg2OGnhFDdURoqLbWaK2fEWVFa4TaqEwKy/6KJdWZlwRjDIeT9S9uidBUbc3oT6sR4gnYmTz/Z8/FOTdoxi1zXQOG9EGpYLk2TqsRLg4l6B9LKVpXFdHOEiY90xU2P+hOU2JrIlffCxGoi1qK1EDMUnbrqyxltK3Wci0FqI5ag/OxuGUhGYszbtFJ1Z2ylNRXCx11wvSkha6uSrg8YpVLGEsR7xuDrv4EYwmIG0MiYVmm4gYSCcYtNc21wtzGCI3VwmDSNFMbtd6FeMKy+FRFoKFKGEsY6qtkPIjKlVFD/5hloTFJd7XmGuseV0etfQzWOccTlmU1nrCUkWk1ljtrQ5X1bNZXCQ3J1nooZp374JhhJA4jceu86qosC54xYDAIVj3NNUJzrSUXWC53iaSylDCWbHVV1veV0ZRSbCnMVWLdq1zueSnu/aBTT4q7iMhdXO3PbgeasF6/U1iBEjZjud8d8E1InwnboLMQZHCQ429+M9Oefx6Ampe+lBl/9EfjA9dcUb/WrVvHgQMHytbSlktJHB4edsQq5IbS3NnZ6Xid5YDXExT5FO1ywk7ocLd9vMuaaA495DevqeGajih/8ugQAO+6oWaCZScszGyI8KurJ7oIrmiLsqLNmo26Z0H+R+wXFk1WQBLGcGnIclda2Bwp+rosb42yPBkw48qoYTRuaKq2Bs9OISLJ852wFbAGmbcl16O9ZoW17uP8kOXOdarf8m2qq7IsWM21Mr6+yxhD3xgc7U1wuj/BgmkR6qqsHFu9I4bjVyz3tCUtEUbjhqqIpaCdH7x6zZY0R6irEuY2CSMxONCT4NKQZWWqr7IG/jPqrXqjApeSLoA1UWE4Zg2Y+5NuYmcHEkyrsSxhY3FLwRkYM9QkB/z1aQP6mojlVtZUI9RHhXnTrP36Rg39o9BQTd51XAljil5nVilkS9BTCJGkVWjSmymWC22Zk7IWHcHq0x7DSnnR6ZtEAaNclSUZHqbtU59m5NgxYjNmcOVNb2TZq189oS0qZqBZ6vUK8vXes2dPoFy60u/PsWPq4KR4R8EqodM+3uVOLje8aTVCS5qOUaoLXjkREWFGgzCjwbk6m2uElBLjF9GIMKfRkqGlNveqeBGhuQaunxnl+plXy61sK34l/Rqfw8DX1gsd9VOXU0VJcZk3Yk3qdfktSFBxe/C+cuVKDh486OoxxjGGqhMnqd+yhbrnniPa00P13Lmc//3fI9HenlU5uuOOO3jqqae8kS/gOBVlLf0653LrK6SuICuYSn5mzJjheqhzNyhIWVIfb+doqrZe+r+4uZbBmKFdE8sqiqK4ijHmq37LUOm0tZVqG7VH3ZatTPv2t4mmWUZiHR0s+49/5+SRIzn3y7YGQ6SwgDuZZauqqnK68BljinadCuKasGykKzfFRMoL8pqladOmeRKVsK6ujuHhYdePUyiFXvewrgu0Ew1PfbxLYCxHTIL2pLuL3zP+iqIolYKIPAw8aIzZabN8HfB7wKAx5nOuChcQwj5rX3XqFNO+8U1qk9YrE40y+OJ7GL7pJsYWLWL9woWQR1kqFDvXa+3atTz33HOOHdMrUkEDspFLgcm2vVzXepVCoYpuTU1N4JSlbOdQrtH47FiW1Me7BF7onqgtfejOOkZihja1JCmKonhNJ7BVRHYBX8HKEficMWZ8NCcic4ENWK7lvwJ0YeU7UtJob2+nu7u74P0cs4bE49Rv3Up1ZyemqhqJxag+doyqM2eQRAJTXc2V17yGobvuhByuX04ohrmigTU0NDA4OIiI5F0Ev2TJkrxKSTngxbqusCr5a9euZf/+/Z4fN/V8ulFvSlmqqakpmzDvdpQl9fF2kHlNqiQpiqL4gTHmD0Xkn4A/Bt4PtABGRK4AI1iJX2uwvCe2J8t9OZnHSEnDyyhY0XPnaPzxTxhZfw0j118PY2O0//O/UHP4cNbyg3e/iL4HHsA05F/4WoriNmPGDMByj5o+ffqkPEkdHR2cOHFiynoWLFhAPB7n5MnMfMTlgxeKTFiVpbq6upLrKOY5DkuOrqBgJxqe+ngriqIoZYEx5gjwLhH5UyzX8luBuUAdcAl4AWuC8Lh/UvqH3cGPG+tsqk6epOrMGeIdHYwtWQIiNDy6mWnf/jYyNkb99u0MX389VWfPUn3qFPHmZgZ+4SWQXAcRmzeP2KxZJDxYF9XS0jL+95w5cyYoS4Vem1KDHlQS5RbgoZzOpZypjADpiqIoipKGMWYUa83tZr9lCSMzZszg3LlzzlQWj9PyX1+ifvv28U0DL76HsUWLaP7a18a3SSxG/Y4d4/9fftvbGF29yhkZSiBTOUoP2hCWIAyRSIREYurE7ylynVdtbe2kNUqXL18uSTY7OKV0dHR0cPHiRUfqsoPdgAf5FOr0tUx+K18zZ87k/PnzQHiefTuosuQRv7Cwitvm6OyRoiiKEn7sDPKyDZayDcibv/Z16rdvx4gwtmQxNUeP0fjoVR32yhtez+A991B99ChVZ84Q6e9nbP58zxSlchr05WL+/Pm23AZT5BqUX3fddb6GXs8XedAOXilKqWdq2rRpVFdXTxmmfd68ebYSBNtdh+SEUpXNyjdt2rQp9wkjqix5xKuWVtNcG86HRFEURakM7A6Y7Qx6hoaGJm2bMLgyhtrdu2l4/HFMJELPH/wBo2tWU7dtG83/81VkbIzBezcyeM89IMLYsmWMLVtm+1xyUUxwitT5ljoYDypOWSRyBbxw63hu1VcstbW1BQXsEBHmzp3L8eP5vX7tKhkDAwO2j+0HToQOr6urY+HChd7la0OVJc+oVqOSoiiKEnB6e3sdqyvbTLiIUNXVRc3+/TQ98mMiychZfQ88wOia1QAM33orwzffDPE41NRMqqNUSglOUVdX51to5GyBJEqhHNdK+a3Irl69mt27d/sqQ1BZvnw5DQ0NdHWVFi9u7ty5zJ07N6+y5HReKlWWPKJKg+ApiqIoZUJRM/nG0P3Jv6Pjv/97wubB229n8BdeMrFsNJoz5HepLEtapzo6Ogret7q6GsivcKVfm7C6HU1F6vyLXeNTyPqodEQka2Lbcg+/bpegWNhS3HXXXTzxxBOAFfnRCWV/ZGQEEcm7zs7p61CysiQircAvABeAZ40x7qcyDiFV5dleKoqiKBVIMYORhkcfpe/r38BEowxffz3DN9/EyHXXgcsKxbJlyziSloi2rq6OdevWFVXXwoUL6ejoYNasWePbsgV4cIMgKl7r16+ns7OTY8eOFbSf09fIy6AMTpAKPQ/BvK92meo+piYX3GDx4sUcPXp0/P+UC6Qb19MJe8ePgN8BHgJOisgLIvJlB+otK8L8MiiKolQCIvJ3fstQrkTPnWPaN78FwOXfeDOXf+s3rZxJHvSN6WG+iyG9/45EIsyfP3/KtRepfbJZQYol85hOKhyl1NXU1FTwPsWOiZx0E/WLe+65h5kzZ9oqO336dFdkcCrAQybpa9bcHvfOnj17wv+333471dXVrFy50nFl3AllqdkY84vGmBcDbcAvA484UK+iKIqiuI5c7dU3Zvnt7z0WJxTYHYzU1NQQ6e2l5T/+E0kkaHntaxjesMFV2RYtWjRlVK5CGR0dBUofZN51111F72t3gO01DVMk/81Ga2ur7bIpl7/Zs2dz5cqVgo8VNJwIchBUvDAM5DqGiHDXXXcxd+5cx4/pxB3bJyJ1AMbieWPMlxyoV1EURVG84L0i8gIwT0TeLSJ3i0hj8reX+ilYGIlc6aPmhQMQj1N14AAd73+Ims5OEo2NzPzjPy64vvr6+oLKL126lKVLlxZ8HDuUYilqbm6e4JY0f/78kmQpdWBa7LohJxARGhoabA1sq6qquPvuu1myZIkHkil+44TrnpMWXXAmwMNl4Bsi8mfGmAMO1KcoiqIonmGM+ZCIfAfLK2IBlofEdSIyAmz1VbigYwzTvvEN6rc/Tby9naFbN9D4yI+J9k1cvjy6YgWX3/xmqgoMqtDe3s769evZvDkYuYOzWZYyo27ZtT4V6r7m9Ky938EAbr31VttlwxK5b6p7tH79+knbnAxOkXlPiwmT7zc33HAD29MSVOci37UOorJ0GpgNPCoiEeBpYIcx5v0O1K0oiqIormOM2Sciv2iMeR4g2Z/NAc74K1kwScTjRM+cIXrpEo2bHgUgMjBA9cmTk8oO3Xgjl9/+tpzR7RYvXkxnZ2fW34od0KcPpJxUMrLJ47fSUSwLFy4c/zus5xA2srksXr582bXjrVq1ii1btkza7sX9Lva9a2xsZN68eZw+fdphiYqnZGXJGPNg6m8RmQfclPwoiqIoSph4k4g8gxXZ9TjWZKCShZHv/4AZf3c1Hsbgi+6i+sQJIpevMHzTTfTf90s0/vSnVF/p48prfiVvGPCgD9TTB312ZPUqoFOp122ZAwl+lWCR+Uzkehbb29tLznfk5nPud76sTIpWlkTkUWPMi0Xk/cAOLGvSaazO5WGH5FMURVEUrxgB3gp8SkRqgGexFKf3+CpVwLj11lvp+sIXx/83kQhXXvvaSQlk+++7j0gkgilhbYwxpqBBWY0LSWynohyi3QZdYVWcZcWKFQUrS5kh+MG9Z//cuXOu1FsspQR4eFXyW4DfBXaKyGkReVhEHsyzX8Vxz3zN/asoihJ0jDEfNMY8YIyZB2wAurDWMClp1IkwtmcPAPHmZnrf/vZJilIKr4MIpBLNFhJtTalsZenaa68tel8nlAW33USzUUxEPi8nBewcK1+Z9BDmTlDQ1UqLDkQq+awx5kFjzH3GmDlYncsXCq233PmNte4l5VIURVGcxxhzDHg7MOC3LEFj8OmnYXSUsUULufDxjzFy041+izTO4OAg4L+1xw13vczyU+1/zTXXTFiXpGSnlFxGQVAyU6HV/cbJZ62jwEAwmTh9TQpVav57it8vGGMeTl/HpECkDEz0iqIo5Y6IvFVErkkGd8BYI6HZU+xWcQw8ZS0YH1mz1vVjFeqGF8SkpalQyMUkby2FGTNm2F6X5NWgv7m52fE6i8nz5BapZzVXnq9sz/LAQHnMx7hxb7Nhpz1oa2tz9JiFKksrReSjmRtFJCoivw0cdkas8uHli+1pt37PgimKoihsBL4OXBaRLSLyI6C0Kc4yZCjpgje6Yrnrxyp0INzY2Dh1oQIptX9uaGjgxhtvZPly96+Xn9jJhxUUK4jb+DWmyxXgwQ15/DpHO2HkS7VMZVKosnQ/8A4ReVNqg4i8EXge+BxwyUHZyoKI6kCKoiihwBjzFmPMWqyQ4X8BfB54pb9SBYxEguHnnwdgzAMXrxUrVhRU3ukZZadoaWlxPFeQXWvQunXrHKvLDqW4tbnNVPfguuuuK7ruGTNmFL1vIWSuN/LKsuZkPqipyPc8poK4eKmsFaQsGWMOAW8APpvMcv4c8GWsCEKvM8bc4IKMoUZ1JUVRlPAgIrcCLwFOGmO+Y4xxLwlKkDAGyUiumo3qzuOYwUEic+dibLqVleKeE5ZkpOkEzVNk5syZnh4vnwXNDXe/Qq738uXLWbp0ac7f29vbizr2TTfdxDXXXFPQvsWSnsxXRFi9ejVguXsWc32zJcrNRl9GomnwTkFMx4/3q+BADMaYnwF/CXwSqAZ+DbjWGPMth2UrCwLWZiqKoig5EJH/hzUB+DvAZhH5LxFxNqxSwKjZv5/Z7/w9Zv/e7zPrT95N9aFDANQ9vYPqo8cmla/faq1XqrrtNtvHaGlpyft7ak1PoaQPGp1k1qxZOX/zckF/psXAiUFiLquPE+cVNCUxGyIy5fMYdOrq6sb/FpEJEwq57kG+ezM0NGTruNneC6fd3VKky7thwwZXjlEIhUbDe0REPgb0Aj8B+oDvmiCEAwkodi+wXkJFURTf+TXgGmPMK4FlwBngb/0VyV2av/HNCf83/vRnVB86ROv/9/8x/ROfgPTkkPE4dTueAaDml37J9jHyzeSDtdalGPenbO5HTgzYC7WEeR0evRSWLFmSdXsljUHK+VwXLVrkWF1TRV8s5l2zmwct3f0207qc7bhOhwrPpFDLUi3WjNtXgF8EbgaeEZHPishvi4j/6l/ACMNMi6IoigLAqDFmBMAYEwP+CnipvyK5S7ytdcL/NQcPMu17V/PK1+7fP/539dGjRIaGqFmyhOiSxbaPYSenS5Aims2cOXNCsIKp+vELFy5M+L+Yfn/NmjUF71PMcewEYSgVHffkxulrk1lfZsTFUo63dq0z0S7TFZlp06Zx88035yybCgCSvk/mOaQs0enb3X7mCl2z9GJjTBuwFHgN8EHgKPBLWAEetjguYcjRAA+Koiih4dlkZNcUApTvNDQgw9ai7b5ffjUAkeFhao4cGf+97tmd1h/G0PSDHwLQdM89js7OFxoe3G1qamoKcvFLd4tK4UaeJSfIdcxS7mch+05lZfQCNy1Lft9TJ6MNFusem8ltt93GPffcM/5/elj1dHmvv/56brnllrx1rV692pcAIkUljzXGdCYXvj5ojLnfGLMQmEGZz8AVQ3Caf0VRFGUK3g28UUS2i8hngUeBn/srkrtEL1vxK4avv37C9lgyKED9tm1M+5+vUrt3L7UHDwLQ9mu/6qmMflCIUpG5bsOtAfP58+eB7MqZn6QGvLlyC6Xo6OhwJRdPruudyzUrTG54Kbe1XIFO7D5rhTyT1dXVjq4HjEQiOa3Ld9xxB5FIhIaGBtra2qZ8tufMmeOLQuqYCmqMuQT8zKn6goqILAD+AcsNUYCfAn9sjDmRrbxalhRFUYKHiDQaYyZkgzTG9AIvFpG7geuBHwPf9Vw4r0gkiCSVpXhrK+c/+hFmvuevAei//1XUP/Y4tQcP0vjYYzQ+9pi1/ZWvpGbRIsypUwUdavXq1TmTsgbJquQEbp3PyMgIt9xyS0nrM9ywLNXW1nLTTTdNmePKiesiIrZldTuSYjH1F3oNli9fTmtrK62trQUfq1jGxsZoaGgoOFR4Mc9QNBrl7rvvLng/rynKslSpiEgD1izjauAtwJuBFcAmEcnaSpRZH6CEgJtuuslvEUpi7ty5fotQNLkWTyuB5L9z/WCMeQz4XNKDIjzT0AUS6R9A4nESjY1QU0OitZWzn/k0Z//5nxi+6SYu/8abJ5QfXbyY/le+Ysp6sw0I58yZk9Py0NDQUFYKkxuJcVP1NjU1ZV2z4TfNzc2ehHl34pyzKe233HIL12dYV7MxZ84cwAqZnR6lza1moqqqitmzZxcV5a5UMpVyJwI8ZENE8tblx7lnospSYbwDa73Wq40x3zXGfA8rUe8irMAXkwhOU6ZUCm64OXjJqlWr/BahaMJ+7SuMlSLy0cyNIhIVkXcAh32QyVMivT0AxFvTQimLQHIwnpg+nbOf/hTxZO6ZgVe+ApID4nxrIwpVFhoaGmwFgQgC2XIWZcruVGSuzAG4E/mS3LAs+Ynd6GrpZLs/TU1NthIapxTC1tbWotwhnRrgL168GLDOvxhFww6ZQVfa2toqdkLQuZVglcH9wFZjzHgnaow5JiJPAg8Af5+5g7rhKYqiBJL7gS0istcY8xUAEXkj8H5gObDbR9k8ofb55wFI5FPyIxEufPADRHp7SaQl7HR6VtfJhenZuPbaax1ZsJ7NeuKEi5RXs+ReKEtuWgJyRUbziqAolR0dHXR2dnpqXRERFi9ezLFjk/OvlTuqLBXGOuB7WbbvA16XbYcfP/Ijtp59NmtlDz74oHOSVTjLly/n8OGynwhWfGDhwoWcOJF1SWJF8dBDD/ktgqMYYw6JyBuA74jILOCtwDUk2/NKSLQ+7btWdxbpvZy/YCQyQVGaimIHcPX19bYTZBZCQ0OD68pYqWQbhE91LYLkhucXxpjQWCXBuXuWOud8VswbbrjBVl1hyhPmF+F5woJBO9CTZXs3kN1+G5BZCEVRFGUixpifAX8JfBKoxkpKe20lKErS1zf+d9/rss71Fc3ChQuL2s/NdR9e40XocCdzJgXFYjIVQVcQU9dxbGzM9j6Z0RTt0NjYyNq1ayfk58q8h25b3fy+F+nHnz17tqvHCvZUSxnwkXe8itro/X6LoSiKUhL5LOH33nuvh5I4g4g8AuzEcrf7CdaE13fLOaBDOtWnTwMwumwZo2tWO1q3nUH89OnTuXTpkqPHDTN2Bp6ZZYpZr+MnTgyuGxoauHLligPSuMPFixeB3FbBbNeg2Osya9Ys4Kpili0AQ2pbvmat2CbPb9fRdBYtWuSqDGpZKowesluQclmcqI0GexZEUYpl+fLlfougKKVQixWY5ytYqSBuBp4Rkc+KyG+LyIa8e4ccGR4GsCLhlUhLS8vUhdK46667uOaaa0o+rpe0F+CGGESmukderFlygsygA/nwY94j/Zh33HGHrX2cmjTIdr6pe5EevCLdGgVWZD87FHpf3b7+Xlq21LJUGPuw1i1lshbY77EsjtLS0sLly1P4rYeEBQsWcPLkSb/FUBQlwBhjXgwgIouBG7DyKt0A/BKWEmUA92Mh+4Qkc6iYAiK33X777VnXN6xatYrt27fbriflHlRTU8Po6Kjt/ezgxgCqr6+P9evX51zbke+Y8+bNc1yeYrj22mvzXuuwGlQLlTtVvrq6uiBXObuku3xmW0+U7VnJfK5Wr17NCy+84Ig8kUiEDRs2UFdXx2PJXGmZirPTbqp+rCF3W3FSZakwHgY+KSJLjTFHYbyjvRP4Kz8Fq3TSX5SwNvqKoniPMaYT6AS+k9omItOxlKeyRZID50KUJbuhku2Wu+222/L+njkD7hfxeJxIJJIzkEC+gVox4aVzUcqAsKqqKu+geHBwsOi67eJGNLxi6y1mnJAtdHuqnpQMM2fOpLOzs6T7PmPGDMeUJZgcyj/TTbbY+5Jrv7BbYbOhbniF8W9Yner3ROQBEbkfKzreSeDzfgpW6aSHc/V70aFSXgTheXIiv4piH2PMpWTwh7LlqmXJ+XUvdheWR6NRTxKZuk0kEuGuu+7yW4yS0EnGqVm3Lptj0URS/UUh4dPdSmI81T294YYb2LBhw/gkQFCjCgahDw7mlQkoxpgB4F7gIPAlLF/3Y8C9xpj+Uutfs2aN7VCPiqLk5pZbbvFbhJJJd+FwKsmloqSQ4cLd8LzGziApKNanXApiEAZ6dnDSApYLJ65FtpxWI0nF386xU0Ex8lnZClHgU2UzlaRClM/M4AROPTNTydDa2kpjYyNVVVVs2LAh1Anh1Q0vYBhjTgCvcaPu2bNnE4vF3KhaUSoKt2bqpsLJ2dk77riDTZs2OVafk8yfP59Tp075LYZSApEi1ix5jZ33ePbs2dTW1tLV1cX58+cn/Hbttde6JdqUpNYAu5E3yg2ampoYGBhwpC43B66ZYbarqqroSwuDn4qymKnwLFy4kJaWFqZPnw5YE1DDw8NZo6gVIv/atWs5c+YMTU1NE/bN1RdkqztzDZEfCnZjYyP9/aXN+QfJOum0LGpZqgBSL3FYcTKXhKK4SZBD2ipKOjJqKUuJACtLdq0dbW1tWfu56dOnjw+OvSbVFvT0ZA2UCxQ+KHZzEB0Wd8jMa5BpdU//PT20uohkfRZKXV9TW1vL4sWLbd8bJ0OHO81UCkYuOTOj6QXlfJxElaUKIMwP7rJly5g7d67fYoSOoPoee0WQZrgUJYiEwQ2vHPC6LQpyf+n1WGTdunWeT7bmsizly4lVW1vrSiqOYiMFFprgdcWKFcyZM6eo5Lp2CMIYtrJHVIpSBni5YDRM3HrrrVx33XUl1bF+/fqCyoctSaRSuUgy+pkpIG9NzroCMJgJKl4rS2Fed+IE6cpKbW1tzoH/ihUraGtrY9q0aY4ePzVRmdkX3HjjjaxduzbnfgsWLBj/26/3KfWsFjrZWltby+rVq0NjnSwGXbOkBJ6wdcTNzc2+u2N50UE7nZvBaRoaGkoOjGA3qlcKDcSghIXIoLU+JeGAsuQWYWv7sxGWZK9O4qacmXXPmjWLixcv5iyfymEUj8cnbJ82bRrXX3+94/JVV1ezevXqCUlgwVpOMJWVa8WKFUWtBU0pN5nucIU+e7NmzeLKlSssWbKkYBnKHbUsVQhBiRhUCdjNhu0m6bNUbhGNRid1COVGWN35RKTiZ5iV/MjQMAAmpGtCb7755gn/z549m6ampsAkgQ0bbig42YIsOE1mWoXM8+jq6gIoSAkp9VrMmTNnfL1dIdaW+fPnc9tttxV8/Gg0yp133snKlSsL2i9bPatXr1YPiSyoshQQMqOhOM1UPqipyD3lgN+zbyLCNddc46sMs2fPZuPGja4fJ4jWpaVLl47PtHn9LARFuRIR19sUJdxEhq0obQmHlSUvAio0NDRMcp+qra3llltu8SQEtlIcfgRrSkUYLqRtdnKi6eabb87rfucUNTU1k9zn3O6PvOpfizmO089a8EY6FYqfIU6LIRqNTjJrVxL5zt8Y47gfdD5EJDCD9CCQLRRsKfitfCuKGwTRshT2dqyurq7gxfGFoG3R1Ncg8/fp06dz8eLFgiaPnIwg3NDQQEOAXV0Lwc/nb/369QW1D/X19Y4milZlKSAEcYY+H1VVVZ4pS+XS0CiKogQFCWCepbArS7fffrvfIigZtLe3c/HiRQ165CFuKFXFRNordM1xPtQNrwIIcyMhIp5aacKIzjYqilIoYgxSX8+1LixyLxa7rjNhV6pSpLfdqb/Lob/zMsCDl8cOG36/J8PDw74e30lUWaoASl30FzaKaSydnIEotoEK88JkNxbuKoriLpEmZybSsrW5xST79HutZxAI+pqrO+64g9tuu81vMXKS+SzOnDmT5ubmgvooVbjskes6pdaJlROqLFUA5Rr7vpQZODcXvxcbIa7YBtpNH/lKRztNpRBEZL6I/IuIbBGRQRExIrI4S7k6EfmEiJwRkaFk+buzlIuIyHtEpFNEhkVkt4i8Jsex3yEiL4jIiIgcEJHfnUreaEPxytJUgRxWrFgBFLbQuhyjcHk5u+/F9autrfUlUEOxVFdXc9NNN4VK5lzMmDGjoHGPW8/eihUr8o4rne43g9APq7IUMILwUHhNfX39pDCwdsi1zsvP9V/19fU0Nzd7eky/op75beL3Aq/vpRJ6lgOvB3qAx/OU+yLwDuBvgPuAM8AjInJ9RrkPAu8HPgW8AtgKfENEXpleSETeAXwe+BbwcuAbwGdE5J35hI3kcNG204Z60c4GpT8MQzuwevVqbrzxxqL3D8q1dopy7J+uueaagsZKbl2D+fPnc/fdk+Z2JlFOeQdVWVI8xckGOd1dISgNfUqOYuQp95xFKWbNmuW3CLZx+rlqbGwMraV36dKlfosQBh4zxswyxrwSS2GZhIhcB7wR+BNjzL8ZY36GpWCdAD6QVm4m8GfAx4wxnzTGbDLG/A6wCfhYWrkq4MPAl4wx702Wex/wH8AHRSSnj3G0tTXrdifdkssBL9vmfG1Ovt9mzZoVOOuJH/1yUMYCQcDv9epOTagE4Z6qsqQURRBmbdLdQAqVJ/Pl8yKJay4WLlxIR0dHxQxQVq9ebbsRnTZtWtlkE6+rq2PDhg0F3efFixe7J1CS+fPn2yo3d+5clyUJP8aYhI1i9wNjwNfS9osBXwVeJiKp6diXATXAlzP2/zKwXkRSL8btwIws5b4ETAdyxs+VhmANroPGxo0b2bhxoyeDtY6ODubPnz/uvlgoQRhQpgjC+MBJGhsbQzlZFKRnIuyEK161wuLFi+ns7PRbjEBTTI6EBQsWUF9fz759+1yQKD/Lli0DyisxcD4ikcik5Hm5SLkcHDt2zE2RHCPfmoFinsslS5awZMkSDh8+XIpYeck1G93W1kZPT49rx61g1gHHjDGDGdv3YSlHy5N/rwNGgMybn2qk1gLHkuUA9uYptymbIN/49nf40H//96Q8f9/97nfZuXOnrZPxg3IbjIPVLharKFUq2VzS3FAQNmzY4HidinM89NBD3Hvvva4eQy1LISPsOYfc6uTSG8iguSKUK6Uk7guTtaiQ82xpaeGGG27I+ptT7odeWUEzrX86S+kY7VhrmjLpTvs99d1rJjea2cqRpc7McpOIkb09djJQgD43zhGWa5maDHM7+FA5hFnPRTQaLXqtXOr9LcdJBb9Qy5JSFO3t7Zw9e9ZvMcbRRsF7SvGHnjt3LgcOHHBQGveYMWNGQeVbc6wDCfJAZ/bs2ZPeZ32nyp9ff8tb+c0/+1Oee+65kurJ9mzr81O5RKNRXvSiFxGNRjl16pTf4hRM+vPsV5h0OwEUvKbQPixf+fXr1zsWAOLBBx9k48aNBctQCGpZUorCK/9drxbDB3kgq5QHQXnGsln1/F4IXGH0ANkiBqQsQN1p5Vpl8oOTrRxZ6swsNwmprnZ8dj4oz3mlUch1v/HGG1m3bt3UBUugqqrKs2ch3a3b6WOG0VMldQ2cnrCw6z5vh46OjlBZBlVZUgKNXWXJ6w56qkbIrwHDi170ogn/+xVWvFQaGxtDK3vQ0QTCvrMPWCIimT7Va4FRrq5R2gfUAsuylAPYn1YOrq5dylVuElJVFejcRqp4TcSp69HS0sLMmTMdqSsIqGVzIn6/N+V47VVZChl+vwRuUWqHXWo0vCBQrBUt/VwyZ36cnAnykg0bNpSUM6TcWb16tevHCOI7UiZ8H6gGXpfakAz//Qbgx8aYkeTmH2FFzXtTxv6/Duw1xqSinmwBLuYo1w08mUsQcTAC55w5cxyp59Zbb3WknjCg75gz6HXMTjkqLX6ha5ZCRlAefqcbp9raWq677jp2795tex8vrkVzczNXrlxx/ThQWsAEvwnKc1kpFOK+0NDQwC233MLmzZtdlEhJISKvTf55U/L7FSJyAbhgjNlsjNkpIl8D/jGZA+kY8E5gCWkKjzHmvIj8PfAeEekDnsVSqO7FCj+eKjcmIv8PKwntaeCnyTJvB95ljBnNKWu1c0OAjo4Ozpw5M/5/agKs0JDzdtYxhCmMfba+sthIk24qBWFWOMIsuxvo9XCecE47K76TbXB86623sn79+oLrGhoaAnJ3knZefLcah7BHH3Trung9WPEi35DX2M1vBDA4mBllungyn4lcz8hUCvAdd9zhmExlxjeSn99N/v+Z5P8PpZV5G/DvwIeAHwILgJcbY57NqOu9yTJ/BDwC3Am83hjzg/RCxpjPYSlcr0+W+zXgD4wxn84raQ7L0sjISNbthVBdXc3GjRsdj964ceNGFi1a5GidbpAKA57NnbjQdrm93Vp+5uYa3vQk70q4SXmUODGJefvtt5dcRzmgliXFMRoaGqZULiKRCImEnbyNheGWZWPlypW0tbXx/PPPu1J/WPEq8EaKJUuWlF1+sUJcJC9dupTzt/Xr17Nnzx4nRMpL5gDPqUhG5YYxZsqRsDFmCHh38pOvXBxLWfqQjTo/D3zeppiAtWYpG/F4vJBqHCX9OQvzDHkq9L4T5zB//nyuu+66kuvJx7x58zh8+HAovQTK5ZlximuuuYazZ886EpyiGCU61beVUx+hlqWQISKBnAGym0wvW96AfLkE7LimuRmtJhqNjs/qBZV8nYMbHceCBQvK0tITVjQQhlIsUlXamqXqpGVKB6iTcSsiWSY33HAD8+bNK7keEaGtLVuQxuCjz99EGhoaWLp0qW/XpbGxkbVr17JmzRpfju8GqiyFkGIXd996662sXLnSYWksSnkpU/tmzkLccssttkIaNzU1ORr/fyrsDE7t1l9s0jk/Wb58+aSEpUEhMyiEdqIWxQzY8l27QlwIleCSy7JkjBlXhJTiSL0/bgfZaW1tda1fDwtOt/Pab5TOrFmzyqoNUWUphBTrAtXQ0ODIDFQ2nJg9q6qqYuPGjeOWs0LO00vXgWLWZeXi+uuvd6yubFRao++WEjd9+nRX6s1FvvvmtOJTTF1hzD2iTCZfgIewr9f0m46ODhYtWsTy5csn/ZZ6h6d6L/3yarDrKaIolYIqSyEkjD7FQSG16LjUOpzC67U/QSXoSt21117r6/FLdbWcKmljIXlKtP0pI/JMLhT7TurzYRGJRFi6dGmoZtdT3h1hShYKwe8/lPCjypISWlpbW4lEIkVFWwqj+1su8i1u1U4kOBQyaMq8b7NmzXJaHEVBormVpUID8aQU8qC66AYJu5allStXMnv2bM/WEq1YsYJ169aFbh2kl/1cytpXTmOIMLN27VpPcjKqsqQEnlwNYU1NDffcc8+kht1OZ11I6OugKxzaaFtBPtra2gLtHha2AUgugv4+KPaRqtyW7ULzy7W1tbFs2TJ14XKQ+vp61qxZ41ly8Wg0ysyZMwErybDbbuJu4Hb71NHRwd133639bkCYNWuWJ32rTgEpZUcQ3B68HFDmUw4rZWDb3NzM2rVr/RbDMTLvWxBcmyrlWaoocrgBF5MgW0RYuHBhqRJVFEF+p4oNJOUHXl/HSnOfr62tdSXlS5hQy1LA8PKld7JjC8JgDmDGjBl+i6CECK9mwZ12o/FipjnIAznFGVKhw+fMmTNheyQSsRWJdLwefVYKIhVNMlcQjRtuuIFbbrnFS5FCjT5/7nL77bdz5513+i2Gr6iypJQFqcbS7oyP3UXumWQOKpRwE9ROdiq57EQqS1kcp3IXCeo1UNwn5Ya3evXqSUFM/HJprYTnccaMGWzcuJGampqsv7e2thZl3atUNHS4u4hIxV8TVZZ8wutQxMWwevXqcf/loOOEZctOHanrERRL2lRUegNXydTW1nLTTTcVnYMlLM+4UgJ5Jpe07VAURbEIpbIkIu8Wke+LyBkRMSLy/jxlXy0iO0VkWESOi8j7RGRSDyEid4nIUyIyJCJnReTvRWTS1JqIrBORH4tIv4hcEpF/F5GCkiHceeedXHPNNYXs4jopN6F169aNz3a1tbW55oN+ww03uFJvittvv72g8mEeGIRZdrcRkYKfhSDg1D1tbm6uOP96xT65ktIqSpjQPlBxm1AqS8A7gJnAd/MVEpGXAd8CngZeAfwT8D7gIxnlrgV+ApwH7kuWeRvwHxnl5gKPAvXAa4HfB34B+IGI2L6WNTU1nkW3sYuf4V7daOhSiW29lqNSG+0gWyGKeRaykWt902233eZI/ekErX1QyhNVlpRyIFu/W0xKESVYXHvttSxatMhvMYDwRsNbZ4xJiEgV8Lt5yn0MeMIY89vJ/zeJSBPwPhH5B2PM2eT2h4BTwOuMMWMAIjIK/KeIfNwY82yy3J8D1cCrjDG9yXJdwGbg1cC3HTvDHDg5GE9f95BebzEDXzcHy06ec2rNkVtKjd38GW7hdZ6lSlIO58+fT1dXFwMDAxO221nbUch1WrJkiWfurzU1NUyfPp3z589P+i1d5vTJFM35VD5IAK2OldSmVBJeRistNfG8EgymT58emCUroZy+NMZMGcNQRBYA1wNfzvjpS1gKzyuS5aqBlwNfTylKSb4OjAIPpG27H/hhSlFKyvIYcCKjnC2WL19e6C6OMnv2bJYuXcqNN944QdkZG7MuQ5CtBcXQ0dHB0qVL/RajrJjqGVmzZo1HkhRHKmO9XbywPi5evHhSAAe3lKc777xzymuwatUqbr/9diKRCHfddRerVq1yRRbFB3JYlqqrqyc8p4sXL674aFhKabg5yaK5vRS3CatlyQ7rkt970zcaY46JyCCQmuZYBtRlKTcsIkdS5ZLrl5YAX8hyrH1p9U3goYcemrTt3nvvBeDixYv2ziSNuro6x+Ldi8i4ifPkyZOO1DkV2QbXXillkUikbCwtzc3NNDQ0BF756+jo8FuEvHh1v9KPs379es6cOVOQe2BHRwcrVqzg0KFDRb8vN954Y0HutqnjVFdXU1VVlfVa3XPPPUXJogSDbG547e3tk9xAlyxZ4pVIilIw06ZNG/+70AkwRbFDKC1LNkkFXejJ8ltP2u/5ynWn/d4GiI1ytil00HPrrbdOaBTcIjUoyhwczZ07N+c+pSg86nZRONFolDVr1lBbW5v3+uX7zYmkg3rvpmbu3LkTItI1NjayfPlyx65dJBKxFcShpaWloNw5SvkTRDc8RZmKm2++Oeda0Xnz5nksjVIJ+G5ZEpFfwAquMBWbjTEvdlkcx3nwwQcRkXFl4tprrx33wSzUsmQnt0qxpA/campqGBkZmfB7U1MTq1at4sKFC4yNjU0a6HmhxCnO0t5esH4fCFpbW+nt7fXl2MUEQpnKba2xsXHSOqhCiEQi3H333WzatGl8W3V1ddH15SLbhEjqmClruRIy8jzPOhGipON2BNtCyDfe0EBNihsEwbL0FLDGxuc3Cqw3ZQFqy/JbG5Y1aKpy7WnlegFjo1xOOjo6HFms5ueLvGLFCmpqaiYMGm+++ebQDby1MQwvfnbabixSnippbIrUZMlUExMrV64M1MBGCS75ouGl0kkoCliTVK2trX6LoSi+4LtlyRgzCLzgQtX7kt/rgC2pjSKyGGgA9ic3HQFGuLrGKVWuDlgKfCMlp4h0ZpZLshYrIp4vXHPNNdTX1/P000+XXNdU7nSzZs2atFCzkFnsNWvWcPz4cdsDxLCSSxm76aabeOaZZ3yXw2mCHup6+fLlHD582Hb5trY2rly5Mmm7G/7wdu9Re3s7GzZsmNLCbNcNZSrXPZ1QKH8kz3s7Z84cqqur1XWzwqmrq2N4eNhvMRTFV3xXltzCGHNCRHYDb2JiUIZfB8aA/0uWGxWRHwGvF5H3G2NiyXKvBWqBh9P2fRh4i4i0GGMug5XMFliUUc5TZsyY4dehC6a+vr7gtTJ+DdqyJTMtNR9VuSqJKTfNw4cPE4/H/RZnEnPnzs2qLOV6tq6//nqXJSoOpwauq1evpqWlJW+ZcouGqWRhivYs6AFaFPfZsGGD3yIoiu+EUlkSkZuBxVx1I1wrIq9N/v2/SWsVwF9jJYz9PPA/wA1YCWf/KS3HEsD7ga3A10Xk08m6PwF80xiTbgb4BJay9bCIfBRoAf4W2AZ8x8lzrGRaWloYHh62tWjdTbJFKwu7shOJRByLppjJ3Llz6ezs9EVZKlahDoL1xCmlpL29fTyP2FTYLaeUN5LFKyAI74QSHPzuhxUlCIRSWQL+AHhL2v+vS37ACu/dCWCM+d+kEvUg8FbgHPAR4MPplRljdonIS4GPAz8ELgP/haVspZc7LSIbgb8HvoWVh+l7wJ/ayf0UBoLQUa5atYqFCxdSU1NT8L5BkF9xnyVLljA4OMi5c+dKqqelpYU5c+Zw5swZhyTzj+uuu67offW9qUxKjYbndxJuRXEDfZ6VTEKpLBlj3oql/Ngp+23g2zbKPQZM9ruaXG4P8It2jh1G0me5/WowotEoTU1Nrh6jUhrDYsOKe3H8Qlm9evX4LOfixYu5cuVKycpSJBJh8eLFZaEsKUrBqNVAKSPcTHyrVDbBXpVdJoTN9z/I8s6fPz/rdjsyO+mqFeRrZJeamhquueYav8WwzZw5c5g5c6bfYlQMlTKhUMnki4Znh1R0tKAHeFHKn7vvvtuR3IGKkg1t4QKKiIxnTV+xYoWng9pU8tn0YAZBGTitWLEi6/ZURL5iXPdSTLXg3Q5OhIZ3kqkGMXaDg1x77bVOiJOTclA+y4WmpibWr1+v96QCKNUNb+3atWzYsEHXtSi+E41GVWlXXEOfLB+ZajCyePFiNm7cyPz58z2NeLd48WLuueeekjvAW265xZHoXXYUtY6ODtasWcPixYuLPk5NTQ0bN24sev8777xzXMH1utGeN29e1tw6TmQzF5GcSmAqWlapbpOpZ03DFPtPfX29RkGrFKJXJ8SKUY6j0ai+s4qilD2hXLMUJubOnUtjYyOHDh2a9Fu+AbWfs7oi4oglqampieuuu46+vj727NnjgGS5ERFmz57t6jGmohSrlh1mzJjB3Llz2b1796TfVq5cmXWf+vp6mpqa6O/vL+qYdXV14wpgNmbNmkVHR4dtxTrXc1VdXU08Hi8o6Ws5Wj7WrcuWxk1R3EGqrr63bW1ttLe3s2zZMh8lUhT/CYonjRIcVFlymVWrVnHhwoWsv2XLkF5uL2ltba0riTyLId06EoTrnM1aM3/+fE6dOuXaMQtVMLLlmsqkEAvkVPW55c7j5P2+7rrrqKqq8jS5cDaam5sdcR1VKpd0N7xoNFpSREUvyJbOQVEUxW1UWfIRt1y1GhsbicfjmnU7jbvvvjsUfvX5nokw5xJKERTFuRTa29tdq7uQe3XTTTe5IkNq0b5SAZQY4MFL7rnnHr9FUBSlQtE1S2XIhg0byirrthOD/SAqSkFSYiB38IwUK1eudD2ku+IvHR0d4+vcgvZ8Ks5iIpFQ3eNIJKIL+BWlBG677TZb3iLKZMIzrVRhlNqJOaUceLEupL6+3vVjBJFs64z8HLxMteZq3rx5BQeMSD+fW2+9tSi5FO+ora0dv2fluCZMSUMVD0XJSpgmEQqhUsdaTqCtZUCphIFKKjT50qVLPT92EBpDP1zS/DzvhoYG346tKMpETACt7YqiKEFElSUlL14MroOguAQFt5XkfPXrfVCUCkItS4qiKLbQ1rKMWLRokeN1VoKFK8gRlnKFBA8q69atKyonWCpoQlWRC86zRZYMAhqtTgksqiwpSlZ04lDJRFvLEJLrRV66dGlJSVW9ZuHChYA/wRfSr2GQFjxm3tu5c+f6JElxtLS0cM011xS834oVK7j99tuprq62vU9Kka+vr3ckx1Yhx7bLjTfe6HidXqEDhvJG3fAURVHsoQEeAorbCU6DwKJFi1yxhhWCm2GgnWLhwoWcOHHC9eP4OTiORCJFW/gq4V3xg0qwKlcyVfreKEpempub/RZBCQiqLAUMEWH16tWByXWSCkKQz7UqrDPQt912m6sDbaeUHA3XXf60tLRw+fJlv8UomJqaGo2wFFLEBUuqomRy++23hzLk+8033xxoF33FW1RZ8oCUMmHX3WzOnDluilMQtbW1vOhFLwpknqJScXuQ197e7olFyCncUHrDqkh7jRsugF5w5513+i2CUiRShm26EjzCqnBMmzbNbxGUABE+dT+ETJ8+nSVLlkyZ9DOoVFVVlTzoXbFiBbfccktJdTixLsVP5s+f78txly9fPq4YBsViGUQqWbGr5HOvWFRZUhRFsYValjxARFi8eLHfYvhKqYrC3XffHUpTfjrFRIlzgtbWVm677Tb6+/upq6vj8ccf90UOP1FlID+6PqkCUWVJURTFFqos+cxNN90UCBe3lOUhqO5Afl4jOwNtt1wNnBzkp9Y+iYgOjgNAKqz4jBkz6OrqAoKl1AVJFsV5gu6Gp25QiqIEBVWWfCYo0VYWL15Mc3NzUdHhdOAdLu6666689ywajRKPxx05lpsD7tQ5hHVQ39jYOB7qP6Us+UW2a6jvdZkTYGXptttuC+zEnaIolUe4/ZoUx4hEInR0dPgthqP4tUYo6FRVVWUdiKQGzE4o8NOnT9cofooSZAKsLNXX1xedoFpRFMVptDUqY+rq6kIfFKEUVqxYwalTpzw5ll/rkZwktSbMiUHKtddeW3IdlYTfVhy/j694T9Dd8BRFUYKCWpbKmNtvv50lS5a4fpywukE5ydKlS/0WoWRaWlpYvnw5q1at8lsUV7n++uv9FkFR/KdKlSVFURQ7qGUpxNTW1nLjjTcWta8TAQlqamoYHR0tuZ5yIOyR+lIsWLDA82Om1u14RVtbm6fHCwPZJjx0EqS8kah2/4qiKHbQ1jKE1NTUAFbeoWKUng0bNozXoSgpynlwHPRzW7p0KaOjo77lwVI3vApELUuKoii2UGUphNTW1nLHHXcUHS2osbHRETmCPgD1ghtvvJGRkZGsv4V5ANrQ0MDg4KBj9dXW1jpWVznS1NTEzTff7LcYSiWha5YURVFsocpSSAnC4DPMykCpLF++nKNHj47nyslGmK/PjTfeyNjYmCN1rV+/3tXIeKq0l46GDq88NMCDoiiKPVRZUpQiWLBgwZTre8I82KyurnYsz4lbIemdvr6qdCmVhK5ZUhRFsYe2lorj3HHHHTrwpLigD/PmzePy5cv09vZO+k2vqTfodVYqArUsKYqi2KI8QngpgaK2tlYDSGBFXVu5cmVBLmi1tbXccMMNE7aF2UIVJvQ6T0SVxjJHlSVFURRbqLKkKC4hIsybN4+oDkpCQUo5mDlzps+SKIr76JolRVEUe6iypLiCiARiZrqmpsbzvDpOn3vK4hGE6zkVQbnvxXLXXXexevXqovZ96KGHQnvualWrPKS6Mr3ww95GlYKeu567UhyV2VoqFcOdd97ptwiKS0ybNo2amhoWL17sWJ1OBbUoB1SBKnPUsqQoimILVZYUJeCEybLkJdXV1b4qw3feeWfZ3JNyOQ+lADQanqIoii1C54YnIitF5J9E5DkR6ReRMyLysIhcl6P8O0TkBREZEZEDIvK7Ocq9WkR2isiwiBwXkfeJyKSpNxG5S0SeEpEhETkrIn8vIvVOn6dS2VRV6UAm6NTU1JS1JUoVqHAhIgtE5JsicllErojIt0VkYc7yallSFEWxRRhHZC8FNgL/CTwLtAJ/AWwVkbuMMc+kCorIO4DPAx8Ffgq8BPiMiIgx5rNp5V4GfAv4IvBu4AbgI8A04C/Tyl0L/AR4BLgPWAJ8ApgHvMGd01X8xo9B480338zg4CAAjY2NAJ6vvVIUJRyISAPwc2AEeAtggA8Bm0TkWmPMwKR9qlRZUhRFsUMYlaWvAp82aQ71IvJzoBP4I+A3ktuqgA8DXzLGvDdZdJOIzAU+KCJfMMaMJbd/DHjCGPPbaeWagPeJyD8YY84mtz8EnAJel9pXREaB/xSRjxtjnnXpnJUKo76+nvp6y2DZ0tLCnXfeSU1NDd3d3T5LpihKAHkHsBRYZYw5DCAizwGHgN8B/n7SHmpZUhRFsUXo3PCMMRdNxspjY8xl4CCWhSfF7cAM4MsZVXwJmA7cBZbrAnB9jnLVwCuS5aqBlwNfT1OyAL4OjAIPFH1SSlmzYsUKWlpamDZtWtF1aN4qRVHycD+wNaUoARhjjgFPkqNvMqNj2TYriqIoGYTRsjQJEWkHrgH+PW3zuuT33ozi+5Lfa4FNucoZY46JyGCyHMAyoC5LuWEROZJWLlM2+ydShlTy+eu5VyaVfO6Kb6wDvpdl+z7gddl2WPTg38CDf+OqUEGmkt9TPffKpJLPvVRCZ1nKwb8AAvxj2rb25HdPRtnujN9zlUtts1OuO+13RVEURfGSdnL3TbrYUVEUpQR8tyyJyC9gBU2Yis3GmBdn2f89wBuB30x3QfAbY4yq8IqiKEqg0L5JURSlMHxXloCngDU2yg1mbkiGAf8I8D5jzP+X8XNqlq0NOJO2PWUB6s5SLpM2m+XauerepyiKoihe0kPuvimbxUlRFEWxie/KkjFmEHih0P1E5M3AZ4C/M8Z8OEuRlPKyjonKUmpt0f4s5bak1b8YaEgrdwQrLGtqjVOqXB1WFKJvFHoOiqIoiuIA+8jom5Ks5WofpiiKohRBKNcsicgvYwVz+IIx5s9yFNsCXATelLH917GsRU8CGGNOALtzlBsD/i9ZbhT4EfD6ZFjyFK8FaoGHk7IVlBiwnBCR14rIt5JJfYeSSYA/KiLFh4ELMSLyIxExIvIhv2XxAhF5pYg8lkwWfUVEdojIvX7L5TYicqeI/FhEzotIn4g8KyJv91supxGR+SLyLyKyRUQGk8/24izl6kTkE8mE4UPJ8nf7IHIl8TBwm4gsTW1I3ps70b5J+6YMtG/Svqmc8KJvCp2ylDyx/8FScP5DRG5L+9yQKpcM7/3/gLeIyIdE5MUi8gHg7cDfJJWfFH8N3CMin0+W+xPgfcA/peVYAng/sBD4uoi8RER+E/hn4JvGmGfkamLA1ViJAd8MrMDK29ToygUJFn8GxLGu58uBzwLvBH4iIqF71kpBRH4NuM5vObxCRH4HKxrXM8AvY0Xg+gaWdbZsEStR9U+x0gy8A/gV4GngiyLyTj9lc4HlwOux3Loez1Pui1jX4m+wknefAR4RkevdFrCC+TesXIPfE5EHROR+rPfxJPB57Zu0b0qhfZP2Tdo3FdE3GWNC9cFSWEyOT2eW8r+DlYNpBCtB3+/lqPdXsBSwEeBE8mJGs5S7G8tqNQycw4rA15D87Y+wGuTlaeWXADHg3X5fOw/uzYws234jeW/u9Vs+D69DG3AW+LXkuX/Ib5lcPt/FwBDwx37L4sO5fwQrz1pTxvYtwBa/5XP4XCNpf/9W8tlenFHmuuT2t6VtqwIOAA/7fQ7l/MGayPsWcAXoA76buj/aN2nflDxn7Zsq5KN9k7N9U+hmVIwx7zfGSI7P4izlP2+MWWmMqTXGrDDGfCZHvd82xlyXLLfQGPMBY0w8S7nHjDG3G2PqjDGzjDF/bKx1V1BEYsBywhhzIcvmp5Pf87L8Vq58HNhrjPkfvwXxiLcDCeBzfgviAzVY7rpDGdsvE0LLfT6MMQkbxe7Huh5fS9svBnwVeJmI1LokXsVjjDlhjHmNMabZGDPNGPNqY0xn8mftmyajfVP5o32T9k0pSuqbyuqCBYB1TE6CC9bi26xJayuAe5Lfz/sqhUeIyF1YM5a/77csHnIXVpCWXxWRIyISE5HDIlIJ1+A/kt//LCJzRaRVRN4BvAT4B//E8o11wLG0CaQU+7A67+Xei6SgfVM2tG8qf7Rv0r4pRUl9k+/R8MoMTQyYhojMAz4A/NQYs8NvedxGRGqAzwOfNMYc8FseD5mb/HwCa03AESy/8E+JSJUx5p/8FM5NjDF7ReTFwHeA30tuHgN+1xjzVb/k8pF8bWDqd8V7tG9KQ/umikH7Ju2bUpTUN6mypLiCiDRhLaqMAW/zWRyv+AugHsgWyr6ciQDTgLcaY76d3PbzZDSa94jIP5ukg3C5ISIrsNaJ7AN+F8vl4QHgcyIybIz5ip/yKYoyEe2bKgrtm7RvcgRVlpxFEwMCIlIPfB8r/9Q9xphTPovkOskQvO/FWlxYm+H/WisirUBftnVwZcAlrMhaP8nY/mOsyFNzgC6vhfKIj2DN1t1nrAicAD8TkenAP4nI/9j0py4XeoBFWbZnJgNXvEX7JrRvQvumFNo3ad+UwlbfpGuWnKXiEwOKSDXwTeBm4JXGmD0+i+QVS4E64MtYL2XqA1bY2h5gvT+iuc6+KX4v5wZ5PbA7rTNKsR2YDsz0XiRf2QcsSYaqTmctVmSmw5N3UTxA+ybtm7Rvmoz2TZVDSX2TKkvOMmViwHImma/iK8C9wKuNMVt9FslLdgEbs3zA6qQ2Ur4Dxe8kv1+Wsf3lwCkzMVdZuXEWuD65JiCdW7HSC1SaJeX7WHk9XpfaIFYS7zcAPzbGjPglWIWjfZP2Tdo3XUX7Ju2bCuqb1A3PWf4N+AOsxIDvw4rp/kGSiQH9FMwjPo31IH4YGBCR29J+O1XOLg/GmF7g0cztIgJw3Bgz6bcy4n+BTVjJLzuAo1jPwUsp/zUBn8JKcPh9EfkMll/4/Vh5TP7BTEx+HXpE5LXJP29Kfr9CRC4AF4wxm40xO0Xka8A/Jmfyj2El/1wCvMl7iZUk2jdp3zQB7Zu0b/JTOKdxu2+SMl3b5htJ/+B/AH4REOBnWAnROv2UywtEpJPsPqEADxlj3u+dNMFARAzwYWPM+/yWxU1EpBn4KPBarLURLwAfM8b8t6+CeYCIvAL4Syw3pzqsiEv/Cny+3NYBJJ/nbGw2xrw4WSa1kPyNQCtWsu+/LPNBWeDRvkn7pnS0b9K+yU/ZnMbtvkmVJUVRFEVRFEVRlCzomiVFURRFURRFUZQsqLKkKIqiKIqiKIqSBVWWFEVRFEVRFEVRsqDKkqIoiqIoiqIoShZUWVIURVEURVEURcmCKkuKoiiKoiiKoihZUGVJUf5/9u47TKrqfOD4952+ve+yu8DSm6JYQUWxi4otRo29RI0aU4xGYyyxJppEExOjIT9rbBBNbGBHxQaKIiiw9La07X13+vn9MbPDltkFlp2t7+d59hnmzrn3vneAfeedc+45SimllFJKRaHFklJdQETOFJFfRdl+tIgYETm6+6OKTkQOEpEGEcmPwbHPFJFiEUns6mMrpZTaM5qbIsfW3KQ6TRelVaoLiMgzwPHGmMGtticDE4AVxpianoitNRH5kFA818fg2AJ8C7xujPldVx9fKaXU7tPcFDm25ibVadqzpFQMGWNqjDELe1EyOgg4Bng8Fsc3oW9f/gVcLyKuWJxDKaXU3tHcpNTu02JJqb0U/ubuUiA/PKzBiMjG8GtthjqIyMci8pmITBeRJSLSKCLfishkEbGJyO9FZLuIVIjIMyKS0Op88SLyoIhsEBFv+PE2Edmd/89XAt8ZY5a3OuZGEXleRH4kIoUiUi8iX4vI1FbtDhGR90WkPBz3ehF5rNU5/gOkAj/YnfdPKaVU19PcpLlJdQ1bTwegVD9wL5AFHAKcHt7m2cU+o4A/AfcDdcAfgTfCPzbgMmB8uE0JcDOAiNiAdwkNn7gX+B6YAtwBpAM37uK804G57bx2JDA2fCx3+PhzRGSYMaYqPNb7XeCrcHy1wDDg8OYHMcaUiUhh+Fwv7iIepZRSsaG5qRnNTaqztFhSai8ZY9aJSCngNcYs3M3dMoDDjTHrAcLfvL0ODDfGHB9u866IHAWcQzghAecDU4FpxphPwtvmhYZj8zsRedAYUxLthCKSQyiBLG0npmRgkjGmMtx+B7AIOIVQYhkHpAE3G2O+a7bfM1GO9S2hRKmUUqoHaG7S3KS6hg7DU6pnrG5KRmErw4/vtmq3EhgcvjkVQt+IbQK+CA+LsIW/0XsPsNNxEsgLP5a28/qCpmQU9n34cWj4cQ1QBcwUkYtEZEgH5yptdj6llFJ9g+YmpVrRYkmpnlHZ6rm3g+02wBp+ng0UAL5WP1+FX8/o4JxNN7W2NwyjovkTY0xTO1f4eTWhG3C3AY8Bm0VkmYicHeVYjc3Op5RSqm/Q3KRUKzoMT6m+pRzYAJzbzusbd7EvhIYrdIoxZglwdvgbw4OBW4H/iMj+xphlzZqmNzufUkqp/k1zk+q3tFhSqmt4gLhuOM87wNlAnTFm5a4at7KR0M2xI/Y2CGOMH1goIncQunF4PNA8IQ0HVu3teZRSSu0VzU2am9Re0mJJqa6xAkgXkWuBrwG3Meb7XezTGS8AlxO6cfYhQjfEOoCRhBLDmcaYhmg7GmO8IvIlcGhnTiwiM4CrgdcIfYOYAPyc0MxDC5q1k/A5Wk/bqpRSqntpbtrZTnOT6hQtlpTqGk8QuoH194TWcdhEaHafLmWM8YnIScBvCCWH4UA9sI7QtKveDnYHmA38SUQSjDH1e3j6NYTGe98B5BJKRIuAE4wxW5q1O5zQcIpZe3h8pZRSXUtz006am1SnSGhRY6XUQCAiycAW4DpjzPMxOsfjwL7GmCNjcXyllFL9i+Ym1ZtpsaTUACMitwHnAfubLv4FICKDgPXA9GZrbSillFId0tykeisdhqfUwPMwoelecwlNtdqVhgE3ajJSSim1hzQ3qV5Je5aUUkoppZRSKgpdlFYppZRSSimlotBiSSmllFJKKaWi0GJJKaWUUkoppaLQYkkppZRSSimlotBiSSmllFJKKaWi0GJJKaWUUkoppaLQYkkppZRSSimlotBiSSmllFJKKaWi0GJJKaWUUkoppaLQYkkppZRSSimlotBiSSmllFJKKaWi0GJJKaWUUkoppaLQYkkppZRSSimlotBiSSmllFJKKaWi0GJJKaWUUkoppaLQYkkppZRSSimlotBiSak+RESsIrJCRF7txL5TRcSIyCmxiE0ppdTAs6d5SUQ2isjGVtueEJFNIuKKSZBK7QUtlpTqW64ExgF37+mOxpjPgA+BB0VE/+8rpZTqCp3OS838HsgDft4lESnVhcQY09MxKKV2g4jYgI3ACmPMiZ08xinAXOBHxpjZXRieUkqpAaYzeampV8kYM6zV9v8AxwP5xpjGLg1Uqb2g3y4r1XfMAPKBF/biGO8BpcA1XRKRUkqpgawr8lKTF4A04NwuOJZSXUaLJaX6jsuAINBmXLiI5IrIIyKyVkTcIlIqIvNF5LLm7YwxfuB14GgRGdYNMSullOq/LqP9vHSMiHwuIg0iUiIiT4pIegfHehtoAC6PTahKdY4Ow1OqDwjfY1QObDHGTGz12njgIyAn/PgVkAwcCDiNMQe0an8F8CTwY2PMU90QvlJKqX5mF3npREJDvn3AS0AZcEr4+SDA23oYXni/T4DJQKoOxVO9ha2nA1BK7ZbxQCqhXqHWnidUKF1ijHmu+Qsikh+l/dfhxyMALZaUUkp1RtS8JCJWYCYgwDRjzKLw9tuAd4EDgE3tHPNr4EjgYODTmESt1B7SYXhK9Q2Dw4/FzTeKyGRCPUjzWhdKAMaYrVGO1XSMwVFeU0oppXZH1LxE6Iu4YcBrTYUSRIaB37GLY2p+Ur2OFktK9Q1N47yrWm0/JPz43h4cqyL8mLk3ASmllBrQ2stL+4cfP4uyz0LA38ExNT+pXkeLJaX6Bnf4sfWCfSnhx217cKy48GPDXkWklFJqINtVXiptvYMxJkjo/qX2aH5SvY4WS0r1DU1Jp/VMQlXhx7w9OFbTMdokMqWUUmo3tZeXqsOPWa13CE8K0VGvkeYn1etosaRU37AcMMDoVtubxoPvySK1Y8OP3+9tUEoppQas9vLS0vDj1Cj7TKHjycU0P6leR4slpfoAY0wlsIyd9yg1bf8KWAwcJyIXtd6vndnwJocf53d1nEoppQaG9vIS8DmwEThTRCKviYgNuHcXh50MFBljNnRhqErtFS2WlOo7XgfSReTAVtsvAkqA50Rknoj8QUQeFZHPgDlRjnM8oTHjn8c2XKWUUv1cm7xkjAkA1xDqdZofXoz2QeBbIA3YHu1AIjISGA68FuugldoTWiwp1Xc8QWil9BY9SMaYQkLThz8GjARuBM4lNOPQX5q3FZGhhIZGPGuM8XRDzEoppfqv9vLSu8BJwBLgAuAKQsPGjwe87RzrgvDjv2IRqFKd1S+KJRF5R0SMiNzXanuaiDwhImUiUi8iH4jIxCj7u0TkTyKyXUQaRWSBiBwVpZ1FRG4VkY0i4haRpSJydiyvTakmxphNwP+AC0UkrtVrW40xPzXGDDPGOIwx2caYo40x/251mMsJraD+j24KW6kBS3OT6u92kZc+NMYcboyJM8ZkGWOuMMZUhPPUsOZtwwvZXgp8YIxZ1m0XoNRu6PPFkoicz845/ZtvF+BNYDrwM+BswA58JCKtFzt7ErgKuBOYQaiL+F0RmdSq3b3AXcCjwMmE1gt4WURO6aLLUWpXbiM0W9BP9nRHEUkGfgE8ruPBlYotzU1qAOl0XmrmAmAEcHOXRKRUFxJjTE/H0GkikgYUAjcALwL3G2NuD792BqFxr8caYz4Kb0sBNgDPG2N+Ht62P6Fu4iuMMU+Ht9kIzfKyyhhzenhbNlAEPGCM+V2zGOYBWcaY/WJ+wUoBInIhkGSM+ece7rcf8APg78aY8pgEp5TS3KQGnM7mpWb7XwLYjTFPdm1kSu29vt6z9CCwzBjzUpTXTge2NSUjAGNMNaFv9M5o1c4HzG7Wzg/MAk4SEWd480mAA3i+1XmeByaKyPC9vBaldosx5oXOJCRjzHfGmLu0UFIq5jQ3qQGls3mp2f7/1kJJ9VYdzXXfq4nIVOASogxzCNuH0JSWrS0HLhGRRGNMXbjdBmNM69WilxNKQKPCf94H8ABro7QDmEDom8Gm+Ppul51SSnWCMUZ6OoaeprlJKaV6l73NTX2yZ0lEHMBM4M/GmFXtNEsHKqNsrwg/pu1mu/Rmj1Wm7bjF1u2UUkoNQJqblFKq/+mrPUs3A3HA/T0dyK705XvC9kboHuaBef167XrtA03TtSvNTb2d/j/Vax9o9Nr3Xp8rlsLrxNwGXAk4m43bJvw8Fagl9I1cWtsjRL5lq2z2WNBBu4pm7VJFRFp9g9e6nVJKqQFGc5NSSvVPfXEY3gjARejm1cpmPwA3hf88kZ1juVubAGwOjwkn3G64iMRHaedl5zjw5YCT0KKfrdsBrOjMxSillOoXNDcppVQ/1BeLpSXAMVF+IJSkjiGURN4A8kVkWtOO4XVmTgu/1uRNQmtcnNOsnQ04D3jPGOMJb36H0MxEF7aK5yJCsx7pujVKKTVwLUFzk1JK9Tt9bhieMaYK+Lj19vC4xE3GmI/Dz98AFgDPi8ivCX2rdysgwB+bHe9bEZkN/FVE7IRmDboWGE6z5GOMKRGRh4FbRaQWWEwoaR1LaIpXpZRSA5TmJqWU6p/6XLG0u4wxQRGZAfwZeIzQ8IgFwDHGmKJWzS8ndEPufUAqsBSYboxZ3KrdbUAd8AtgELAKONcYMydW16GUUqr/0NyklFJ9iwzE2TG6Q9NaFgP1/dXZV/TaBxq9dl1nqS/Q3KT/T/XaBxa99r3PTVosxcjuJiS3201paSlutxu/398tsQ1UNpsNl8tFVlYWLperp8NRqt/QYqnvGOjFklJq4NBiqZfbnYRUXV1NcXExWVlZJCYmYrPZdL2SGDHG4Pf7qauro7S0lJycHFJSUno6LKX6BS2W+g4tlpRSA0VX5aZ+e89SX1BWVsbgwYOJj289M6zqaiKC3W4nLS0Np9PJjh07tFhSSimllFId6otTh/cbXq+XuLi4ng5jwImLi8Pj8ey6oVJKKaWUGtC0WOphOuyu++l7rpRSSimldocWS0oppZRSSikVhRZLSimllFJKKRWFFkuqS9111106zE0ppZRSSvULWiypLnXllVeyYMGCng5DKaWUUkqpvaZTh6suNXjwYAYPHtzTYSillFJKKbXXtGdJdanWw/BEhNtvv52//e1vDB8+nKSkJKZNm8by5ct7MEqllFJKKaV2TYslFXPPP/88c+fO5ZFHHuHpp59m8+bNnHHGGfj9/p4OTSmllFJKqXbpMLxeaNhv5vZ0CABsfODULjmO3W5nzpw52O32yLZzzjmHr776isMPP7xLzqGUUkoppVRX054lFXMnnHBCi0Jp4sSJAGzevLmnQlJKKaWUUmqXtGepF+qqHp3eIj09vcVzp9MJgNvt7olwlFJKKaWU2i3as6SUUkoppZRSUWixpJRSSimllFJRaLGklFJKKaWUUlFosaSUUkoppZRSUYgxpqdj6JdExAB09P4WFhYyfvz4botJ7aTvvVJdp2khamOM7KKp6mG7k5uUUqo/6KrcpD1LSimllFJKKRWFFktKKaWUUkopFYUWS0oppZRSSikVhRZLSimllFJKKRWFFktKKaWUUkopFYUWS0oppZRSSikVhRZLSimllFJKKRWFFktKKaWUUkopFYUWS0oppZRSSikVhRZLSimllFJKKRWFFkuq13rttdd4+OGHezoMpZRSSik1QGmxpHotLZaUUkoppVRP0mJJKaWU6gIicpKIfCgiO0TEIyJbROQ/IjKhVbshIvKKiFSLSI2I/E9EhkY5XpqIPCEiZSJSLyIfiMjEKO1cIvInEdkuIo0iskBEjorltSql1EChxZLqcu+88w6HHXYYcXFxpKSkcOaZZ7Jq1arI68OGDeOyyy5rs5+IcNdddwFw2WWX8eyzz7J161ZEBBFh2LBh3XMBSinVOenAN8D1wInArcA+wEIRKQAQkXjgQ2AccClwMTAa+EhEEpoOJCICvAlMB34GnA3Yw+0Gtzrvk8BVwJ3ADGA78K6ITIrJVSql1ABi6+kAVP/yzjvvcOqpp3Lssccye/Zs6urquPPOO5k6dSpLliwhPz9/t45zxx13UFpayqJFi3jjjTcAcDqdsQxdKaX2ijHmJeCl5ttE5CtgJfBD4CFCRc0IYKwxZm24zXfAGuAnQNPY49OBI4BjjTEfhdstADYANwM/D2/bH7gAuMIY83R423xgOXBP+DhKKaU6SYulXqhw3PieDgGA8SsL93if22+/nREjRvD2229js4X+eR122GGMGTOGhx56aLfvQRo5ciRZWVk4HA6mTJmyx3EopVQvUR5+9IcfTwcWNhVKAMaYDSLyOXAGLYulbU2FUrhdtYi8GW7382btfMDsZu38IjIL+I2IOI0xnhhcl1JKDQg6DE91mfr6ehYvXsx5550XKZQAhg8fzhFHHMH8+fN7MDqllOoeImIVEYeIjAZmAjvY2eO0D7Asym7Lgeb3NnXUbqiIJDZrt8EY0xClnQMY1bmrUEopBdqz1Ct1pkenN6isrMQYQ25ubpvXBg0axKZNm3ogKqWU6nZfAgeF/7yW0FC6kvDzdKAyyj4VQFqz5+nAxnbaEW5bt4vjNR2njdAtUdEZY9p9TSmlepOOfpd1Fe1ZUl0mLS0NEWHHjh1tXtuxYwfp6aGc7XK58Hq9LV4vLy9vs49SSvVRFwNTCN1LVAO8LyLDejQipZRSnaLFkuoyCQkJHHTQQbz88ssEAoHI9k2bNvHFF19w9NFHA1BQUMCyZS1Hl8ydO7fN8ZxOJ42NjTGNWSmlupoxptAY82V4wofjgETgN+GXK2nZg9SkdQ9RR+1o1nZX7SqivIYxpt0fpZTqK7rjd5kWS6pL3XvvvaxZs4YZM2bw5ptv8tJLL3HCCSeQkpLCjTfeCMCPfvQjvv/+e2644QbmzZvHww8/zJ///Oc2x5owYQIVFRU8/vjjLFq0iO+//767L0cppfaKMaaK0FC8pnuHlhO6z6i1CcCKZs87arfZGFPXrN3w8JTkrdt5w+dWSqkBobGxkW3btlFdXd1lx9R7llSXmj59OnPnzuXuu+/m3HPPxeFwcPTRR/PHP/6RvLw8AC699FKKiop48sknmTlzJkceeSSvvvoqo0a1vA/5yiuvZOHChfz2t7+lqqqKgoICNm7c2ANXpZRSnSMiOYTWVHohvOkN4M8iMsIYsz7cZhihacJ/02zXN4DLRWSaMWZ+uF0ycBrwYrN2bwJ3A+cAz4bb2YDzgPd0JjzV1wUCAYqLiykpKWHNmjWMHTuWCRMmtJhISoHP56Ompobi4mLi4+NJSUmhoaEBq9VKVVUVwWCQtLQ0MjMzMcbgdrtxu93U1NRQWlpKIBDAarVSXl5OcnIy2dnZZGdnk5qaisWys2/F4/FQXFzMokWL2LhxI42NjQwaNIjExERsNhsOh4Pk5GQ8Hg/l5eWUlJRQV1dHY2MjjY2NlJeXU1lZGflxu91kZGTg9Xqprq6mtrYWAIfDQUJCQuQxNzeXYDBIMBikuLiYsrKySMxWqzVybI+n63/liXa5x4aIGOj4RtnCwkLGj+8d04QPNPreK9V1mm6wNcbE/k7bXkxEXgUWA98RuldpDHADMAg41BizOrzw7FKgEbgdMMC9QBKwX1OPkYhYgM+AIcCvCQ23uxXYD9jfGFPU7LyzgJPC7TYA1xJanPZwY8ziVjHuMjepvqGuro6ioiLGjBmD1Wpt8drKlSvxer3k5eXx/PPP4/V6SUhIIBgMUllZySWXXNJrF3ovKSlh1qxZzJw5E4/HQ2VlJRUVLUeTxsXFMXnyZNLT0wkGg4wcOZITTjiBoUOH4na7aWxsxOv14vf7CQQC+P1+/H4/mzZt4vvvv+fTTz9lyJAhjB8/ntGjR7Njxw5WrFjB+vXraWxsZPTo0ey7776kpqYyfPhwJk2aBIQmsiouLqampgabzUZjYyP19fXU1NRQVlZGQkICIkJOTg6DBw8mMzOTtLQ0UlJSaGxs5Pvvv+ezzz7jm2++obCwEGMM8fHxxMfH43a7GTVqFEceeSRJSUl4PB6KioqwWCzU1dWRkJCA1WrF5XJRV1dHSUlJi5/KymjzvOw9m83G4MGDCQQClJeX09DQeuLN3sVut5OWlkZNTQ1utxvY+9ykxVKMaLHUu+l7r1TX0WIpRERuAc4FRhKatrsI+Bj4gzFmY7N2Q4G/ACcAAswDftm8TbhdOvBn4EzABSwAfmWMWdqqXRxwP6EJJVIJFWO3GGM+jhKjFkvdLBgMUl9fz8aNG/n0008pKCjguOOOw+Vydep4y5Yt449//CMvvfQSfr+f+Ph4rFYrBx54IMFgkNLSUlauXNnhMRwOB+PHj8cYQzAYpLa2lpKSEqZNm8bpp59OQUEBgwcPJiMjg8TERIwxpKamdireaILBIFVVVZGJobZu3co777zDiy++yIcfftimvYiQnZ3NmDFj2LJlCxs2bOiyWPoLi8VCUlISOTk5kQIuISEBv98feZ8rKiqorKzEYrHgcrlwOp0kJCSQk5OD1WolEAiQlpbWohhrPZzNZrORkZHBxIkT2XfffXG5XGzfvp3Gxkb8fj8ej4fa2lqsVis5OTlkZmaSnJxMXFwccXFxpKWlkZ6eTlpaGmlpaTidTsrKynC5XKSkpJCUlISI4PF4aGhowOfzUV1dzY4dO7DZbFgsFjIzM8nOzsZmsxEMBgkEAjidTtLT04mPj0dECAaDkS8RtFjqpbRY6t30vVeq62ix1HdosdT1jDH4fD4cDgfGGFasWIGIkJeXx+zZs/n973/P5s2bW+wzbNgwbrzxRurq6li6dCnvv/8+fr8fi8VCSkoKp5xyCunp6TgcDlJSUli8eDHfffcdHo8n0iMhIlgslhYTKjVJTk7G4XBQVlbG4YcfzpQpUyIfZteuXctHH33UZp9dmTx5MjNmzGDMmDEAPProo3z77bc4nU6Sk5OZNm0aHo+HOXPmYIzBZrMxcuRIzj33XI499lg2btzImjVrWLJkCe+++y7V1dXk5ubicrlaFD8iwkknncRll13GvvvuS2JiIkOHDm0xRXRZWRmffvoplZWVJCcn88033zBv3jyqqqoiH8odDgcOhwOr1YrNZsNqtZKbm8vgwYM54ogjqK2tZfXq1axevZqkpCSmTJnCyJEjcTgcrF69mhUrVlBbW8vKlStZsmRJ5MN4VlYWaWlp+P1+4uLiSEhIICkpiYyMDOrr6wkEAuzYsYMdO3ZQVlZGZWVlJK4RI0YwdepUDj30UPbbbz/sdjuNjY00NDQQDAZZsWIFixYtwufzYbFYIr1/TqcTj8eDMYb6+vrIMLmsrKzIcLn09PQWw+W6itvtZuPGjbhcrkjx3B3TdXeFrspNWizFiBZLvZu+90p1HS2W+g4tlrrO448/zh133IHb7aa+vp6srCwCgUCbIWNNhg4dyiGHHMKKFSsoLNy79RTPP/987rrrLvLy8vjiiy9wuVysXbuW3NxcMjMzmTBhAna7nR07djBkyJA2H243b95MWVkZdXV1kSIgISGB559/nsLCQjZt2kRxcTEVFRXU1dXh9/sjQ5q6SlMB0PTnE088kZNPPpmzzz6b7OzsLj2XGpi0WOrltFjq3fS9V6rraLHUd2ix1LFNmzbxwQcfMHbsWI444oio36BXV1fzhz/8gQcffLDd4+Tm5lJWVsb+++/PJZdcwnXXXRcZEuTz+Xj22Wf58MMPSUtLY7/99uPII4/E5XJFekk++OCDSE9VeXk5Q4cO5cADDyQ3N5fc3FxycnJi9h5E09DQwKuvvsqSJUv46quvCAaDnH322Vx44YUYYygqKuLDDz/Ebrdz6qmnMmjQIDweD5999hnPP/88X3zxBRMnTmTixImMHDmS6dOnU1BQwPr16yOL2ScmJnbrNan+T4ulXk6Lpd5N33uluo4WS32HFkvRbdy4kV//+te88sorLbYPGzYMi8VCQ0MDCQkJZGdns2TJEhobGxER7rvvPs477zwKCgpYsWIFK1as4JBDDmHkyJE9dCVKqSZdlZt03kWllFJKDVirVq1i8uTJkRvZx4wZw5o1azDGtFmuYt26dUBoHcDHH3+co446KvLafvvtx3777ddtcSuluocWS0oppZQakL799ltOOukkqqurmTJlCn/729845JBDKC0tpa6ujsWLFzNq1ChSU1OprKxk06ZNOJ1Opk2bRlxcXE+Hr5TqBlosKaWUUmpACAQCbNq0ifj4eC655BLef/99AA488EDef//9yH0zWVlZZGVlMXz48Mi+BQUFkfV2lFIDhxZLSimllOr3AoEAZ599Nq+//nqL7VdddRWPPPKI9hQppaLSYkkppZRSvZYxhtWrVzNixAjsdvse7VtTU8P999+P3+/nxRdfZMeOHZHXDjnkEB555BEOO+ywrg5ZKdWPaLGkutRrr73G+vXr+dWvftWt+wI888wzXH755WzYsCGykJtSSqm+q7i4mBkzZvD1118DMHv2bM455xwefPBB3nrrLVauXMnkyZOZOnUq6enpFBYWMnfuXESEc889l1deeaXFmkapqam88sorHHzwwaSkpPTUZSml+hCdOjxGBurU4ZdddhkffPABW7Zs6dZ9Yc+Kpf743ivVU3Tq8L6jN04d7vf7ueeee5g9ezZpaWmcdNJJ3HjjjVgsFkaNGkVxcXGL9mlpaVRWVu728ZOTk7n00ksZP348l112mQ63U2qAGNBTh4vIScAtwAQgDSgFvgDuMsasaNZuCPAX4ARAgA+AXxpjNrc6XhrwJ+BMIA5YANxgjPm+VTsXcC9wEZAKLAFuMcZ80tXXqJRSSvV3Xq+Xo48+mgULFkS2ffnll3z//ffsv//+kULpvvvui/QaNRVK55xzDldffTWvvPIK//3vf6msrOTEE09k8uTJLFu2jMzMTLZu3codd9zBIYcc0iPXp5TqB4wxfe4HOJ9QcfNDYBpwMbAcqAEKwm3igTXAMkJF0BnA98A6IKHZsQT4DNgSPu50YD5QBgxudd4XgCrgKuA44H9AIzApSowm9Pa2b8WKFR2+3tdceumlpum6m34KCgqMMcasXLnSnHnmmSYlJcW4XC4zefJk8/bbb+/Wvo2NjeaXv/yl2WeffUxCQoLJyckxM2bMMIWFhS3O//TTTxvAbNiwYZex9rf3Xqme1Oz3XY/nB/3ZZf7cZW7qLlu3bjUOhyPy7yc+Pt6MGzeuTS74+OOPI/uUlZWZBx980Dz77LMmEAj0YPRKqd6uq3JTn+xZMsa8BLzUfJuIfAWsJFRAPUSooBkBjDXGrA23+Y5QAfUT4OHwrqcDRwDHGmM+CrdbAGwAbgZ+Ht62P3ABcIUx5unwtvmEirR7wscZ0O644w5KS0tZtGgRb7zxBgBOp5Nt27YxdepUkpKSePTRR0lJSeEf//gHp556KnPmzOHkk09ud18Aj8dDbW0tt99+O7m5uVRUVPDYY49x2GGHUVhYyKBBg3rsmpVSSoW+eC0vLyczM7PDdu+99x5Lly7llFNO4fjjj8fr9QLw6aefMnXqVADmzZvHqaeeisfj4cwzz2TatGmR/TMyMrj55ptjdyFKKdVKnyyW2lEefvSHH08HFjYVSgDGmA0i8jmhXqbmxdK2pkIp3K5aRN4Mt/t5s3Y+YHazdn4RmQX8RkScxhhPV1xI0xjLnhYqynffyJEjycrKwuFwMGXKlMj2m266icrKShYsWMCoUaMAOOWUU5gwYQK33XYbJ598crv7AqSkpPDEE09EngcCAU466SRycnJ46aWXuOGGG/biKpVSSu0Nt9sduQ9on3324eOPP25RNNXU1BAfH8+sWbO47LLLCAQCLQqe9957L1IoARx33HHMmzePzz//nJ/+9KfddyFKKRWFpacD2BsiYhURh4iMBmYCO9jZ47QPoSF4rS0ndK8Tu9FuqIgkNmu3wRjTEKWdAxjVuavo/z755BOmTJkSKZQArFYr559/PkuWLKGmpmaXx/jPf/7D5MmTSU1NxWazkZCQQF1dHatWrYpl6EoppTrwn//8p8WECcuXLycrK4v8/HyeeuopfvCDH5CSkoLdbufiiy8mEAhE2ubm5rJu3TpOOOGENsc94ogjuPnmm0lISOiW61BKqfb06WIJ+BLwAKuB/QgNpSsJv5YORJsup4LQpBDsRjuatd1Vu/RoAYpIuz/t2duxlV3101UqKirIzc1ts33QoEEYY3Y5q9Gbb77Jeeedx/jx43nxxRf58ssvWbRoEVlZWbjd7i6LUynVvs78LlP91+rVq7n88ss577zzItuaF03btm3jxz/+Ma+++mqL/S6++GJWrVrFq6++SmFhISNGjOi2mJVSqjP6+jC8i4FkQvcm3QS8LyJTjTEbezQq1UJ6enqLhQCb7NixAxEhLS0tyl47zZo1i1GjRvHMM89Etvl8PioqKtrfSSmlVEwYY7j00ktZuHBhZFthYSHjxo3jL3/5S5u18kSE4cOHc8455/DAAw8AMGbMmG6NWSmlOqtP9ywZYwqNMV+GJ3w4DkgEfhN+uZKWPUhNWvcQddSOZm131S7qJ/fu6LnpTZxOJ42NjS22TZs2jYULF7Jx48bItkAgwOzZsznggANITk5ud1+AhoYGbLaWdf1zzz3XYjiHUiq2BtrvMtW+e+65p0WhBDBu3DgAbrjhBoLBIIWFhTzyyCP88Ic/pLy8nHXr1kUKJaWU6kv6es9ShDGmSkTWsvPeoeWE7jNqbQKwotnz5cCJ7bTbbIypa9buLBGJb3Xf0gTAC6xtfYCBaMKECVRUVPD4449z8MEH43K5uOGGG3jmmWc44YQTuPvuu0lOTuaxxx5j9erVzJ07t8N9J06cyPTp03nttde44YYbIiu5//3vfyc1NbXnLlQppQaoWbNmtXh+/fXXt3guIowbN45x48bx85//HKWU6sv6TbEkIjnAOEJrIQG8AfxZREYYY9aH2wwjNE34b5rt+gZwuYhMM8bMD7dLBk4DXmzW7k3gbuAc4NlwOxtwHvBeV82E19ddeeWVLFy4kN/+9rdUVVVRUFDAxo0b+eyzz7jlllu49tpr8Xg8TJo0iblz5zJ9+vRd7nvVVVdRVFTEU089xcyZMznkkEN48803Oeuss3rwSpVSamCpqqri9ttvZ+XKlUBoFrza2loyMjJ6ODKllIod6YtDKETkVWAx8B2hhWjHADcAg4BDjTGrRSQBWEpo0djbCS1MdS+QBOzX1GMkIhZCi9IOAX5NaLjdrYQmjNjfGFPU7LyzgJPC7TYA1wIzgMONMYtbxRha/a+D97ewsJDx48fvzVuhOknfe6X2TmNjIx6Ph5SUFCyW0IhuY4zO9tDL7U5uimbdunUtZjS12+2RNZKUUqo3apqAaG9zU1/tWVoInAvcSGja7iLgY+APTZM7GGPqReRY4C/Ac4AA84BfNhtahzEmKCIzgD8DjwEuYAFwTPNCKexy4H7gPiCVUDE2vXWhpJRSXam0tJTGxkaysrJazDjWnN/vx2q1AqGZyJYsWUJ1dTWlpaUUFhZSU1NDQUEBdrudyspKqqqqqKqqAiAxMRERYcyYMeTl5WGxWAgEAhQVFVFRUUFlZSVut5vKykpKS0spLS2lrKwMYwzp6VEnAlX9iDGmRaEEsGHDhh6KRimlulef7FnqC7RnqXfT936n1atXIyKUlpbyxhtv8N5771FcXMypp57KFVdcweTJkzs9PfSOHTtIT0/H4XBEthljKCkpIRAIMGjQoEivRCw0NDSwfft2ysrKyMzMZNCgQaxfv54RI0bs9votNTU1rFq1ijVr1lBWVoaIsHXrVtauXcuoUaPIyMigvLwcl8tFaWkpNpuN1NRUBg0aRE5ODoFAgMrKSpYvX87atWvx+XyICHa7HZvNFpm8ZL/99uOss87C5/OxZMkSysvLKS0t5YMPPuDbb7+NxJOcnEx2djYpKSlkZmYSCARYtmwZO3bswGazYbFYuuUbf5vNhsvloq4u8t2T9iz1Aa1z08aNG3nooYe49dZbycvLa9P+3XffbTFc2m63U1JSoveMKqV6va7qWdJiKUa0WOrd9uS9N8awefNmhg4d2qZoWLZsGXa7nbi4OJ599lmSk5PJyMjgm2++YevWrdxxxx1MnDgxFpew1xobG7n//vv5/e9/3+G/09GjR2O326mrq2P//ffnxz/+MYcddhhut5vGxkZqa2upra3F5/ORkJDAhg0bWLJkCV999RWffvopCQkJHH300YwfP56ioiK+/PLLyMyIeXl5nHrqqSQnJzNy5EguueQSamtr2bp1K42NjRQVFVFbW8v69euxWCzU1tZSVFQUKTKGDx/OgQceyIgRI0hLSyMvL4/S0lLeeustXn75ZebPn4/f729zTXFxcUydOpW8vDyysrJYs2YNPp+P7du3k5KSQmpqKk6nk5KSEj755JMen3nR5XKRnp5OWVlZu4WQiET+HtPT05k0aRLZ2dmkpaUxbtw4kpOT2bx5M8YY0tLSSE1NJSUlhWAwSF1dHYFAgNWrV1NSUhI5ztChQ8nMzCQ1NRWXy0VaWhpZWVlkZWWRmZmJ1Wpl8+bNDBs2DNBiqS9onZuuueYaZs6cydFHH81HH33Upv2QIUPYsmULAGPHjo3cr6SUUr2dFku9nBZLPavpfW+vR2R33vtgMMgf//hHHnjgAaqrq8nNzSU9PZ0ZM2Zgs9n4/PPP+fjjjzs8RlJSEldddRXBYBCA7du3s2zZMs455xx++9vfYrfb9/zi9lIgEOC2227joYceihQSDoeD/Px8xo0bxyGHHML06dP53//+x7///W9KSkp2ccQ9l5ycjN1up7y8vMuP3ZzVamXIkCFkZGSwdetWysrKSExMjAw/2x02m40JEyYwevToyELKSUlJjB07lo0bN1JTU0NycjJ+v5+cnByCwSAVFRUUFxdHenuSk5MZPXo0EyZMIC4uDmMMfr8fn89HIBDA4/Hw9ttvM3/+fFJTUxk3bhwFBQUkJSUxZcoUpk2bhsvliiziXFpaSnV1dWT9sn333Zdhw4bh8/kIBoPtDtWLla5KSCr2WuemtLS0yP+H8847j6uuuoqjjjqKzz//nP3337/FMMuVK1cyduzY7g9aKaU6QYulXm53i6Vx48Z1eoiTaqmqqoqGhgYaGxupqqrC6XQyePDgyHCRpg+aIsK6devYunUrM2bMiNzn0aS4uJhAIMCvfvUrZs+evdvnHzVqFMcffzxbt25lyJAhbNq0qcXU6K05nU723XdfUlJSOPTQQ8nNzcXv93PeeeeRn58fabd8+XK2bNkS6fEYN24cVVVVfPHFF8THxwOQlZXFhAkTWvxb8nq9vPzyy6xbt44zzzwTu93Os88+yz/+8Y/I0Kn99tuPv/71rxxzzDFRY/T5fMybNw+LxUJ+fj5vv/02Tz/9NDt27CAuLo74+HgSEhJITU3F4/FQVVXFhAkTmDBhAgUFBZx22mn4fD4+/fRTli1bRmJiIieccAIHHHAAIsLChQv55ptvqKur43//+x+LFi0iNTWVgoICXC4XQ4YMISEhgZEjR2KxWIiPj2fIkCH4/X4qKyvZtm0bixcvZvv27WzdupWSkhIyMjI4+OCDOf/885kxY0bUmbrWrFnD+++/j9frpbq6mlGjRuFwOCgoKKCmpoaamhrcbjcJCQkcccQRZGZm7va/g4FIi6W+o3VuGjlyJOvXr4/a9sgjj+TTTz8lJSWFlStXMmjQoO4LVCml9pIWS73c7hRLq1evZtiwYS3u51C7z+PxRO792L59O9u2bYvaLjMzE5vNRmVlJR5PaIb39evXc95555GVlcWPfvQjgsEgVVVVrF69mq+//jry92az2Zg5cyaTJk3iqaeeYsWKFfj9fsaPHx9ZA6qyspLvvvuOCy64oMU3+sFgkGeeeYZ169ZRW1tLamoq+fn52O12HnjgAdasWRM13rS0NE499VROOeUUFi9ezJ///OcWrx944IGsX7++Te/IWWedxUMPPcTXX3/N//73P+bNm0dpaWnUcxQUFPDwww9z1lln9api3e/3t1mAeE8EAoE2xa+KPS2W+o7WuenAAw9scU9cNJdffjlPPfVU7INTSqkupMVSL7c7xdL27dux2+36rfUu1NbWsm3bNrxeL8YYHA4HPp8vUvg0l5CQQFpaGikpKZSXl0eGKTUREaxWK++++y633XZbu/eiuFwuxowZw1/+8heOPfbYLr+mYDDIli1bWL16NXV1dXz22We43W4WL17MggUL2sQ8ZcoU6urqKCwsjAydGzduHFlZWQSDQZYsWUJ9fX2b84wbN47Ro0ezcOFCEhISmDhxIrfddhuTJ0/u8mtSA5cWS31H69w0depUPv/88w73efTRR/npT38a++CUUqoLabHUy+1OseTxeNi8eTNpaWmRezh607f8vYHf72f58uX4fL4O27lcLnJzc1sMuTLGUFpaSkNDA1arlfj4eAKBANXV1QwdOpRVq1bxv//9D6vVitPppLCwkBNOOIEpU6YwYsSIWF9aVMYYvvjiC7766iuee+45fD4ff/rTnyKzUdXW1vLxxx/j9/s57bTTIr0wmzdv5oYbbuD1119n/Pjx/PjHP2b69OmMHTtW/02pmNNiqe9oyk3FxcVcf/31zJkzh8bGxg73+fbbb5k0aVJ3hKeUUl1Gi6VebncX/vN4PFRUVFBbW9vjM251p0AgQF1dHXa7PXLfTWvBYJCysjIaGxsREVJTU3E4HDQ2NuL1eomPjycxMTEy9GpXRYHVaiUpKYn09HScTmcsLqvH6TA01RO0WOo7mnLThRdeyAsvvNDm9d/97nfcdNNNHHfccXz11VdcfPHFPPPMMzGd4l8ppWJBi6VerrOrpA8EDz/8MDfeeGPkudVqJS0tjRNPPBG3200gECA7O5sXXniBhoYG0tPTWbRoUY/19iilOqbFUt/RlJuOOeaYqFOFL126lP3224+GhgbcbrcuOqyU6rO6Kjd1/k5qpTrhzjvv5N57722xLRAIUFZWxosvvtim/ZAhQ3jnnXe0UFJKqS6UnJzc4vlPf/pTbDYb++yzDwDx8fHt9vorpdRAosWS6jbffvst999/PwC3334799xzD3PnzqWkpIT33nuPgw8+mIKCAoqKili/fj3Z2dmcf/75jB49uocjV0qp/iUxMbHF89/97ndkZWX1UDRKKdV7abGkukV5eTnnnnsuwWCQ66+/PtK7NGPGDACuuOKKngxPKaX2moj8EDgfOBjIBjYD/wN+b4ypbdYuDfgTcCYQBywAbjDGfN/qeC7gXuAiIBVYAtxijPmkVTsLcAvwE2AQsAq4xxjz3/Zibd1rpL1ISikVnd6xqWJu48aNTJkyhbVr15Kfn899993X0yEppVQs3AQEgN8C04HHgWuB98MFDRIaRP9m+PWfAWcDduAjERnc6nhPAlcBdwIzgO3AuyIyqVW7e4G7gEeBk4GFwMsickp7gTZfEy7ac6WUUiHas6RiIhgMUl5ejtVqZcSIERhjSExM5J133iElJaWnw1NKqVg4zRjTfCXo+SJSATwLHA18CJwOHAEca4z5CEBEFgAbgJuBn4e37Q9cAFxhjHk6vG0+sBy4J3wcRCSbUJH2gDGmaQXrj0RkFPAA8Fa0QFvPHqqz3SmlVHT621HFxAUXXEB2djYZGRmRGQE//vhj9t133x6OTCmlYqNVodRkUfgxP/x4OrCtqVAK71dNqLfpjGb7nQ74gNnN2vmBWcBJItK0/sFJgAN4vtV5nwcmisjwaLHuau06pZRSIVosqS731ltvMXt2JL8TFxfHt99+y0EHHdSDUSmlVI+YFn4sDD/uAyyL0m45MFREEpu122CMaYjSzgGMatbOA6yN0g5gQrSgvF7vbgWvlFIDnRZLKsIYw+bNmzu1OG5paSnnnnsuGRkZnHrqqQCceOKJ/Otf/6K0tFRXf1dKDTgikk9oyNwHxpivw5vTgcoozSvCj2m72S692WOVabuoX+t2LTzxxBOtY438KKVUX9H8d1frn66ixZKKuPbaaykoKODss8+ODJ1btGgRv/zlLxk0aBAPPvhgZPuXX37JKaecwsMPP0x5eTk33XQTL7/8MhUVofyck5PD7Nmzueqqq0hISOixa1JKqZ4Q7iF6HfADl/dwOEoppTpJ2n4ZpbpC0yrpvfH93bFjBxkZGdjt9si2q666qs03jXPmzOHMM8/E7/fv9rEvuugizj77bM444wz9hlKpAaKrVknvL0QkjtDECvsD05pPCS4iXxLqCTqp1T43Aw8CScaYOhGZDUwyxoxt1e5cQvcx7WuMWS4iDwK/AOKa9y6JyKHAl8AMY8zcZtsNwDnnnMPLL7/MhAkT+Mc//sHRRx/dlW+BUkr1uK7KTdqzNIAYY7j44ovJzc3F4XBwwQUXsGXLFtavX9+mUILQGkhNhdLurMFx66238txzz3HmmWdqoaSUGpBExA68QmitpVNar51E6F6ifaLsOgHYbIypa9ZuuIi0/uU7AfCy8x6l5YATGBmlHcCKaHE2TfBwzz33aKGklFId0GJpgAgGg4wZM4bnn985YdJLL73EzTffzKxZsyLbqqqqKC8vZ/r06ZFtH374IfX19Xz//ffccsstnHTSScybNw+v18uqVasoLy/ns88+0/WTlFIDWngtpReAY4EzjTELozR7A8gXkWnN9ksGTgu/1uRNQusvndOsnQ04D3jPGOMJb36H0Kx5F7Y6z0XAMmPMhmixNhVLzUcYKKWUakvXWRogPvnkE9au3TlZUlZWFqWlpcyaNSsyVHDOnDmRNZDeeOMNnn/+eTIyMjjmmGMA2HfffXnggQdaHHfMmDEAHHHEEd1xGUop1Zv9g1Bxcz9QLyJTmr22xRizhVBBtAB4XkR+TWgSh1sBAf7Y1NgY8214KN5fw71VGwgtcDucZoWRMaZERB4GbhWRWmAxoYLqWMJrMUWjxZJSSu0e7VkaABYtWhQpeK699lqMMZSUlPCzn/0sUiilpaVxwgknRPax2+1cfvnlnH56u7lWKaVUSyeHH28jVBA1/7kSwBgTBGYA7wOPAa8CAeAYY0xRq+NdDjwN3AfMBYYA040xi1u1uy3c5hfAu4QWvT3XGDOnvUC1WFJKqd2jEzzESE9P8NDQ0EAwGCQuLo4xY8awfv16AEpKSsjKygJCQ+7Gjx/Pjh07uO+++7jtttt6JFalVN+mEzz0HU25aerUqXz22Wd8/PHHTJs2bVe7KaVUn6MTPAxQ3333HTfddBOlpdEWig/xeDwccsghJCUlMXHixEihVFhYGCmUAFJTU5k/fz4vvvgit956a8xjV0op1Ts09Sw5nc4ejkQppXo3vWepD1m6dGlkcdeHHnqItWvXMnLkzgmQ/H4/VquVv/3tb6xYEZoAqbAwtGj8I488wrhx49occ8yYMZH7jpRSSg0MXq8XAIfD0cORKKVU79YtxVL4JtfpwBQgD4gDyoBVwHzgNWNMtJXKVVjzQqnJqFGj+NWvfsVDDz3EQw89xE033RR13+TkZK655ppuiFIppXqG5pk9o8WSUkrtnpjesyQilwI3EVpTohZYCpQCjUA6oVl9xgAe4D/A3e1Nc9rXdPU9SyeccAIffPABAJmZmZSVlXXYfvTo0SxatIiqqioKCgq6JAallIqmJ+9ZGsh5pjOactPo0aNZs2YNq1at0tEFSql+qatyU8x6lkTkOyAL+DdwCbDERKkcRCSF0MxAFwIrROQyY8zsWMXV1yxYsIDDDz888vzuu+/mpptuIi8vj+rq6nb3KywsxGq1RqYCV0qp/kbzTOc19SzpbHhKKdWxmPUsicgvgJnGGPce7LM/MMgY825MgupGXdWzNGnSJJYuXRp5XldXR0JCAg0NDbz11lucc05kvUIefvhhTj75ZEaOHKkJUCnVbXqqZ2mg55nOaMpNubm5bN++nS1btpCfn9/TYSmlVJfrqtykU4fHSFcUS5s3b24zhK718YLBIL///e+ZP38+//nPf0hLS+v0+ZRSqjN06vC+oyk3ZWRkUF5e3mI5CaWU6k96fbEkIunGmIrdbPsjY8ysmATSQ7qiWDr55JN55513Is+HDRvGhg0Ddqi9UqqX6sGepQGdZzqjKTclJSVRW1tLVVWVDtdWSvVLfWGdpfdFJHlXjUTkMuC5GMbRZ3333XcA3HnnnRx66KH84Q9/6OGIlFKqV9E800k6G55SSu2eWPYsVQArgRONMXXttLkaeBx42xgzIyaB9JC97VnyeDy4XC4AGhoaiIuL67rglFKqC/Vgz9KAzjOd0ZSbRARjTGR9PqWU6m/6Qs/SScAEYK6ItPmkLyI/B/4JvAGcFcM4+pzS0lIOOOCAyHMtlJRSKirNM51kjMFisWihpJRSuxCzYskYswg4BTgAeENEnE2vicivgb8CLwM/NMb4YhVHX1NXV0d2djaFhYUADBkypIcjUkqp3knzzN7RIXhKKbVrsexZwhjzBXAacDjwPxGxi8jvgAeBF4DzjTGBWMbQ1/ztb39r8XzRokU9FIlSSvV+mmc6T4slpZTatW6ZOlxETiA0DKIIGAk8BVwdbfHA/qIz9yz5/f4W6yN98sknHHnkkV0fnFJKdaHeMHX4QMwzndGUmwAyMzMpLS3tyXCUUipmev09SyIyoukHWAfcAowC5gIPAMNbtenXPB4P8+fPj8xA1NratWs566ydQ+o/+OADLZSUUqoDmmf2jvYsKaXUrsVyNrwg0PrgTZVdm5MaY/rVXaate5b+9Kc/cfPNN/Pb3/6W+++/v037Qw89NDLkbt999+X777/vxmiVUqrzenA2vAGdZzqjec+S1WrF7/f3ZDhKKRUzfWFR2kv3pL0x5tmYBNJDWhdLgwcPZuvWrTTf1qp95M+PPvooP/3pT7sjTKWU2ms9WCwN6DzTGc2LJdi7hdOVUqo36wvF0uHhG28HpNbFUmJiIvX19QD861//4qSTTmLo0KEAVFVVkZaWFtm3sbExssaSUkr1dj1YLA3oPNMZWiwppQaKXn/PEvCpiGwXkX+JyMkiMqAHRycn71xk/uqrr6agoIB77rmHAw88kFmzZgEwcuRIAoGAFkpKKbV7NM8opZSKqVj2LA0CzgTOAI4BPMC7wKvAXGNMTUxO3Eu07lkaO3Ysq1ev7nCfU045hblz58Y+OKWU6kI92LM0oPNMZ2jPklJqoOj1PUvGmB3GmH8aY04GsoCfAAHgcaBURN4TkWtFJC9WMfQmTqdzl20KCgq6IRKllOofNM8opZSKtZguStvEGFNrjJlljDmfUEI7g9A0r7cDRSLylYjc2h2x9JTdKZaGDx/eDZEopVT/o3lmz51++uk9HYJSSvV63VIsNWeM8Rlj3jHGXGuMyQeOAD4ELu7uWLrT7hRL48aN64ZIlFKqfxuoeWZPXXHFFT0dglJK9XrdXiy1ZoxZaIz5jTFmQk/HEgt1dXU88sgjFBUVtXntd7/7XYvnY8aM6a6wlFJqwOjveaazrNYBv+yUUkrtkq07TyYiQ4AhQJvp3owxH3ZnLN3lzjvv5C9/+Uub7bNmzeLcc8/l7rvvBuDMM8/UYkkppfbSQMwznWWzdetHAKWU6pO65TeliIwAXgAObdoUfjThPxugX37F9emnn0bdPnr0aESEJUuWUFdXxxFHHNHNkSmlVP8xkPNMZ2mxpJRSu9ZdvymfAIYCvwRWAt5uOm+Pi4+Pj7rd4QgtB7L//vt3ZzhKKdVfDdg801laLCml1K5112/KQ4DLjDH/7abz9Rqti6Vf/OIXBAIBJkzQofNKKdWFBmye6SwtlpRSate66zflFgbot3xxcXEtnt98883k5emSH0op1cUGbJ7pLC2WlFJq17prNrzfA7eISEI3na/XaD1l+O5MIa6UUmqPDdg801k6G55SSu1at3ytZIx5TkTGARtFZCFQ2baJubQ7YuluTfcmNdFiSfV2JhjEX1oKxmDLyUFEdr2TUj1sIOeZztKeJaWU2rXumg3vMuBWIAAcSNuhEqY74ugJWiyp3i5QVUX9wi+p//wzGhZ/i2/rVozbDYAtO5v4gw8i7oADscTHY8vOJmHyoUirf9dK9bSBnGc6S4slpZTate76TXk38CrwY2NMVTeds1doXSxpclK9hb+igoqnn6HyhRcINjS0eM2aloYJBPCXlFDz1tvUvPV25DVLcjKOggLEbsealoYtIwNrehq29AysqSmYYJBgXT3G78N4fdgyMnAMH4YlIYGmGZz9xcVYEhKw5+VhGzSo1/deGWPwFRXh27YN4/PjLykhWF+PLTsba0oyWKyIRRCnE0tiEtakRMRuJ1hfT6C+Hn9pKYGyMrBYsCQkYk1JDhWcgQCBunqsSYnYhw7FlpYW9fyBujqMz4dYrZFzBWrrCNbXh85RUY6/shLj9hCorg5tdzdivF7EZkccDsQaGnVtvF4CdXUEa2oJej1Yk5KxpqdhiYtHHKG2FqcT4w/gLdqMv6QUsduxZWZiiY8HE8R4vRifj6DXCz5fd/5VdGTA5pnO0nyklFK71l2/KTOAx7oqgYnID4HzgYOBbGAz8D/g98aY2mbt0oA/AWcCccAC4AZjzPetjucC7gUuAlKBJcAtxphPWrWzALcAPwEGAauAezqafal1MurtHwpV7JhAAPfKlVji4nEUDA198O0B3k2bqJw1m8pZszCNjQDEH3ww8YdNIfGoaTiGD8OamIgJBvGuX0/DN4tpXLoUAn7cKwrxrFmD+/vvd3GW3WdNS8MxfDj23FzsuYOwDcrFPigHS2ISljgX4nQSrKsLFQxuN8bnw/gDEPBjfD4C1TWIzYotOxtbVhZis2H8foKNjfiLi/Ft3Yp3y1Z827chdjvG48XidGJNT8eWmYElIRHf9u0EqqowbjdBj6fFo9jtBL0eAqVlXXbN7bFlZWFJSkLs9kjvna+oiEBVVczP3Q90aZ7pDBEZTChHHAzsTyjvDDfGbGzVrstzjohcBdwIDAc2An8xxvyzo3i1WFJKqV3rrt+UnwHjgXlddLybCBVIvyU0A9IBwF3AMSJyuDEmKKGq5E1gGPAzQuPXbwU+EpFJxpgtzY73JHAq8GtgPfBT4F0ROcwYs6RZu3vD574N+Ab4EfCyiMwwxrwVLdBAINAlF6x6r6DXi3/7duoXfgmAJT4eS0ICloQEbBnp+IqLqX33PWo//DDUuwCIy4Vr3Dhc++5L4rSjSJgyBbHb2z2HMQbf1q34d+xAHA78ZeX4thTh27Yda0Y6zhEjiJs0CVtGRtv9Nm+mcckSGpYsoXHJUjyFhZHXE48+mszrriVuv/3anFMsFpyjRuEcNYq0886NbPes30CgohyMwV9RGerVqKggUF5BoKYGRLAkxCN2B2Kz4S8txbtpE8bjCfVKBILYB+UQrG/Au2kTgcpKGisradyrv4XYs6am4hg1MtTLkpWFJT4ef2kZwbo6CAQwxmA8HoK1tQRqazF+P5aEBKyJCVhTUrHl5kIwGCr8qqsxPh9YrVji4gjU1uDduCl0r1hpaZtzS1xcpCfKBIMQCGBJSsIa/ndmSUkOxeR0Yk1JwZKQsHMfvz/UExQIgghis2FJTMCaHOrdCtTUEKiswnjCBaLXi/F4QQR7fh72vDyM14e/rDQ0PNNiDRdz9p1F3Vln9cDfSBtdnWc6YxRwLqH88ClwYjvtujTnhAulmcAfgA+A44DHRESMMY+3F6xO8KCUUrsmxsR+GLeIjAX+A/wReIe2N95ijAnuwfGyjDGlrbZdAjwLHGeM+VBEzgBeA441xnwUbpMCbACeN8b8PLxtf0Lf6l1hjHk6vM0GLAdWGWNOD2/LBoqAB4wxv2t23nlAljGmxadNETEAP/nJT5g5c2bz69zdy1RdyLdjB/VfLMBfVgbG4Bw7Bkd+Ps7Ro3e5b9OHYLFY8JeXY8vJAaD2vfco+8djeNas2e047Hl5GAz+bdtbbLekpJA4dSrOMWOIP+QQbOlpBBsaaPj6a2rnfYi7sJBgTc0uDm4n8YgjsOflAoJn3To8a9YQqKho0Uzi4kg+8QTSLr6EuH332e3YY8EYg3/btkjPj3/HDnzbtuMvLibY0ECwoQHj9WJJTsaSEB8aKmazITYb2KyI1YY1OSk0NK60FH9ZGSYYQGx2LE4ntuws7PmDsefnY8/LxfgDWJwOgm4PgcqK0PC42lrsuXnYMjMQpwuLy4m4XFicoUfj94Mx2PPzEUvsJhA1wSD+7dsJNoaGzxmvF2NMaKhidnav7pVuis0Y02NBdnWe6WQMlqZziMiVwP/Rqmepq3NOeN9twNvNJ7AQkaeA04FcY4yv2fZIEtq0aRNDhw7t0vdAKaV6i67KTd3Vs9T0Vfa/23nd7EksrQulsEXhx/zw4+nAtqZCKbxftYi8CZwB/LxZOx8wu1k7v4jMAn4jIk5jjAc4CXAAz7c67/PAUyIy3BizoXVQ2rMUW77iYgDsOTnUL1xI3Sefhj50b9+Bv6QEx7ACLMkp1H7wAfj9bfa3ZWWF7sEZNoyUM04n6eijQ9+219bi27aduo8/pvL550Pf+IdZEhIQl4tAeXl4gwVrairxBx2ENTUlfB9JA4G6OvxlpVgcThKPP47kE0/EOW4cIkKguprG75fRuHgxNe++i3fdOmrmzoW5c9u9VmtGBo7BgzF+P9b0dOyD87HnDMJfUY5n1WoaFi2i7uOP2+6Xnk7cpEnEHTCJ+EmTcO27L5ZW63/1FBEJFTL5+btu3M+JxaLvw97p0jzTGbtZjHV1zjkMyIrS7jngcmAq8BFR6DA8pZTate76TXkPsZ+JaFr4sSlh7gMsi9JuOXCJiCQaY+rC7TYYYxqitHMQGlaxPNzOA6yN0g5gAqFeqxa0WOoanrVrqX5zDt5Nm0KTBcTFU/XKK/g2bwYRXOPH416xos1+vm3bIn9OPPZYHMOHgd+Pu3Al7hUrIsOevOvWUTdvXugGdquVYG1tywNZrRAMYklOJlhdDfX12PJyybzqKlLPPnuPZ4ezpqSQOPUIEqceQdbPf4ZnwwYavvwSz+rV1H/1FcbrwxIXhy0zk5QfnEX8wYdgy87qsHfBV1xMw1dfEaiugYAf+5ChOMeMwZ6f16t7JZTqIt2RZ7pCV+ecpu7h1vmueTstlpRSqpNi9psyfO/QFwDGmLtidZ7wufIJJcoPjDFfhzenE7rJtbWmMUlpQF24XZvhGs3apTd7rDJtx9G1btfC008/3TrWyJ91SN6uGb+fkocepqLV+9hE4uMxbneoUBIh7fzziTtgEvZBg7BmZOL+/juCDQ3EH3IIzlGjWuwbdLvDs5v5qP/sc6pffx3P6tWh47pc2PPycBQUkHbB+SRMnQrGIBYLvpISgrW1OIYP77JhWc7hw3EOH75Xx7Dn5JBy2mldEo9SrfXGgrs780wX6uqc0/TY+pgd5iaAnPCQ4tY0Nyml+oruyE2x/FrpUxEpITTJwqvAPGNM63Uv9pqIJAKvA35CQw5UH2GMiRQgrQU9HtzLllH6yN9o+OorsFpJPftsXPvsg2/bNvxlpcQfcggpp51GoLIS98pVOIYOwdFq/L1zRPsFiMXlwjliBACusWNJv+Jy/Nu2IXFxWNPS2v4HDD+3Z2dDdvZeXr1Sqgt0S55RSik1cMWyWMonNGX3GYSSmEdE3g3/ea4xZhd3q++aiMQRSpIjgGmtZrirJNR71Frrb+EqgYIO2lU0a5canl3IdNCuhfPOO4/Zs0ND06+//nr+/ve/t39BA4SvuJiq2f+heu4c/DuKsQ3KCU20EAjS+N134PcTaGiIrN9izchg8F//Qvwhh0Q9ni0zk8SpmXsdV9P9M0qptjrqbejBXqeY55kY6Oqc05TL0oDtHbRryWqnrrqShISEPQhdKaV6l+7ITTErlowxO4B/Av8UkSRC06SeATwOxInIfEIJ7XVjzLb2jxSdiNiBVwitZ3FC67WTCI3XjjZt6wRgc/h+paZ2Z4lIfKsx5BMIrQC/tlk7JzCSlmPIJ4Qf294wA/jDkwq8+OKLnH/++btxZf2bv6yMTRddjK+oKLLNt2kzvk2b27R1jBxJ/KGHkHXdddiysrozTKVUHxDrPBMjXZ1zmu5N2oeWxVKHuSnz5F/oPUtKKbUbuuU3ZXih2FnArHCRcxyhhHY78KiIfAO8aoz5w+4cL7xQ3wvAscAMY8zCKM3eAC4XkWnGmPnh/ZKB04AXm7V7k9DK7+cQmnq8aSrW84D3wrMSQWgqWh9wYbh9k4uAZdFmwoOdEzy4XK7dubR+zV9ZyaZLLsVXVIRj2DCyf30TcZMm4duyhdoP5mHPzydh6lQs8XFYXK7QZAtKKbUbujrPxFBX55wFQFm43Qet2lUAn0cLImGfo7VYUkqp3dDtvynD6z28E/65VkSmEBpGcTGhBfV2xz8IJZr7gfrwMZpsCQ/He4NQEnleRH7NzkVphdA6HE3xfCsis4G/hhPsBuBaQqugX9isXYmIPAzcKiK1wGJCye1YQlPBRtVULA30xf8CdfUUXXU13vXrcY4ezdBnno4soGrLyCBu//17OEKlVH/RRXmmU0Tkh+E/HhR+PFlESoFSY8z8rs45xhifiNxBaBHarYQKpmOBK4CfdXQPlyWG64YppVR/EcvZ8CYYY6J2/zcX7hVaCPxmDw5/cvjxtvBPc3cDdxljgiIyA/gz8BjgIlQ8HWOMKWq1z+WECq/7gFRgKTDdGLO4VbvbCM2g9wtgELAKONcYM6e9QJuG4Q3kYslfUcHWX96Ae9ky7EOGMOTJJyKFklJKdVaM80xnvdzq+WPhx/nA0eE/d2nOMcb8M7zY7I3Ar4HNwPXGmMfoQG+c4VAppXobidUUoSISJDQ04DNCSeITYEmUaVD7paZV0k888UTee+893n77baZPn97TYXU737ZtbDj3PAJlZVizMhn24os4hgzp6bCUUl2oq1ZJ78R5B3Se6Yym3FRwyxw2PnBqT4ejlFIx01W5KZbD8H4GHBn+OZPQYoE1IvI5oYT2CbDIGNOvV21tGoY3EMeGezZsYOsNvyJQVoZrwgTy/vxnLZSUUl1J88xeKK/zkJHo7OkwlFKqV4vlbHj/IHRvESIyCpgGHEUoqZ1CKKk1iMhCYL4x5r5YxdKTBuIwPGMMZY/+g7LHH4dgEPvgwQx96kmsqak9HZpSqh/RPLN3LnziS9755VE9HYZSSvVq3TUb3lpCU58+CSAi+YSS2rmEZqc7ltDY7X5nIE7wUPb445T94x9gtZLyw7PJ+ulPtVBSSsXUQM4znbVyR21Ph6CUUr1et44NE5GhhL71a/oZQ+jm1QXdGUd3Gig9SyYYpHHpUmrmzKXyhRfAYiH/T38k+ZRTejo0pdQAMhDzjFJKqdiJabEkImPYmbCOJLRqeQmhm3EfDz9+a4wJxjKOntTUs2S323s4ktjwbd9OxTPPUvfJJ3g37FxqKve++7RQUkrFnOYZpZRSsRTLqcO3A9nAOkKL4t0LfGqMWROrc/ZGTT1L/W2CB+P3U/3aa5T89RECZWUA2HJySDr+eJJPOZn4gw7axRGUUmrvaJ5RSikVa7H8BJ8DNACFwPLwz4YO9+iH+kOxFKipwbNqFeJyYdzu0HC7t9/BvXw5AM7x48n48Y9JPvEExOHo4WiVUgOI5hmllFIxFctP8IPYOTTiIuABwC0iXwKfhn8WGGMaYhhDj+tLxZIJBmn4ahHOsWOwpaUBUPH8C5T88Y8Yb9tF4G25uWT97GeknDYD6afDDJVSvZrmGaWUUjEVy6nDS4BXwj+ISAo7x5RPB34b3v4t8Ikx5texiqUn9dZiyQSDiMUSee4tKmL7bbfT8NVXOEaMIPvmX+PdsJGSBx8EwDluXKS9c9w4nCOGk/qjH2FNTOyR+JVSSvOMUkqpWJOeWuhcRKYAvyE0pSvGmH41XVzTKunDhw9nw4YNrFu3jhEjRvR0WNR+9BElDz2Ed/0G7IMHM+h3d2LPy2PjuecRrI0+jWzmz39G1nXXdXOkSqm+oqtWSe9q/T3PdEZTbiq4ZQ4AGx84tUfjUUqpWOmq3NQt3R0iYgEOZOdwialAGiCEZi36pDvi6Am9qWep5r332PrLGyAYmhTKt3kzW67/GdaUFIK1tSQccQTZv76Jylmz8KxdS6CqCtf4CWRedVUPR66UUh0byHmms/JT43o6BKWU6vViORveVHYmrcOAREJJawvwDjCf0LCIVbGKoTfoLcWSb/t2tt92OwSDpJ5zDtk3/5otP/s5DQsX4m9sxDFqJPmPPII1MYHcu+7q0ViVUmp3aJ7ZO96AzqaulFK7EstP8E3f4q0jNJ78E2C+MWZjDM/Z6/R0seQrLqb8iSepmzePYG0ticcey6B77kZEGPp//6L2gw8INjSSdMLxWBMTeiRGpZTqJM0ze8Hr12JJKaV2JZaf4C8g9I3ethieo9frqWKpfuFCih94EM/q1ZFhd7asLHLDhRKA2O0kn3xyt8allFJdSPPMXtBiSSmldi2Ws+HNitWx+5KeKJbcq1ZRdN1PMQ0NYLWSeNxxJB49jeQTTsCamtptcSilVCxpntk7OgxPKaV2LZb3LL0B/M4Y8+1utncB1wENxph/xiqu7tbdxVKwoYGia67FNDSQPGMGuffdi8Xl6pZzK6VUd9I8s3cCQUMgaLBaetUkhkop1atYdt2k0zYCC0XkSxH5uYgcKCItKgYRyRORM0XkSWA78GNgcQxj6nbdXSyVPvoP/Nu345wwntz779NCSSnVn21E88xe0aF4SinVsVgOw/u5iDwC/BK4C0gBjIjUAB4gFXAQmrnoq3C7540xgVjF1BO6q1jyV1ay/be3UffRRwAMuu02LE5nTM+plFI9SfPM3vP4A8Q5BvzyU0op1a6YfoI3xqwDfiYiNxKa1nUykAe4gHJgJaGbczfFMo6eZIxBRLBY9r4Tr2HRImrefx9Hfj4pZ5/NjnvuoWHhlySffDINX3+Ne/lyxG4n+9bfEH/QQV0QvVJK9W6aZ/aO9iwppVTHxBjT0zH0S02rpAPY7Xa8Xu9eHc+3dStrp58MPl+7bWx5uRQ89RSOYcP26lxKKbUnumqVdBV7Tbmp4JY5AHx68zEMSY/v0ZiUUioWuio3xfKeJRW2N0PwGr79lvU/+AFrjzsefD6sKSk7j5uby6C778Y+dCjWlBSGPP5PLZSUUkrttsfnr+vpEJRSqlfrmZVSB5i9KZYqX3wJz4rCyPNh/30F/H58JSXETZqExeEg9ZwfYjweLHFxXRGuUkqpAeLFLzfz+7Mm9nQYSinVa2mx1A06WyyZYJD6zz+PPE/5wQ9wDB4M0KIHSSwWRAslpZRSndDg9RPv0I8DSikVjf527AadLZbchYUEKiqwZWUx5P/+hXPMmC6OTCml1EBX1eDTYkkppdrRLfcsiUhCd5ynt+pssVT/WahXKfHoabjGjUO6YEY9pZTqjwZ6ntlT6aYm8udat78HI1FKqd6tuz59v9jRiyLi6KY4ekRni6XGxaF1E+MnT+nKcJRSqj8a0HlmTw2Wcg4YmgpArbv9WVZjqaLey3MLNvLgOysprnH3SAxKKbUr3VUsjRGRP7TeKCJWEbkKWNtNcfSIThdLK5YDEDdx364MRyml+qMBnWf2lEWEJJcdgFpP9/YsGWN45ZstHHjv+9zx+nIe/3gdk38/j3eW7eDP767iB499zndbqro1JqWUak93FUunA1eJyIVNG0TkAqAQmElo4cB+a8OGDXu8j3fLFgKlZViSk7EPHRqDqJRSql8Z0HlmT4kICQ4rAA2eQLee+7UlW7np5aVttl/z/Dc8+tFaFm+u4uZXvuvWmJRSqj3dUiwZY9YA5wGPi8ivROQ74HnAA5xjjDmgO+LoSb7t29lyww1sOO88iq6/Hn9pKQCBunqMv+23erXvvgdAwmGHRRbVUkopFZ3mmT0jIsQ1FUve7utZqvf4ufP10KiJgwvS+PTmY9jwh1M4YlRGi3Yrd9Ry1xvLCQRNtMMopVS36bbpb4wx80TkFuAfwCrgfOA/xpgB8Ztwx733Uffhh5HnZdk5ZFx9FetnnIZr/HgKnvt3i/ZVL78MQMoZp3drnEop1VcN9DyzJywiJIRnwHvmi42cc/CQmJ3LGMP/fbqel74qYltVIx5/kElDUnn5mp1fBj52wUHM/X4743KTWFtcx83//Y5nvtjIp2tKGZOTxNTRmVxw6NB2vzwsqmjAGwgyMiuxxXaPP0CDJ0Bagt6yppTqnG4plkTkXeBbYCnwPpAGvDaQEphv27YWz/2VFZT/6/8I1tXRsGgRnrVrcY4aBYBnwwa8GzdiSUkh8aijeiJcpZTqUzTP7DmPPzT8bvm2ml207LxVO2o56a+ftNiW5LRxzxn7tCh8UuLtXDA5NOT8wKFprCmp5f8+3cC60nrWldbz9rIdfLamjD+fsz8JzpYfXT5fW8blzyzC6w9yzNgspozIYHNFA1UNPt4vLMbrD7Lf4BTuOn0fDhyaFrNrVUr1T93Vs+QEfgKkNNv2jYh8Sii5LTHGfNVNsfQIa1ISALbcXPzbt1P79jstXq95622yfv4zAKr/+18AEo88Eunk5BBKKTXADPg8sycsFmFLZWPkudcfxGHrupH5pbUernx2EUu3VLfYfv0xozh/8lDyUzteSP22UycwbUw2//p0PSU1blbuqOXtZTuodfv5v0sO5tVvt1LZ4GXxpkrmrSyJ7PfRqlI+WlXa5njfbanm8qcX8fuzJnLChJwuvValVP8m3fmlm4gMAw4AJjV7HAwYY4y12wLpBiLS4o1de+JJeDdtYtgrr7Dxhz9s096amcmIN9/AuN2sPf4ECAQY/PhjJB1zTLfFrJRSndHUQ2CM6fEbLAdSnumMptx07p0z8WTvw5KiKgCW3HkCqfGdG6rm9gX407ur2G9wCmdMygfggbdX8s/56yJtTp2Yy6MXHNDpe3BnL9rMLf/9vt3Xfzx1OJccVsBr325jR42bNcW1+AJBfjJtJGNyErns6UWR4jAt3s6UERlkJjq5+qgRDEmP71RMSqneratyU7cWS1EDEMkAJhlj5vVoIF2sdbFUeMCBmIYGxny9iNr3P2D7rbcCkHH11VS/+mpkwgdLfDzBhgYSjjiCoU8+0f2BK6XUHupNxVI0/TXPNCciQ4C/ACcAAnwA/NIYs7lVOwNw3u/+xR9/diFH/ekjAD675RgGp+150RAMGsbd+Q5efxAAu1WYNiabDwqLARiU7OJP5+zHkaOzOn1tTb5cX87FT36FNxA61775yeybl8LVR41gRKt7lVpz+wI8v3AT//m6iNXFdZHtQ9LjmHX1Ybvs6VJK9T39pljqr1oXSyvGjkPi4xn7zdeICNVz5uJZtYrMa6+h7uOP2fqrGyNtrampDHv5PziGxO6GW6WU6iq9vVjq70QkntC9Wh7gdsAA9wHxwH7GmPpmbQ3Aj+76P1763ZUc//B81pbUkZnoYNbVhzEqu+OiY9nWamoafRw+KhOAB99ZyeMfr4va9uixWTxz+aF7f4HNbCqv551lOzh1v9xOFXfGGJZtrWHOd9uYtaiI6sbQgryXHzGMcw8ewrhBSToDrVL9RFflJh202w2OnjIFAHt2duQvLmXGqWTf+Css8fEkn3IKQ2b+M9I+/cdXaKGklFJqd10FjADONMa8Zox5ndC6UwWE7uNqQwjloqbJEsrqvJz6t087PInHH+CiJ7/kgie+ZG1JLQDPfL4RgLwUFz86ZGfeuvv0fXjy0kP25pqiKshI4CfTRnaqUILQh6eJg1O49ZTxfHzT0UwZkQ7A059v5ORHPuWYP3/M/32ynlU7avEHgnj8AdYU11JU0YAxJlJcKaUGDp09oBv85LTT4d//xjZoULttEqdNY8Tbb1H7/gekX3RRN0anlFKqjzsdWGiMWdu0wRizQUQ+B84AHm69g8USLpYcO2/j8viDBIMm8lpra4rrqGoIFQvXvbCYoenxNPoCJDptfPzrY3DYLDxw9n4dHqM3SUsI9aYt21rNC19u5q3vt7OxvIH73yrk/rcKAXBYLZFhf01O2z+Pnxw1gn3zU2j0BlhXWseYnCSdNEKpfkqH4cVI82F4j+UP5ujERByjRjJyzpyeDEsppbqcDsPrWSKyA3jdGPOTVtsfI7Qgb1azbQZCQ8NfqKwkbsRBWNPyMAhBEfz1VVxzysEQ5W9yXUkdHxSWtNk+PDOeE/dp9WXg3n602NvPJp3Y3xjD5ooGlm2rYXvVzpkCreHCr/UCuRaBpk2JThuDkp2kxjvITnLQ6A1Q6/GT4LCRlxpHdaMXb8CQ7LKRFu+go5F++rlMqd33yF8fafe1B0pDv6/2Njdpz1I3aPobSplxWo/GoZRSql9KByqjbK8gtN5UVBempUHl+tBP852e+i5q+zTgnGgvrIWKhbsbau+WBBzWBcdxsfON94Sfu8LPo/1FKaU655L09HZfayqW9pYWS93AGq6WMq+JOnRcKaWU6lYNw0cy/IIfMW9lMZ+uLsViDILBYgw3HDeKOIcVY0yLyQ7mfred77buXDfJbhHOOXgIBRnt3D+01xMl7OX+e3v+DvYPBIMYE+p18gSCLC2qosHjp94bYEtFA0nxDjISHGyramRrlZv0BDs2i4WSWk+bY9mtQnaSM3T/mAG7zYLNaiElzk6jN0BagoORWQlUN/qo9wYYkZlAkks/vim1S5dd1iWH0f9t3cCCkKjrJSmllIqNSqL3ILXX48RBb4eGhFd+so43AisBGJ+bTOH2Gs6ZPoUpIzLa7PPuEwv5PL6cZy4/hCNGZWK36j06TfLb2W6MobjGQ06yExGhuMbN059vZG1JHVurGimtdVNW542+c5DQpzQPsGXnZksdDMtIoN7rJy3ewU0njuXwURnE2a24fUHimt2H5gsE2VhWT0aik1q3j6CBjEQHyS57F125ak8gaNhe3YjbF6DW7Sc9wUGSy06yy4Ytyv8dfyAYKr79wdCEIoTumctIDK1/tqm8gYp6LylxdkZkJWCA9aX12CxCTrILg6HeE8BuFXJT4iLDR3ta8y9dAkHTvXFpsdR3WABLnK7hoJRSKiaWA/tE2T4BWNHRjsMyEiJ/HpIWR+H2Girqo3943xpe1DU/NU4Lpd0kIgxKcUWe5yS7+M3J41q02V7dyBtLtgEQ77CytcpNZqKDmkYfFovwQWEx5XVeBqfFEeewsWBdGevLQrPBF9d4uPLfX2MRsFstePxBpoxI55Bh6ZTXe/l4ZQnbqt1t4spMdJIcZ8PjC/KDA/P56TGjcNkH3prNgaChpNbNxrIGatw+PP4g9R4/GQkO4h02JuankBLffmHZdH9ZUzGwoayeJz9bz1cbKthY1tBmcpAmKXF2MhMdZCQ6SXTaKK31sHxbdeRWv729bc1hszA8I4HhmQkMz0qI9FK6/QECAUNynB271UKj18/WKjebK+opqmik3uPH5bCS7GkF4QAAMrZJREFU4LCSHGfHZbNSVNlAeb0XqwhOuwWbRUhPcJCV5MQigt1qwSKCPxhkSFo8LruFVcV1lNS4Ka/3UlHvxRiDzWrB6w+SmegkNd6Oy26hzu3HAB5faOZJq8VCSpyN5Dh7pLAM/dlGosOGP2ho9AVw2Szkp8WRlxpHRoKTQNDg8QdIcNqwiFDd6KOqoZ0vITpBi6VuYBGwJOgK4UoppWLiDeDPIjLCGLMeQESGAUcAv+lox+PG53Dl1OGMyk5k6ZYqgKjFUnWDj43lDThtFoakaz7rSrkpcfxk2sh2X//l8WNaPK9u9FFS48ZltzL3++08t2ATW6sa8YQXBl64voKF6ysi7ZtmPEyOs2O1COV1XsrqPJTVhYYE/v3Dtcz9fjvXHDWSQSkuklw2NpbXs2BdOUuLqqlq9DI6O4kfHjSYiYNTyE+N69LCyhcIsqPaTdAYgiY0+DIn2cXWqgbWltSzpriWDeX1ZCQ4GDcomX3yk9le7aa6wcfwzATy0+IwBlbtqKWk1o0vEGT5tho8viABY3DYLIzJTmRLZSM7atzYLMKq4jrWldZFFlPuyKjsRPYbnEJGggOHzUIgCKuLa1lbUseOGnfkGM0n/GiSnRQqhhJdNkpqPDT6AtS4fVQ3hn7WlUaWQEOEyNDOIemhLyTc/gAlNaG/p4KMeLKSnJTXedlQVk/QGEZkJiICW6sacdqsJDitNHgDlNZ6WFVcy6ri2j3++6j1+Clt57VGXwAILTXQfHHn3dH0PjX/txdNR6/1FC2WuoEFwRKvyUUppVRM/B9wPfC6iDQtSnsvUATM7GhHq0W4fcYEADZXNADRi6XV4XWVxg5KGpA9EL1JSpydlLhQb8c100ZyzbSReP1B3P4AHl+QV7/dQp0nQJLTRpLLxlkH5uO07fw7CwYNmyoa8AeClNZ6uPON5awtqePm/0af2ANCPVifrS0DwGYRxucmY7UIg9PimDIigzE5SaQn2BmanoDDZiEYrhpqPX4+WV3K60u2YREYlOLCbrXgsFlw2ays3FHDZ2vLqHX7Y/iOdSwz0cmQ9FAPhdNuQYBGb4DKBi/LttWwtqSOtSW7LgyCJlSYnjIxl/MnD2VsTlJkHbPmAkFDVYOX0joPFXVe6r0BEpxWJg1JxRHusW0+TK/pvWw+HX/r+wlbq/P42VBaz/qyOtaX1od6Y+xWXHYLVhFq3D58AYPLbiUvxcXQ9HiGpMeTHGfH7QtQ7/FTUe/F4w8yND2ezEQn/mAQX8DgDwQpq/NSUutGRPD5g/gCQUSEbVWN1Hn8jB2UxOC0ODITnaTFO7AIeANBHFYLpXUeat1+Gr0BEl02BHDZrThtFvxBQ02jjxq3jxq3P/zn0GOdx4/dIrgcVhq9AbZWNbKtqpGKei82iwWn3UKDJ0DAGFLD/0ee2s1/A7uixVI3sACiw/CUUkrFgDGmXkSOBf4CPEfoy/l5wC+NMbv99W9mohOI/s1u04fFUVmJex+w6nIOW6gAwQVXH9V+LxWEPnQPzwwNvxydk8Scn03luQWb+LaokrJaL8W1bkZnJzFpSApHjMokM9HJ/NWlzPluG1urGtla2cj34Yk+lhRVMee77ZFjWy1CTpKT0joPQdN2uvX25CQ7cdhCw7m8/iDFNW7yUuMYlZ3IqKxEhmbEU+v28/XGCjaU1TMoxUVqnION5fVsr3bjDwQZn5tMXmros9aIrAQGJbsQCfXErS2pY3BaPPmpcXgDQcbkJDJ2UDLxdmuHa4J5/AFWbKuhcHstNW4fXn+QoDGMzk5i7KBEspNdJLvsmHCvmEXosIhpeo8yEp1khP+/7Uq0+HZ1jkSnjYmDU5g4OGW3ztFcUyE+Iqv1KzsL7uxkFxNI3qPjNhWAuSlx5HYQVk6yq/0X99BTl3fNcbRY6gZWESzxCbtuqJRSSnWCMWYzcPbeHCMrKfThrTTKjG0rt9cAMCpHi6X+xmW3ctVRIzpsc9GUAi6aUgCEhmQu2liBxRJaqPiztWU0egMU17rZUtnY4h4ph83CuEFJTN93EAXpCeyocRMIBvH6g9R5QjP7TR6RTkFGy89IvWVhY6fNygFD0zhgaLsz8AOh4sXa8+GqGNFiqRsI6DA8pZRSvVp2uFiKNr315+vKAThgSMcfGlX/lxJv5/gJOQAcOy6nxf1Wbl+ATeUNZCQ6SHLZsFssnSp6ekOhpFQTLZa6gVVEZ8NTSinVq+WmhPJU06x3TcrrPKwtqcNqEQ4sSO2ByFRf4bJbGTsoqafDUKpL6dyf3cACWJL1l4dSSqneKz8tDofVwo4aN3WenTfcL98WGoJ3wJDUFhMFKKXUQKA9S93AAlhT9vwmO6WUUqq7WMM3/q8qruW7LVVsqWzktP3yeG7hJgD2yduzG7qVUp1TU1NDSUkJPp+vp0Pptex2O9nZ2SQnx/73khZL3cAigrUb/jKVUkqpvTEsM55VxbVc8H9fAvDil5tZUlQFwAQtlpSKuZqaGoqLi8nPzycuLm6XM98NRMYYGhsb2bp1K0DMCyYdhtcNLIAlUWcQUkop1bsNy2w5K1lToQRwxqT8bo5GqYGnpKSE/Px84uPjtVBqh4gQHx9Pfn4+JSUlMT+fFkvdwCqCVYslpZRSvdx++alRt5994GBdjFapbuDz+YjTScF2S1xcXLcMVdRiqRsIYEnQdZaUUkr1btPGhlaitAj8+qSxke0/njq8p0JSasDRHqXd013vk96z1A1sTgdit/d0GEoppVSHEp021v/+FJo+gxhjOHR4ht6vpJQasLRY6gbWeO1VUkop1Tc0XxD0+mNH92AkSinV8/rkMDwRGSwifxeRBSLSICJGRIZFaecSkT+JyHYRaQy3PypKO4uI3CoiG0XELSJLReTsds59lYisFBGPiKwSkWt2Fa9Nh+AppZRSSinV5/TJYgkYBZwLVAKfdtDuSeAq4E5gBrAdeFdEJrVqdy9wF/AocDKwEHhZRE5p3khErgJmAv8FpgMvA4+JyLUdBWuLj9+da1JKKaWUUkr1In11GN4nxpgcABG5EjixdQMR2R+4ALjCGPN0eNt8YDlwD3B6eFs2cBPwgDHmz+HdPxKRUcADwFvhdjbgfuA5Y8xtzdrlAfeKyBPGmKhTcth1JjyllFJKKaX6nD7Zs2SMCe5Gs9MBHzC72X5+YBZwkog4w5tPAhzA8632fx6YKCJNUwAdBmRFafcckAFMbS8QW4reGKuUUkoppQaW//73v4gIS5cubfPa0UcfzZQpU5g4cSJnnXVWm9c//vhjRIR33nmnO0JtV58slnbTPsAGY0xDq+3LCRVHo5q18wBro7QDmNCsHcCyXbRrY87ctxCRNj9KKdVXRPsdpr/LlFIq9jr6/dudP51xxhlnkJeXx8yZM1tsX7lyJfPnz+eaa67h2muvZc6cOWzbtq1Fm5kzZzJ8+HBOOumkTr93XaE/F0vphO5paq2i2etNj1XGGLMb7YhyzNbt2gjQ+tBKKaWUUkr1bzabjauuuooXXniB+vr6yPZ//etfpKamct5553HxxRcTFxfHk08+GXm9tLSU//3vf1x99dU9/qVcfy6Weo3zL7wIY0ybn2i2VjVy6VNfcd+cFQSDWmQppXqHaL/DOvpdppRSqmt09Pu3O3866+qrr6ahoYGXXnoJALfbzbPPPssll1xCXFwcSUlJXHTRRTzxxBMEg6E7bZ555hmMMVxxxRVd8h7ujf5cLFUCaVG2N/UAVTRrlypty9Zo7YhyzNbt2rDu5oK09R4/RzzwIfNXl/LEZxuY/XXRbu2nlFJKKaVUb5SXl8cZZ5zBP//5TwBefvllKioq+MlPfhJpc91117F582beeustjDH861//4qyzziI7O7unwo7oz8XScmC4iLSet3sC4GXnPUrLAScwMko7gBXN2sHOe5faa9eG1eHYZbCV9V72+d27LbZ9srp0l/sppZRSSinVm1133XV88803fPPNN8ycOZMjjzySCRN23u6/7777cuSRRzJz5kzmzZvH2rVrWxRTPak/F0tvAnbgnKYN4em/zwPeM8Z4wpvfITRr3oWt9r8IWGaM2RB+vgAoa6ddBfB5e4GsKG2gpNbdYbDn/9/CNtveXraD2179PtL16fYFePnrIkb99i2Ofehjims6PqZSSimllFI97dhjj2XcuHH86le/4vPPP+eaa65p0+a6667j7bff5q677mLMmDEce+yxPRBpW311nSVE5IfhPx4UfjxZREqBUmPMfGPMtyIyG/iriNiBDcC1wHCaFTzGmBIReRi4VURqgcWECqpjCa/FFG7nE5E7CC1CuxX4INzmCuBnxhhve7F+WVTLo08t4q1fHBn1dbcvwModtZHnH910NMf8+WMAXvhyM4PT4qn3+Hn0o50T9q0vrefZLzZy8/Rxu3yvlFJKKaWU6knXXnstv/jFL8jMzOTss89u8/rZZ5/NL3/5Sz7//HMeeuihHogwuj5bLAEvt3r+WPhxPnB0+M+XE1pI9j4gFVgKTDfGLG61721AHfALYBCwCjjXGDOneSNjzD9FxAA3Ar8GNgPXG2MeowMBsbFie027r5fWeiJ/fveXRzE8M4Fjx2Xz4coSAB58Z2XU/R77eB21bj+/OH40Hn+QOrefMTmJPT5riFJKKaWUUs2dc845/OIXv+Cyyy7D6XS2ed1ut3PGGWfw73//m0svvbQHIoyuzxZLxphdVgTGmEbgV+GfjtoFCBVU9+3GMWcCM3fVrokAAWvHb3NJuFjaf3AKYwclAfDUZYdQUuPm0N/Pa9P+xhPG8ND7qwF4buEmnlu4KfLa9H0G8fhFB7YpmGrdPtaU1OGwWshLjSPJZcNu3TkKs6rBy6xFRXy/tZp1JXVceeQIfnjQ4N29TKWUUkoppdo1Z84cRKTde5H8fj/vvvsuP/zhD8nIyOjm6NrXZ4ulvsIK+C1WAF5fspVjxmWT7LJTuL0Gh83CyKzESM9SVpKrxb7ZyS4+/82xHPHAh5FtK++djtNm4eyDBnN4s+1N3lm+g+G3vsWvThjDQQVpHDEqk282VXD24wtatMtPjePCKUO5cHIBFoHjH55PWd3OkYQ3vbyU2Ys2c8akfPLT4vD5g0wbm4XTZu2qt0YppZRSSvVzK1asYN26dfzud7/jzDPPZNSoUS1er6mpYdmyZbz44osUFRVx44039lCk0WmxFGMiQkBCPTi/mLWEq48aQXaSk/vmFgKw+r6TKa1rKpbadknmp8ZxweShvPjlZm6ePhaXPVSs5KXGcevJ4/jD26EhevEOK3mpcawtqQPg4XDP0w3Hj+H1pVvbHHdrVSN/fGcVL321mSFp8S0KpSaLNlayaOPONXhzU1xcOHkoJ+4ziGSXnTqPj+GZiVgtOuxPKaWUUkq1dd111/HFF19w+OGH8+ijj7Z5ffHixRxzzDFkZ2fzyCOPMGnSpO4PsgOiCwrGRvjeJlwiXHX2Lbwxcmq7bX927Cj+/uFafn7caH51wpjdPkcgaNhQVs/IrAS8gSBVDT4mRxm21+TKqcMZkZXIG0u3snB9y2WhLAJ3n74P5x4yBKfNygcrirny31/vMoaT9slh5sUHA1Dn8eOyWbBZe36SRWPMXt+79c2mCv69YBPbq9z4g0GOGJVJfmocKXF2vIEgWUlOJg/PwCK0OZfbF6C60UdOsqudoyvVd3n9QcrrPQSChkHJLuzhHufdGR6telZTbtLcr1TvVFhYyPjx43s6jD6jo/er6bPZ3uYm7VmKMQEClo6Lh79/GJrlbnBa3B4d22oRRmUnAuC0WclJtrLxgVPZUe2mqLKBc/65c+jd7KunMHlEaPznBZOH4vUHqXH7OOPRz9la1cidMyZw8WHDIu2Pn5DDxgdOBaDRG8AfDPLTF79ts/bTu8uLeeqzDeSlxvHzWd+S7LJz+MgMlm6pwmWzcv9Z+3LwsPRI+++3VLNyRw1ZSU78AcOBBWmkJ3S8DlVJjZvFmys5bGQmKXFtF/h1+wI8+dkGXli4iXG5yZTXeVi+rYaDh6Xx21PGs9/g1N16P9eW1PH3D9fw+dpywLTpbVu8uSrqfuNzk5m+zyCWFFViAKsIizdXUtng4+wDB3PPGfuQ4NT/anujefFb7/ET77B2WAwbY9ha1ciGsnpq3X5GZiUyOC0Ol91KZYOXtHhHl/aIBoKGRl8AIfT/0mYRrBZpE2MwaCir99DgCVBe76HOE2BsThIOmwWrRUhy2nD7AxRur2FtSR01jX62VTdSVNFIZYOXoenxpMbbsVmEjEQn6QkO4h1WjAGPP0havJ0klx23L0BJrYfSWg9fbihne5UbgyE7yYXLbsHjD+IPmMh7UF7vxeMPMDQ9nvQEB8aALxDE6w/iDT/WuH3UewLUNPoor9/5f8PRC74cUUoppWJFe5ZipOnbu0SLhQvP+S3vDJuyy31mXT2FKSO67oa2HdVuHni7kHMOHsIRozKjtqlx+1hfWs/+g1N2uydmc3kD6YkOZi8q4t457a7FG+G0hT6c5SQ7Ka7xtHl9Qm4yWUlO4uxWRmUnkp7gYFR2Ig3eAF9vrOCVxVuoavC1OF6C04YvECQvJQ63P8Cm8oZ2z3/k6EzOPXgIo3MS+XxtORX1Hr7bUk1prYcjR2dis1pYvq2Gz9aUEmz13+GYsVmcfdBgFm2oYOH6ChKcVhp9QeIdVlZur6HeG9jl9TtsFvbJS+a0/fLYf0gK60vrmTg4hXGDknH7Qh+MS2s9fL2pktXFtYzJSeKMSXkMz0wg3mGjxu3DKtKpgquszoNVhLRdFKSxUFnv5dO1ZaTF2ylITyAv1UXh9lqWbKmitMZNgzdAeqIDu8VCUWUD2UlOclPiKKpsYE1xHWtKamn0BQgGQ9dhkVARUuvxhwoRYFxuEkePySY9wUGt2483EGBDWT1fbaikrK7tvzWrRQgEDXarMCE3mSSXHbs19N76Awa7zUJ2khOLQEaik62VjcxfXUqt20dKXKgQsVmFBk+A0joPdmvoeBX13jb/dgCGpMdhFcEiEilg/NEa9jFN748QmqBm04MzAO1Z6gu0Z0mp3k17lvZMd/QsabEUI00JKdli4dxzb+f9gkN3uc+CW48lN2XPepd6kjGGl74q4revfg/AeQcP4ZT9cnluwSa+3FBOrdvfZh8RGJoej8tmpcHnp6iisUtiSXTauHDKULISnQxJj2f8oGSeXbCRJz/bsOudmzl6bBbnHDSE5DgbI7MSyUtt/+/DGEOdx89fP1jD6uJapo3JIjclDptVyE+Nw2Gz8OtXvmNpUVWbfUUgyWnD4w/i8QejHj/BYeXQ4el8trYMiwgHD0tjRGYix47LJmgMy7bWkJPspKLBi8NqYf8hqaTF23nt220s2xYqBpdvq8EicMzYbCaPSKfW7UdEKKlxU+v2U9ngpcbtY0RmIpNHpFPn9uMPGhxWC+Nzk7FZhQl5yWwub6DBGyA5zkai00a8w0aD18+OajdldV62VTVS1eClxu2nuMZN4fYaNnZQwO6NpoJnV1Li7IwdlESyy8aakjq2V7vx+oM4bBa87bzneyPeERqK5g8aAuGfaNITHCQ4raTHO7BYhI1l9UBoaFu9N4DDamF4ZgL75CWTEm9nULIr3KPkYFN5PXUeP76AoaLeQ3mdl0ZfqGC3WIR6j59atx+H1UJ2spOsRCcjsxPZf3AqIlBcE3oP7DYLDquFoDEEDaTF23HYLGwsa6DO48cioffZabPgsFlwWK0kOK0kx9lJctrISHRGeqUavH4SnKEeXy2Wej8tlpTq3bRY2jNaLPVhTQkp1WrlzPPu5KMhB7Vpc+8Z+3DH68sjz5uGvfU1NW4fFXVehmUmtNhujGHx5ipeX7KV1cW1HDosnTMOyGdkVmjoYCBoePaLjYiEPmg6bBZWbq9lVXEtm8ob2FzRwCkTczlj/zyOGJXJmpJaclPiqHH72FLZiFWETRX1lNR4uHDKULKT2t4ftHxbNZ+tKeOjVSVsLm9gdE4SealxHDAklaAxrC+rx+sPMjonkYMK0hibk9Tl61RV1HuZvaiIbzZVsqq4hgZPgIoGL03/9YZnJpCd5GTS0FT2y0/lvRU7+GpDBdur3Xt9brtVCBp2q7iIhYMK0rBahM3lDeyocZPksnHihEEMTovDahEq6r14A0EK0uPZVtXI9mo3I7ISGZ2dyOicRJJddiwipMTbsVoEnz9IarwdX8DQ6A2wuKiShevK8fhDvX2BoGF0ThKThqQyIjMBS7OhdsYYPP4gLruVklo3S4uqsVkEXyBIoy+ARQSPP0hZnQdjQr1Z8Q4rR4/NZmh6PFUNXhrCQ1KdNivZSU68gVDRlZ3kwmFrORzN6w+yuaIBi4QKKJfNSnayMzJJSzSBoIl6D1xv11UJScWeFktK9W5aLO0ZLZb6sKaElG61MuNHdzF/8AEtXv/DDyZy+MgMpv3pYwD+edFBTN93ULfH2Zt5/IF+O1X51qpG6j1+4uxWBqfFRf1wvGBdORvK6jlydGaosCut56uNFXy9sYLyOi+jshNx2q1kJTpp9Pn5ZlMl5XVe9s1P4eyDBjMo2cX43CQ8/iCvfbuVbzZVEuewkpPsoqbRx7hBSeQku7BbLSxcX8726tDQuHiHlYAxbCitRwRWF9fislsZmZUY6blo9AWIs1vJSXGRlegkO9lJWrydeIeNvFQXIzJD9whlJO6c4dHtC2CzSK+YAER1LS2W+g4tlpTq3bRY2jM6wUM/YIHI1OHNJTptLXpCclN01rTW+muhBKEp4XflsJEZHDZy5z1sBRkJHDMue4/PlQRceeQIrjyy/TYdHdfrD2IR9rrI6ahHRSmllFKqN9JiKcYsIgSk7YfERJeNOMfO7bmpWiyp3qn18DKllFJKqYFCPwXFWMAY/FGmDk8Kz2z20lVT+OdFB0a930YppVTfISK/EpE3RWS7iBgRuauDtmeKyLci4haRTSJyu0jbb9ZEZKqIfCEijSKyQ0QeFpE2XdMiso+IvCcidSJSLiJPi0h663ZKKaX2jBZLMVYeCETtWbKHhzQdNjKD6fvmdndYSimlut5VQDbwWkeNROQk4L/AIuBk4BHgduD3rdrtB7wPlAAzwm0uB55p1S4P+BiIA34I/BQ4HpgjEmUcuFJKqd2mw/C6QTBKz9KQ9PgeiEQppVQM7WOMCYqIDbimg3YPwP+3d+9RUlVn3se/v5aGxgsjCCReuWgiogaCmQyTSAA1YhzFC2iGiQhKVIKuF2+vRtGMM0mUvGZ0yIwm7agvjiiJGjKS8YIQxSRcRhNRBEUjEbwQEhLwxh155o9zCorqauiGrjrdXb/PWrWK3mefc55Tq6indu199ubXEXFx+vczkvYFbpB0e0SsTMv/CXgHOCciNgNI2gTcJ+l7EfFCWu//AtXA6RHxXlpvBfAscCYwrcmu0MyswvgXpzLIn+Dh19cOZtaVX6JTBouEmplZ6UTELhfwknQo0BeYUrDpfpIGz1fSetXAKcBDuYZS6iFgE3BGXtlQ4LFcQymN5ZfAWwX1zMzKau3atfTq1YvPf/7zbN68/aPsqaeeoqqqijvuuINjjz2Ws846q86+s2fPRhJPPvlkOUOuwz1LZbAlbxjeIR3do2RmVsGOTp8X5RdGxJuS1gG906LDgZoi9TZIWpqrl96/1AO4u8i5Fucdbwc7W8vL04qbNS/dv/lY1iEAu7ce6D777MPUqVPp378/N954IxMnTuSPf/wj559/PqeffjqXXnopkhg/fjwrVqzgoIMO2rZvbW0tPXr0YMiQIfUef/ny5fTuXfRjrsm4Z6kMPi4yDM/MzCpSbtKFNUW2rcnbvrN6q/O2dwTUgHpmZpn47Gc/y8SJE7n11luZNWsWo0aNYq+99uKee+4BYOTIkbRv337b3wCrVq1i2rRpXHzxxZkv1O6epTIots6SmZk1X5JOIplcYVeejYhBJQ6nybn3yKzl2J0enebm8ssvZ+bMmZx22mls2rSJmTNn0rlzZwD2228/zjvvPO6++24mTJhAVVUVkydPJiK48MILd3rcbt261ft51lSNLH+LL4Nis+GZmVmzNhc4qgGP8xt53FwPUMci2zqS9Abtql6nvHrvAdGAemZmmZHEyJEj2bhxI3369OHEE0/cYfu4ceN46623ePzxx4kI7rrrLs466yy6du2aUcTbuWepxD7Vth1bM+4+NDOzxomIdcCSEhx6cfp8NDAvVyipO7A38EpatBTYyPZ7nHL1aoCewMO5OCUtK6yX6k0yI56ZWaZWrlzJ+PHj6devHwsWLGDSpEmMHz9+2/ZjjjmGAQMGUFtbS01NDW+88Qa1tbUZRryde5ZK7Oiadmyp2ouvH9+D6Zd9MetwzMwsQxHxFvAS8LWCTecBm4En0nqbgCeBc9OpyHOGA+2A6Xll04G/k/RXuQJJxwPdCuqZmZVdRDBq1CjatWvHrFmzuPzyy7n22mtZuHDhDvXGjRvHE088wU033cSnP/1pTjjhhIwi3pEbSyUnPlYVXx/Qk88csn/WwZiZWYlI+pyk4cDZaVFvScPTR/5UqNcDAyXVShok6QqSBWcn5a2xBHATcBjwkKQTJY0BfgA8EhG/zat3K/AxMF3SKZK+CjwA/A/ws1Jcq5lZQ912223MmjWLKVOm0LFjRyZOnEjv3r0ZMWIE69ev31Zv2LBhdO7cmTlz5nDJJZdkGPGO3FgqsSol9yy12ctD8czMWrnLSIbH/ST9+5z074eBbQPvI+Jxkh6i/sAM4ArgZuCb+QeLiBeBk4EDgcfSOv8JjCqo9y4wmGT9pZ8CPwKeAf6uIWs/mZmVygsvvMD111/Pddddx8CBAwFo27YtU6dOZdmyZVx55ZXb6lZXV3PGGWdQU1PDqFGj6jtk2fmepRITydTh1Z4+3MysVYuI0cDoBtadBkxrQL1fAn/bgHovA19uyLnNzMqlX79+bNy4sU75kUceydq1a3co27JlCzNmzGD48OEccMAB5Qpxl9xYKjHhniUzMzMzs2I++OADFi1axIMPPsjbb7/NVVddlXVIO3BjqcSSxlKVG0tmZmZmZgVeeOEFBg8eTNeuXZk0aRJ9+/bNOqQduLFUcvIwPDMzMzOzIgYNGtSsF8r2N/gSy/UsVVW5Z8nMzMzMrCVxY6nEktnw/DKbmZmZmbU0/hZfYgK2urFkZmZmZtbi+Ft8iQUCeQiemZmZmVlL48ZSqbmhZGZmZmbWIrmxVGLhIXhmZmZmZi2Sv8mXWLhnyczMzMysRXJjqcSEG0tmZmZmZi2RG0ul5p4lMzMzM7MWyY2lEvMwPDMzMzOzlsmNpRJzY8nMzMzMKtHs2bORVPQxYsQIunTpwhVXXFFnv8mTJyOJJUuWZBD1jtpkHUDrV0XnfdtmHYSZmZmZtUCv9joq6xAAOGrJq43ep1+/fsybN2+HsqeffpoJEybQt29fDj30UO655x5uueUWampqttWpra1l4MCB9OrVa4/j3lPuWSo1iaeuGJh1FGZmZmZmZdWhQwf69++/7dGpUye+//3vM2zYMK655hrGjh3Le++9x8MPP7xtn4ULFzJ//nzGjh2bYeTbuWepxEJVdNrHPUtmZmZm1ni706PTHK1Zs4bTTz+dI444gvvvvx9J9OzZkyFDhlBbW8vIkSOBpFepS5cunH322RlHnHDPUon5niUzMzMzq2SbN29m+PDhbNiwgenTp9O+fftt28aNG8ecOXNYtGgRa9euZcqUKVxwwQW0bds8Ohvcs1Rie7erzjoEMzMzM7PMXHrppTz//PPMmTOHT37ykztsO/XUU+nevTu1tbX06dOHDz/8kIsvvjijSOtyY6nUqtyzZGZmZmaV6fbbb+fee+9l+vTpHHvssXW2V1VVcckllzBx4kR+9atfcdJJJ3H44YdnEGlxHoZXavJLbGZmZmaVZ+7cuVx99dWMHDmSTp06MX/+/G2PpUuXbqs3ZswYNmzYwEsvvdRsJnbIcc9SicmNJTMzMzOrQK+//jpbt25l8uTJTJ48eYdto0aN2lbWpUsXBg4cyMsvv8zQoUPLH+hO+Jt8ianKL7GZmZmZVZ7Ro0cTEUUf+Y2nNWvWMHfuXMaMGUObNs2rL6d5RdMaubFkZmZmZlbHqlWreO2115g0aRJbt25l3LhxWYdUh7/Jl5iH4ZmZmZmZ1fXYY48xYMAAnnvuOe677z4OPPDArEOqwz1LpebZ8MzMzMzM6hg9ejSjR4/OOoydcrdHifmeJTMzMzOzlsnf5EvNjSUzMzMza6CIyDqEFqFcr5O/yZeYe5bMzMzMrCGqq6tZv3591mG0COvXr6e6urrk5/E3+VLzBA9mZmZm1gBdu3bl3XffZd26de5hqkdEsG7dOt599126du1a8vN5gocSq9SeJSmZ2KIS/6P72n3tZtY8VfL/U197y7j2Dh06ALBixQo2b968x8dbvnw5AN26ddvjYzUn1dXVfOITn9j2epWSG0ulVrVX1hGYmZmZWQvRoUOHJmsE9O7dG2gZDcXmqjK7PcqoUnuWzMzMzMxaOn+TbyRJh0p6RNL7kj6QNE3SYfXu4J4lM7NWT9KnJU2StFDSR5L+IGm6pD711L9I0hJJGyW9JmlsPfXOlLRA0gZJyyXdIKlOYpF0vKS5ktZLWinpNkntm/o6zcwqjRtLjSBpb+BpoBcwChgJfAp4RtI+RffZyy+xmVkFOBkYDNwHnA6MA7oA8yUdl19R0kVALfBT4BTgYeBOSd8oqDckrfM88BVgEnADcHNBvc8AM4E/AaeldS4AJjflBZqZVSJ5DGPDSRoP3AYcGRFvpGU9gN8B10TEbXl1A+CiL53MXc/OyCLcTLWkmymbmq/d115p8q5dGYeSGUmdgb9E3htA0l8By4CfR8T5aVkbYAXwRESMyqt7LzAUODAiNqdlC4APImJgXr1vkTSGDouIlWnZz4BjgN55+55P0nA7LiJeyNs/oDLfp+D/p+BrrzS+9j3PTe72aJyhwPxcQwkgIt4E5gBnFNvB9yyZmbV+EfHnKPg2EhHvA68DB+cV/y1Jj9OUgkPcDxwAHA/JkG+gbz31qkl6mpBUTdI79VCuoZR6CNhEPbnJzMwaxrPhNc7RwKNFyhcD5xTb4a7ZT3KXKvbH1m2t+krka69MlXzttiNJnUh6fP5/XvHR6fOiguqL0+fewDP11YuINyWtS+sBHA7UFKm3QdLSvHqFsTX8QlqhSr5+X3tlquRr31Pu9micTsCaIuWrgY5ljsXMzJq3fwME/GteWaf0uTCXrC7YXl+9XFlD6q3O225mZrvBPUslUslj983MWjpJJ5FMmrArz0bEoCL7Xwf8AzAmf+h21pybzMwax42lxllD8R6k+nqczMysZZoLHNWAeusKC9JpwG8GboiIews253JFR+APeeW5HqDVReoV6tjAep3YPrzPzMx2gxtLjbOY7ePI8/UGXilzLGZmViIRsQ5Y0tj9JI0E7gT+JSK+W6RKrvFyNDs2lnL3Fr1SpN68vON3B/bOq7cU2EhBbpJUA/QkmZbczMx2k+9ZapzpQH9JPXMFaeL6YrrNzMwqlKSzSCZzuDsirq6n2jzgz8DXCsrPI+ktmgMQEW8BL9VTbzPwRFpvE/AkcG46LXnOcKAdzk1mZnvEjaXG+Q+SNTMelXSGpKEks+O9TbLAIJIOlfSIpPclfSBpmqTDsgu5fCQNl/TTdJX59emq9LdI2i/r2LIg6UlJIek7WcdSDpJOlfRLSR+l7/3fSDoh67hKTdIXJT0l6U+SPpT0gqQLs46rqUk6RNK/SZonaV363u5epF6NpFsl/SH9HJgn6UsZhFxW6TVOJWngTJbUP+/x2Vy9dHrvG4FRkr4jaZCkfwYuBL6VNn5yrgcGSqpN611BssbSpNwaS6mbgMOAhySdKGkM8APgkYj4bRqfc5NzE+Dc5NzUupQjN7mx1AgRsRY4gWTdjPuBB4A3gRMi4iNJewNPA72AUcBI4FPAM5L2ySbqsroa+JgkwZ8C/BD4BjBTUkW91ySNAPpkHUe5SLqE5IeD3wJnkUyl/zDJcKFWS9JngFkk695cBJwNPA/cI+kbWcZWAkcA55LcI/OrndS7h+S1+BZwGslQsxmS+pY6wIydQNKT04+kd2he3uNn+RUj4kckn43nAjOAEcBlEXFHQb3HSXqI+qf1riC5F+qbBfVeBE4GDgQeS+v8J0kewrnJuSnHucm5yblpN3JTRPjRRA9gPMkH8hF5ZT2ALcCVWcdXhuvvUqTsfCBIGpSZx1im16EjsJLkC1AA38k6phJfb3dgPXB51rFkcO03kyz8uW9B+TxgXtbxNfG1VuX9++vpe7t7QZ0+afkFeWVtgNeA6VlfQ6U+nJucm9Jrdm6qkIdzU9Pmpor6RaUMhgLzI2+a2Ih4k+RXxla/inpErCpS/Hz6fHCRba3V94BFETE160DK5EJgK/CjrAPJQFuS+0fWF5S/TyvruY+IrQ2oNpTk9fhJ3n5bgB8DQyS1K1F4tnPOTXU5N7V+zk3OTTl7lJta1QvWDBxN3VXZIZnVqOgq6hVgYPr8aqZRlImk40l+sbw061jK6HiSWcP+XtJSSVskvSGpEl6DyenzDyQdJGl/SRcBJwK3ZxdWZo4G3oxkJrl8i0mS9xHlD8lwbirGuan1c25ybsrZo9zkqcObVn3rLa2m+BoYrZqkg4F/BmZFxG+yjqfUJLUlmejj+xHxWtbxlNFB6eNWknsClpKMC/93SW0iYlKWwZVSRCySNIjknpRxafFmYGxE/DiruDK0s8/A3HYrP+emPM5NFcO5ybkpZ49ykxtLVhKS9iW5qXILcEHG4ZTLNUB7oNjaKq1ZFbAfMDoipqVlT6ez0Vwn6QeRDhBubSR9Cvgpya9TY0mGPJwB/EjShoh4IMv4zGxHzk0VxbnJualJuLHUtNZQ/yrqxVq0rZKk9sDPSRZEHBgR72QcUsmlU/BOILm5sF3B+Nd2kvYHPoyIj7OIr8T+QjKz1syC8qdIZp46EFhR7qDK5GaSX+tOi2RKaIBfSDoAmCRpagPHU7cWa4BuRcpzv9qtLrLNSs+5CecmnJtynJucm3IalJt8z1LTWkzBKuqp3mxfbb1Vk1QNPAJ8Djg1Il7OOKRy6QnUAFNI/lPmHpBMW7sGODab0Epu8S62t+YP5GOBl/KSUc5zwAFA1/KHlKnFQI90qup8vUlmZnqj7i5WBs5Nzk3OTXU5N1WOPcpNbiw1relAf0k9cwVpd+8XqYBV1NP1Kh4gWW/kzIiYn3FI5fQiMLjIA5IkNZjW+0Uxt4bMkILyU4B3YsfFM1ublUDf9J6AfH8DbKDyelJ+TrKuxzm5AkltgK8CT0XExqwCq3DOTc5Nzk3bOTc5NzUqN3kYXtP6D+Ay4FFJN5DM6f5t4G2SmytbuztI3ojfBdZK6p+37Z3WPOQhIt4DZheWSwJYHhF1trUijwPPALWSOgO/J3kfnEzrvyfg30kWOPy5pDtJxoUPJVnH5PaI2JRlcE1N0vD0n8elz1+RtApYFRHPRsQCST8B/jX9Jf9NksU/ewBfK3/ElnJucm7agXOTc1OWwTW1UucmtdJ72zKTjg++HfgyIOAXJAuiLcsyrnKQtIziY0IB/ikibipfNM2DpAC+GxE3ZB1LKUnqANwCDCe5N2IJMDEiHsw0sDKQ9BXgWpJhTjUkMy7dBdS2tvsA0vdzMc9GxKC0Tu5G8n8A9gdeAq5t5V/Kmj3nJuemfM5Nzk1ZxtbUSp2b3FgyMzMzMzMrwvcsmZmZmZmZFeHGkpmZmZmZWRFuLJmZmZmZmRXhxpKZmZmZmVkRbiyZmZmZmZkV4caSmZmZmZlZEW4smTUBSWdKurJI+SBJIWlQ+aMqTtJxktZJOrgExz5T0h8l7dvUxzYzs8Zxbtp2bOcm221eZ8msCUiaDJwUEYcUlHcAegOvRMQHWcRWSNLTJPFcVoJjC1gAPBoR/9jUxzczs4Zzbtp2bOcm223uWTIroYj4ICLmN6NkdBwwGPhhKY4fya8vdwGXSaopxTnMzGzPODeZNZwbS2Z7KP3lbhRwcDqsISQtS7fVGeogabakX0s6RdKLktZLWiDpbyS1kXSzpD9IWi1psqR9Cs63t6TvSXpT0qb0eYKkhvx//jqwMCIWFxxzmaQpkv5e0quS1kr6jaTjC+r9taSZkv6Sxv17SXcWnOMhYH/g7Ia8fmZm1vScm5ybrGm0yToAs1bg20AX4K+BoWnZxl3scwRwK/Bd4CPg/wHT00cbYDRwVFrnT8A1AJLaADNIhk98G3gZ6A/cCHQCrtrFeU8BHqtn2wDgyPRYG9Lj/7ek7hHxXjrWewbwXBrfh0B34Av5B4mIP0t6NT3Xg7uIx8zMSsO5KY9zk+0uN5bM9lBELJW0CtgUEfMbuNsBwBci4vcA6S9vjwI9IuKktM4MSV8CziFNSMAI4HhgYET8Mi37RTIcm3+U9L2I+FOxE0r6BEkCeamemDoAfSNiTVp/JfA8cCpJYukFdASuiYiFeftNLnKsBSSJ0szMMuDc5NxkTcPD8Myy8XouGaWWpM8zCuotAQ5Jb06F5Bex5cDcdFhEm/QXvaeAanaeBA5Kn1fVs31eLhmlXk6fD0uffwe8B9RKOk/SoTs516q885mZWcvg3GRWwI0ls2ysKfh7007K2wB7pX93BboBmwsez6XbD9jJOXM3tdY3DGN1/h8RkatXk/79PskNuCuAO4G3JC2SNKzIsdbnnc/MzFoG5yazAh6GZ9ay/AV4Ezi3nu3LdrEvJMMVdktEvAgMS38x/BxwHfCQpD4RsSivaqe885mZWevm3GStlhtLZk1jI9C+DOd5EhgGfBQRS3ZVucAykptje+5pEBGxBZgv6UaSG4ePAvITUg/gtT09j5mZ7RHnJucm20NuLJk1jVeATpK+AfwG2BARL+9in93xAHAByY2z/0JyQ2xb4HCSxHBmRKwrtmNEbJL0P8Dnd+fEkk4DLgb+i+QXxH2A/0My89C8vHpKz1E4bauZmZWXc9P2es5NtlvcWDJrGneT3MB6M8k6DstJZvdpUhGxWdIQ4JskyaEHsBZYSjLt6qad7A7wE+BWSftExNpGnv53JOO9bwQOJElEzwNfjoh38up9gWQ4xY8beXwzM2tazk3bOTfZblGyqLGZVQJJHYB3gHERMaVE5/ghcExEDCjF8c3MrHVxbrLmzI0lswojaQLwVaBPNPEHgKRPAr8HTslba8PMzGynnJusufIwPLPKcxvJdK8Hkky12pS6A1c5GZmZWSM5N1mz5J4lMzMzMzOzIrworZmZmZmZWRFuLJmZmZmZmRXhxpKZmZmZmVkRbiyZmZmZmZkV4caSmZmZmZlZEf8Ltf6+d0v8XA0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "figure(figsize=(12,10))\n", + "subplot(2,2,1)\n", + "set_fig_properties([gca()])\n", + "plot(t, kappa['kyi'],color='C7',alpha=0.5)\n", + "plot(t, kappa['kyi_ra'], linewidth=2)\n", + "xlim([0, 10])\n", + "gca().set_xticks(range(0,11,2))\n", + "ylim([-2000, 4000])\n", + "gca().set_yticks(range(-2000,4001,1000))\n", + "xlabel('time (ns)')\n", + "ylabel(r'$\\kappa_{in}$ W/m/K')\n", + "title('(a)')\n", + "\n", + "subplot(2,2,2)\n", + "set_fig_properties([gca()])\n", + "plot(t, kappa['kyo'],color='C7',alpha=0.5)\n", + "plot(t, kappa['kyo_ra'], linewidth=2, color='C3')\n", + "xlim([0, 10])\n", + "gca().set_xticks(range(0,11,2))\n", + "ylim([0, 4000])\n", + "gca().set_yticks(range(0,4001,1000))\n", + "xlabel('time (ns)')\n", + "ylabel(r'$\\kappa_{out}$ (W/m/K)')\n", + "title('(b)')\n", + "\n", + "subplot(2,2,3)\n", + "set_fig_properties([gca()])\n", + "plot(t, kappa['kyi_ra'], linewidth=2)\n", + "plot(t, kappa['kyo_ra'], linewidth=2, color='C3')\n", + "plot(t, kappa['kyi_ra']+kappa['kyo_ra'], linewidth=2, color='k')\n", + "xlim([0, 10])\n", + "gca().set_xticks(range(0,11,2))\n", + "ylim([0, 4000])\n", + "gca().set_yticks(range(0,4001,1000))\n", + "xlabel('time (ns)')\n", + "ylabel(r'$\\kappa$ (W/m/K)')\n", + "legend(['in', 'out', 'total'])\n", + "title('(c)')\n", + "\n", + "\n", + "subplot(2,2,4)\n", + "set_fig_properties([gca()])\n", + "plot(t, kappa['kyi_ra']+kappa['kyo_ra'],color='k', linewidth=2)\n", + "plot(t, kappa['kxi_ra']+kappa['kxo_ra'], color='C0', linewidth=2)\n", + "plot(t, kappa['kz_ra'], color='C3', linewidth=2)\n", + "xlim([0, 10])\n", + "gca().set_xticks(range(0,11,2))\n", + "ylim([0, 4000])\n", + "gca().set_yticks(range(-2000,4001,1000))\n", + "xlabel('time (ns)')\n", + "ylabel(r'$\\kappa$ (W/m/K)')\n", + "legend(['yy', 'xy', 'zy'])\n", + "title('(d)')\n", + "\n", + "tight_layout()\n", + "show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**(a)** In-plane thermal conductivity $\\kappa_{\\rm in}(t)$ as a function of production time. **(b)** Out-of-plane thermal conductivity $\\kappa_{\\rm out}(t)$ as a function of production time. **(c)** In-plane, out-of-plane, and total thermal conductivity as a function of production time. **(d)** Comparing $\\kappa_{yy}$, $\\kappa_{xy}$, and $\\kappa_{zy}$." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "- (a) The gray line represents the instant in-plane thermal conductivity $\\kappa_{\\rm in}(t)$ from the [kappa.out](https://gpumd.zheyongfan.org/index.php/The_kappa.out_output_file) file. The dashed line represents the cumulative time average:\n", + "$$\n", + "\\kappa^{\\rm ave}_{\\rm in}(t) = \\frac{1}{t} \\int_0^t \\kappa_{\\rm in}(t') dt'\n", + "$$\n", + "\n", + "* (b) Similar to (a), but for the out-of-plane thermal conductivity $\\kappa_{\\rm out}(t)$ and $\\kappa^{\\rm ave}_{\\rm out}(t)$.\n", + "\n", + "* (c) Cumulative time averaged in-plane, out-of-plane, and total thermal conductivity: $\\kappa^{\\rm ave}_{\\rm in}(t)$, $\\kappa^{\\rm ave}_{\\rm out}(t)$ and $\\kappa^{\\rm ave}_{\\rm total}(t) = \\kappa^{\\rm ave}_{\\rm in}(t) + \\kappa^{\\rm ave}_{\\rm out}(t)$. It is clear that the out-of-plane phonons have a much large average phonon relaxation time (scattering time) than the in-plane phonons, and the thermal conductivity in pristine graphene is dominated by out-of-plane (flexural) phonons. This is consistent with the results from the EMD simulation as discussed in the EMD tutorial.\n", + "\n", + "* (d) Some cumulative time averaged thermal conductivity components of the tensor: $\\kappa^{\\rm ave}_{yy}(t)$, $\\kappa^{\\rm ave}_{xy}(t)$ and $\\kappa^{\\rm ave}_{zy}(t)$. It is clear that the off-diagonal components of the thermal conductivity tensor are zero." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Plot Spectral Heat Current Results\n", + "The [shc.out](https://gpumd.org/gpumd/output_files/shc_out.html) output file is loaded and processed to create the following figure." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "dict_keys(['t', 'Ki', 'Ko', 'nu', 'jwi', 'jwo'])" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "shc = load_shc(num_corr_points=250, num_omega=1000)['run0']\n", + "shc.keys()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "dict_keys(['t', 'Ki', 'Ko', 'nu', 'jwi', 'jwo', 'kwi', 'kwo', 'kw', 'K'])" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "l = gnr.cell.lengths()\n", + "Lx, Lz = l[0], l[2]\n", + "V = Lx * Ly * Lz\n", + "T = 300\n", + "Fe = 1.0e-5\n", + "calc_spectral_kappa(shc, driving_force=Fe, temperature=T, volume=V)\n", + "shc['kw'] = shc['kwi'] + shc['kwo']\n", + "shc['K'] = shc['Ki'] + shc['Ko']\n", + "Gc = np.load('Gc.npy')\n", + "shc.keys()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "lambda_i = shc['kw']/Gc\n", + "length = np.logspace(1,6,100)\n", + "k_L = np.zeros_like(length)\n", + "for i, el in enumerate(length):\n", + " k_L[i] = np.trapz(shc['kw']/(1+lambda_i/el), shc['nu'])" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0sAAAK7CAYAAAAjoRTbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADybElEQVR4nOzdd3ib5dXH8e/xyt57D7IhBJIAgbBH2XvvvdoyS0sptC8UaOkubaFA2XvvvcNMQvYgIQnZezrL8T7vH48sy7Ls2Ik1bP0+16VL1rN0LMt6dJ77vs9t7o6IiIiIiIhUlJHsAERERERERFKRkiUREREREZEYlCyJiIiIiIjEoGRJREREREQkBiVLIiIiIiIiMShZEhERERERiUHJkoiIiIiISAxKlkRShJllmtn3ZvbaDu7f0szWm9mf6zo2ERFJL7HOSWb2uZnVeIJOM7vNzDabWcf4RCkSf0qWRFLHZcAg4I4d2dndNwH/AK4xs551GZiIiKSdnTonhfwLKAJur4uARJJByZJICjCzLOC3wMfuPmUnDvUfgv/rW+oiLhERST91dU4KXcR7GLjczLrXUXgiCaVkSSQ1HAd0A57ZmYO4+wbgXeBcM2teF4GJiEjaqZNzUsgzQBZwaR0cSyThlCyJpIaLgFKgwnglMxthZveZ2Uwz22RmW81skpn91MysimO9DLQATotvyCIi0kBdRIxzUhkza2JmfzOzpWaWb2ZTzez8WNu6+1RgXuiYIvWOkiWRJDOzDOAg4PtQl4VIlwMnAlOBB4AngVbAfQTjk2L5NnR/aN1HKyIiDdl2zkllXgJOBV4k6GbXBXjSzG6oYvtvgd5m1reu4xWJNyVLIsk3GGgNTIyx7g9AT3c/x91/5e5XAwOBDwgKOfSK3sHd5wMbgNHxC1lERBqo6s5JZfoAu7n7je7+c2APYDXwRzPrGmP7CaF7nZek3lGyJJJ8ZYNeV0WvcPfF7l4atawYeIjg//eQKo65KuK4IiIiNVXlOSnC3e6+peyBuy8H7gUaAWfG2L7sWDovSb2jZEkk+dqG7nOjV5hZIzP7pZlNCM1V4aE5Ll4JbdKlimOuB3LMrEXdhysiIg1YleekCF/GWPZV6H5YjHXrQ/ftdzAmkaTJSnYAIkJ+6L5xjHWvAscAs4FngTVAMdAbuJDgKl4sTQAHttVloCIi0uBVd04qszrGsrLWo1Yx1jUJ3eftaFAiyaJkSST51oTu20YuNLO9CBKl94FjI7vjmdmZBMlSVdoCuaEueyIiIjUV85wUpSOwJGpZp9D9xhjblx1rTYx1IilN3fBEkm8mQStQ/6jlu4Tu34ket0Q1g2TNrBlBv/DpdRahiIiki6rOSZEOiLFs/9D91BjrBobudV6SekfJkkiShSaSnQHsFbVqcei+QmJkZqOAK6o55AggExhTVzGKiEh6qOacFOnWyInPzawLcB1QQFBOPNo+QCEwtg5DFUkIJUsiqeENoK2ZDY9YNo6g3OpZZvaZmf3ZzF4GvgDeruZYh4fuX49LpCIi0tDFOidFWgDMCE1M+2+C1qSOwC3uvixyw1BSNQr4wN01jlbqnbRMlszs4LKqYlG33GTHJmnrYYLZ0s8rW+DuJcBxwBMEXRh+TjC3xUXAf6o51jnARHefFK9gRdKZmZ1mZq+Y2SIz22ZmP5jZH6OrT5pZGzN72MzWmtlWM/vYzIbGOF5jM/uLma0IHe9bMzswcb+RSCWVzklRTieoynomQU+HVcCF7h5rsvSTCQo8PBSHOEXiztw92TEknJkdDHwGXAt8F7Gq2N0nxNpHJN7M7CXgQKD3jl59M7ODgM+B89z9mToMT0RCzGwsQTfZN4ClwJ7A7QRVK/dz91IzM4Lyyr2BXxJMFH0LsCuwh7svjTjeM8Cxoe3mAz8Djgb2dfcpCfmlRKLUxTkpdJzPCKa52DV0EVCkXkn3ZOkId/84udGIBMxsAMHA2l+6+z938BifAG2AEZ6O/9wiCWBmHdx9TdSyCwhagQ9z90/N7ESCrrCHuvtnoW1aEXRfetrdrw0tGwZMAS5x98dCy7IIPgt+cPcTEvNbiVRUR+ekAwi6jp/s7q/XXXQiiZOW3fBEUpG7zyHoYpe/nU1jMrOWBCely5UoicRPdKIUUtZLoVvo/gRgeVmiFNpvI/AWcGLEficARcALEdsVA88DR5pZVXOpicTVzp6TQtoANylRkvos3edZesbM2hPMUv0B8Gt3Xxy5gZnpS6cknJn9dyd2vz3oASSSGO6uNxwcFLqfFbrflaCiWLSZwAVm1tzdt4S2W+Du0ZN1zgRygH6hn8N0XpJE28lzEmb217qKRWR76vqclK7J0kbgbwSllTcR9Df/DfCtme3p7rFmphYREanEzLoBvwc+jhj32hZYGGPz9aH7NsCW0HYbqtmuuolBRUQkztIyWXL3ycDkiEVjzOwLYDxB0YfbYuyToOhEqlbWYqT3o6QCtWCGyyK/ARQDFyfyudP5c0CfhQG9DnoNyuh1iN85SWOWQkJlludQ/SRsIiIiAJhZE4IxSH2BIyMr3BG0FrWJsVvbiPU12W59jHUiIpIgSpYqS9+UXEREasTMsoGXgZHAMe4+PWqTmQTjkaINARaHxiuVbdfHzJrG2K4QmFd3UYuISG0pWQoxs5EEE3+OT3YsIiKSuswsA3gGOBQ4yd3HxtjsTaBbaO6zsv1aAseH1pV5C8gmmOSzbLssgsk+P3T3grr/DUREpKbSdZ6lZwjmuphEUAlvT4LJAvOA4e6+NmJbh/TuAyqpQ32SJZVEvB/TavBSqDLYVcDdwNtRq5e6+9JQQvUV0IOKk9LuDgxz9yURx3seODK03QLgauA4ggluJ8V4/rQ/L+mzMKDXQa9BGb0O8TsnpWuydAtwNtALaAqsBN4D/s/dV0Rtm/YnJUkd+jCUVJLGydJCgvNHLHe4++2h7doCfwVOAhoD3wI3uvvUqOM1IUi8zgFaA1OBm9398yqeP+3PS/osDOh10GtQRq+DkqWk0UlJUok+DCWVpGuylGw6L+mzsIxeB70GZfQ6xO+clJalw0Xqq3T+EBQRKaPPwoBeB70GZfQ6xI8KPIiIiIiIiMSgZElERERERCQGJUsiIiIiIiIxKFkSERERERGJQcmSiIiIiIhIDEqWREREREREYlCyJCIiIiIiEoOSJRERERERkRiULImIiIiIiMSgZElERERERCQGJUsiIiIiIiIxKFkSERERERGJQcmSiIiIiIhIDEqWROoJd+fud77nsie+Y9G6rckOR0RERKTBy0p2ACJSMx9+v4r/fbkAgKIS54lL9k5yRCIiIiINm1qWROqJ1ycvC/88Zs6aJEYiIiIikh6ULInUE+7JjkBEREQkvShZEqkniksrZkv5RSVJikREREQkPShZEqknVm3Kr/B4xcb8KrYUERERkbqgZEmknliWu63i4w3bqthSREREROqCkiWReqC01Fm/tbDCsnVbC5IUjYiIiEh6ULIkUg/kF1cen7StUGOWREREROJJyZJIPZAXIzGKtUxERERE6o6SJZF6IFYr0jZVwxMRERGJKyVLIvVArMRI3fBERERE4kvJkkg9oG54IiIiIomnZEmkHsgrLK60bFtR5WUiIiIiUneULInUA/nqhiciIiKScEqWROoBdcMTERERSTwlSyL1QKzESNXwREREROJLyZJIPRCry51alkRERETiS8kSYGbvm5mb2V3JjkUkFpUOFxEREUm8tE+WzOxsYFiy4xCpjrrhiYiIiCReWidLZtYG+AdwY7JjEanOthilw2OVExcRERGRupPWyRLwJ2CGuz+X7EBEqqNqeCIiIiKJl5XsAJLFzPYHLqCGXfDMrMp17l5HUYnEpjFLkizVffaJiIg0dGnZsmRmOcCDwF/d/YdkxyOyPQXFpZWWFZc6paVK1EVERETiJV1bln4FNAHurukOaj2SZCqKkSwBFJaU0jgjM8HRSDqp7rNPrU4iItLQpV2yZGY9gVuBy4BGZtYoYnUjM2sNbHZ39XGSlFFYEjtZKigqpXG2kiURERGReEjHbnh9gcbA08CGiBvATaGfhyYnNJHYiqpKlkqU04uIiIjES9q1LAFTgENiLP+MIIF6BJiXyIBEtqewqm54VSwXkfRQUurMXL6Rr+atZdaKzRQUldCzbVOOG9aVPXq0TnZ4IiL1XtolS+6eC3wevTzU936Ru1daJ5JsSpZEJNr1z09mzJw1bMgrqrTu4a8WcNIeXbn75KE0a5R2p3oRkTqTjt3wROqdwpLYg+yrGsskIg3f61OWx0yUItdf9Nh4TWAtIrITdLkpxN1V1klSVmFx+dikJtmZ4XmXCoqULImku/bNG3FA//bs06ctzRpl8f7MlbwzbQUA3y3cwG2vzeBvZwxT9UIRkR2gZEmkHohsQWreOCucLKllSSR9/froQezfrz1DurQkI6M8ETp+WFf26D6fu9+dBcCrk5fxk107cdRuXZIVqohIvaVueCL1QFFxeTe85hHjDzRmSSR9XXXQLuzWrVWFRKnM5Qf25dTh3cOP73x7FtsKVT1TRKS2lCyJ1AMVWpaULIlIDfz2uMG0aZoNwLLcbTz69YIkRyQiUv8oWRKpB4qKYydLBUqWRKQKrZvmcNORA8OPH/lqgYo9iIjUkpIlkXqgIGrMUnh5sbrViEjVzhjZg26tmwCwfmshz41fkuSIRETqFyVLIinO3St0t1M3PBGpqezMDK46qG/48aNfLaCkNPZUBCIiUpmSJZEUVxzxxSYrw2icXf5vq2p4IrI9p4/sUWHs0hdz1iQ5IhGR+kPJkkiKi2w9ys7MICczI+Y6EZFYGmdnctqI8sp4z4xbnMRoRETqFyVLIikuMiHKycogJ6v831YFHkSkJs7eu2f4509nr2J57rYkRiMiUn8oWRJJcUUlFZOlRlmZ4cdqWRKRmujboTmj+7UDoNThxQkq9CAiUhNKlkRSXGTrUU5mxZYlJUsiiWdm3c3s32b2rZnlmZmbWe8Y23kVtz2itssws1vMbKGZ5ZvZVDM7ta7jPmuv8tal1yYvw12FHkREtkfJkkiKi25ZqpAsqcCDSDL0A84ANgBfbmfbx4F9o25zora5E7gd+A9wNDAWeMnMjqmziIEjhnSiRaia5qJ1eUxanFuXhxcRaZCULImkuMiEKDvTVOBBJPm+cPdO7n4M8NJ2tl3m7mOjbnllK82sI3ATcI+7/9XdP3P3K4HPgHvqMujG2ZkcM7RL+PGrk5bW5eFFRBokJUsiKa76Ag+alFYk0dy9Lq9SHAnkAE9HLX8aGGpmferwuThleLfwz29PW6HPEBGR7VCyJJLiKnTDy8ygkarhidQnV5tZQWhs06dmdkDU+l2BAmBe1PKZofshVR3YzKq8VWWv3m3p1roJABu3FfHZbM25JCL1x4587u0sJUsiKa4gep6liGSpqEQDtEVqwsxGmdntZva+mU0zs7mhAg2Pm9nFZtYmDk/7NPBT4HDgCqAd8KmZHRyxTVsg1ytXW1gfsb7OZGQYJ+9Z3rqkrngiItVTsiSS4ip1w6swZkldaESqY2YXmtl04BvgBqApMBcYR1CgYR/gYWBZKHGqs25v7n6+u7/g7l+6+9PA/sBy4K46On6Vt+qcHNEV77MfVrNha2FdhCMiEnc7+rm3M5QsiaS4yNajnMwMsjPVsiRSE2Y2jaBIwrvACKC1ux/o7qe6+3nufoy7DyZovbkc6Ah8b2ZnxiMed98MvAPsFbF4A9DaKvchKWtRWk8d26VDc4b1aA0EnyFvT19R108hItJgKFkSSXHRLUvZFbrhacySSDUeAfq4+83uPjlGVzcA3H2juz8Tqm43CsiNc1yRccwEGgG7RG1TNlbp+3gEcEpEV7xXJqornohIVZQsiaS4SvMsqXS4SI24+73unl/Lfaa6+wfxiMfMWgLHAeMjFr8PFAHnRm1+HjDD3RfEI5bjh3UlOzNozJqyJJe5qzbH42lEROo9JUsiKa6wUoGH8t46mpRWpGbM7FEzu6mKdX3N7NFaHu80MzuNoHsfwNGhZQeF1t9kZv8zs3PM7GAzuxD4GugM3Fp2HHdfDfwduMXMbgxt+1/gUOCWWv+iNdS2WQ5HDOkUfvzCd0vi9VQiIvVaVrIDEJHqFUS1LFUcs6RkSaSGLgLczPYCLnD3goh1HYALgUtqcbzoyWjvD92PAQ4GfgBODt1aAZsIkqVL3X181L63AluA6wiSqR+AM9z97VrEU2tnjOzBu9NXAvDq5GX86qhBFaptioiIkiWRlFdUXHGepQqlw4tV4EGkFm4DbgI+N7MT3H2HJxly92on9XD3t4C3anisEoIKeXVSJa+mDujfgS6tGrNiYz7rtxbyyaxVHD20SyJDEBFJebqEJJLiCtWyJFJXPgH2Jag0N97MqpzwNR1kZhinjegefvzCBHXFExGJpmRJJMUVRrcsRSRLBSrwIFIr7j6HYG6l+cA3ZnZkkkNKqtNH9Aj//MWcNazYuC2J0YiIpB4lSyIpLrL1KLvSPEtKlkRqy91zgSOBFwm6yl2R1ICSqGe7puy3SzsASh2eHrsoyRGJiKQWJUsiKS56nqUczbMkstPcvdjdrwBuJijukLYu2LdX+Odnxi1mW2FJEqMREUktSpZEUlzlMUsRpcPVDU+kpg4BZkUvdPd/AAdSu0p4DcoRQzrTo20TAHLzinhlkiapFREpo2RJJMVVHLNkUd3wVA1PpCbcfYy7x5x51d2/cfcnEh1TqsjMMC7er0/48SNfLaCkVJ8tIiKg0uEiKa9SN7yIZKmwpBR3x6zaKsYiacnMfleLzd3d74xbMCnujL168I+P57A5v5gFa7fyxpRlnDK8+/Z3FBFp4JQsiaS46AIPGRlGVoZRHLryW1zqFbrmiUjY7TGWORDrH8aBtE2WmjfK4tL9+/DPj+cC8M+P53L8sK4VWrJFRNKRPgVFUlz0mCWgwhcYjVsSqVJ21K0JQaK0T4x1OUmKMWVcsn8fWjfNBmDx+jxemqCxSyIiaZksmdmRZvapma00swIzW2pmL6b7BIWSmqLnWQIqtCSpIp5IbO5eEnkDikOrSqLXhdantZaNs7niwL7hx3/78Ac25hUlMSIRkeRLy2SJYPb2icDPgZ8AtwC7AmPNrFd1O4okWmFEEYfsUMtSTlZmxHolSyJSNy7arzddWzUGYN3WQv7+0Q9JjkhEJLnSMlly9+fc/Zfu/nKoQtJTwClAC+C0JIcnUkFhcfkF70ahlqWcCi1LqlolInWjaU4Wvz2uvJPFU2MXMWVJbvICEhFJsrRMlqqwLnRfXO1WIglWFKNlKTtLY5ZEJD6O2q0zB/RvD0Cpw40vTNFEtSKSttI6WTKzTDPLMbP+wIPASuC5Krat8iYST7HGLOVUmGtJyZLET33+7DOzvpE3oGxATrfodaH1QvA3/8PJQ2mWE3T3nb92K394t9J8viIiaSGtkyVgHFAAzAF2Bw5199XJDUmkouh5lkDV8ERqaB4wN+I2O7T89ajlZTcJ6dG2Kf93wq7hx0+NXcRH369KYkQiIsmR7vMsnQ+0JLjaeBPwkZnt7+4Lozd017gQSY7oeZYgqhueWpYkjqr77KsHrUuXEMyfJDvg9BHd+fj7VXwYSpJufHEKb/18f3q3b5bkyAIbtxWxcO1WsjMz2KVjMxpFFL4REakraZ0suXtZv4JxZvYesBD4NXBV0oISiVIQ0XLUKCtGgQe1LInE5O6PJzuG+szMuOfU3Zm5/CuW5W5jc34xVz09kdd+OpomOclLTCYt3sB9n87j8zlrKAlNzt00J5NTh3fn+sP70655o6TFJiINT7p3wwtz91yCLhv9khyKSAWFMVqWcrIixyzpwrlILGY238yGJTuO+qxtsxzuP3d4eJzk7JWbufX16UnpbVFcUsrv3/qeU//7DZ/MXh1OlADyCkt4auwijvznl6reJyJ1SslSiJl1AgYBPyY7FpFIkd3wYo1ZUoEHkSr1BtTMsJOG9WjN7RHjl16dtIynxy5KaAyb84u45IkJPPr1AiLztAGdmtO9TZPw47VbCjjv4XFMWrwhofGJSMOVlt3wzOw1YBIwDdgEDABuICgb/rckhiZSSWQBh+xQ97vIZKlA3fBEJM7O3rsHkxdv4KWJSwG4463v6d+pBaP6tov7c28pKOb8R8ZXaDE6eGAHfnfcEPp2aI6788ms1fzy5alsyCtiS0ExVzw5gXeuPYBOLRvHPT4RadjStWVpLHAS8ATwDnAjMAbYw93nJDEukUpitSxV7IanZEmkGuqnWgfMjDtP2o3durUEoLjUufrpiSxZnxfX591WWMKlj39XIVG69rD+PHbRXvTt0Dwc2+FDOvH8FfvStlkOAGu3FHLtc5MpLdWfX0R2Tlq2LLn7n4A/JTsOke1x9wpjkjTPkkit3WFma2uwnbv7hXGPph5rnJ3JQ+eP5IT/fM3aLQVsyCvi8icn8MrV+9GsUd1/nSgoLuGqpycybsH68LLfn7grF+zbO+b2Azu34N9n78n5j4yj1GHcgvW8NHEJZ+7Vs85jE5H0ka4tSyL1QsXiDuUTgWZHVMPTPEsi1doDOKCGN9mOrq2b8OD5IyoUfLjxxSl13oJTXFLK9c9PYcycNeFltxw9qMpEqczofu256qBdwo/veW82uXmFdRqbiKQXJUsiKSyyVSlynJIKPIjU2Enu3qcGt77JDrS+GNGrDXedvFv48QczV3HvJ3U3p29pqXPLq9N5b8bK8LLrDuvPlRFJUHWuObQ/3VoHRR825BXx8JcL6iw2EUk/SpZEUlhkq1HkOKWcCpPSqk++iCTWGSN7cMnoPuHH934yl7emLt/p47o7d70zK1xIAuCS0X24/vD+NT5Gk5xMfn30oPDjx79ZyIatal0SkR2jZEkkhRXFmGMJNGZJRJLvN8cM4oD+7cOPb3xxCp//sHqHj1dS6vzmtRk8+nV5S9DpI7pz27GDw12Qa+qYoV3o3zEoALGloJjHv1m4w3GJSHpLWrJkZr3N7Cwzu9HMbjWzK83sYDNTnU+RkAotS1V0w9OYJZFq1e5bttRYVmYG/zl7OH07NAOCbsNXPT2Rb39cV+tj5RUWc81zk3hu/OLwsqN368wfTxlKRkbt/4SZGcbPDy2fY/7Z8Yv1WSkiOyShyZKZtTazm8xsNsHkr88CfwXuBP4LfArkmtmLZnZwImMTSUWFMcqGR/+sliWRar1uZg+Z2dFmlpPsYBqaVk2zefrSfcJjhPKLSrnwsfG16pI3Z9VmTrrva96dXj5G6eQ9u/Gvs/ckK3PHv6YcM7QLHVsEcxKv2VzABzNXbmcPEZHKEpYsmdlNwHyCOY0+AM4A+gGtgBygM7AvcDPQGvjYzD42s4GJilEk1RSVVJ6QNvg5csySkiWRKnQF7gB6AK8Ba0IX4842s5bJDa3h6Nq6Cc9ctk84MSksLuWa5yZz+5szySssrnK/DVsL+eN7szjm3i+Zs2pLePnFo3vzt9OHVfic2xHZmRmcs0952fCnxi7aqeOJSHpK5DxL5wCXAG+6e6xvd6tDt3HAvWbWFbgJOAH4S8KiFEkhRcURcyxlRXbDs5jbiEg5d18JPAA8YGYtgGOBEwl6MjQxszEESdQb7r7z1QnSWO/2zXjl6v248LHxzF+zFQgKK7w9bTnn7N2TgwZ2oGvrJuQXlTJ7xSY+nb2at6YtJ7+o/OtAo6wM7jxpN84Y2aPO4jpn7578+9N5lJQ64xesZ+mGPLq3aVpnxxeRhi9hyZK7D6/l9ssJWqFE0lZhSUn45woFHipUwytBRKrn7puB54HnzSwbOIwgcboN+I+ZTQRec/c/JjHMeq1H26a8evV+3PjiVD6dHRR6WLulkH99Oo9/fTqv2n1H9mrDH04ZyoBOLeo0po4tG7N/v/bh+ZremLKcnx3Sbzt7iYiUUzU8kRRWWBx7nqUK1fDUsiRSK+5e5O7vu/vV7t4NGE0wZvb8JIdW77VumsMjF47kr6cPo2ur7ddrGtylJfeetQcvXrlvnSdKZU7es1v459cmL8Ndn5kiUnOJ7IYXZmb7AW3d/e3Q43bAf4DdCMYz3ezuulwuaS9yPFKjLE1KK1IbZtbW3ddvbzt3H2tmvd3914mIq6EzM04b0Z3jh3Xh01mr+fD7VcxasYkNeYVkZWTQrU0T9u7dlkMGdWR4z9a1LgteWz/ZtRNNczLJKyxh3uotzFu9hf5xSsxEpOFJSrIE3AN8ArwdevwX4BjgY+BqYCNBhTyRtFZUHHuepeyIxKlAyZJIVT4ys0PcfVN1G5nZRcD/CLrpSR1plJXJ0UO7cPTQLkmNo2lOFgcP7BCutvfRrFVKlkSkxpLVDW8wMAEg1Hf8NOAGdz8VuJWgGIRI2otsNcqpshuekiWRKvQB3jez5lVtYGZXAI8AHyYsKkm4wwd3Cv/80ferkhiJiNQ3yUqWmgNlV/r2BppR3so0CegZayeRdBPZDS+7wjxLEdXw1LIkUpUjgSHAO2bWJHqlmV1LUC3vTeCkxIYmiXTIwI5khia3nbIkl9Wb85MckYjUF8lKlpYBw0I/Hw3McPfVocdtgLykRCWSYgqLtz/PUlGJBiuLxOLu3xF08d4TeNPMGpWtM7NfAv8EXgJOc/eipAQpCdGmWQ4je7UBwB0+m716O3uIiASSlSw9B/zBzF4mKA/+dMS64cDcpEQlkmJqUuChUN3wRKrk7t8AxwP7Aa+aWbaZ/R/wJ+AZ4GwVFEoPRwyJ7IqnZElEaiZZydLtBCeqRgTFHv4RsW4YwZU+kbRXVYGHivMsKVkSqY67jyHoZncoMBP4HcE4pQuqmCRdGqBDB3UM/zxu/jqK9dkpIjWQlGp4oat4d1ex7qTERiOSuiK72FU5z5JO+CIxmVnfiIc/AjcTdL17m+BCXZ/IstXuPj+R8Uli9WnfjC6tGrNiYz6bC4qZtmwjw3u2SXZYIpLiklU6HAAz60dQ4KEbwTimce7+YzJjEkklka1GOZpnSaS25gGxBvUdBxwbY3lmfMORZDIzRvdrz8sTlwLw9dy1SpZEZLuSNSltY+B+gtnSI09OJWb2BPAzdy9IRmwiqaSwJt3wNGZJpCoXJzsASS2j+7UrT5Z+XMs1h/VPckQikuqS1bL0V+Bc4P8IJgFcBXQCziboS54HXJuk2ERSRlGVBR4iS4erGp5IFeaGCjyIALDfLu3DP09alMu2whKa5KhBUUSqlqwCD2cBd7j7H9x9vrtvDd3fDfweTUorAlRdOjxyzJIKPIhU6UszW2FmD5nZ0WaWk+yAJLk6tWxM/47BHMWFJaV8t3B9kiMSkVSXrGSpETC+inXjAJ3QRKjYshTZDU+lw0VqpBtwB9ADeA1YY2YvmtnZZtYyuaFJsozuV966NH6BkiURqV6ykqWPgZ9Use4nwKcJjEUkZVVV4CHyZxV4EInN3Ve6+wPufjTQAbgSKAH+S5A4fWhmV5tZ16QGKgm1V++24Z/VsiQi25OsMUt/B54ys2YEcyqVjVk6g2C29fMiS76qnKukq8Li2KXDVQ1PpHbcfTPBGNnnzSwbOAw4EbgN+I+ZTQRec/c/JjFMSYCRvcsr4E1ZkkthcWmFC1AiIpGSlSyNCd1fDVwVsdyi1pfR6EtJSzUt8ODuRM4XIyJVc/ci4P3Q7WozG0Uwae35gJKlBq5Ty8b0aNuEJeu3UVBcyszlG9lTJcRFpArJSpYuIfbcFyISoarS4WZGTmZGuJteYUkpjbJ0TUFkR7j7WGAs8OtkxyKJsVevtixZvwyACQs3KFkSkSolLFkysxx3LwRw98cT9bwi9VlVBR6Cx0ZhSdl2TqOkTjEtUj+YWQ+Cgg+No9e5u8bLpokRvdvw6uRQsrRoPZfTdzt7iEi6SuTXq7Vm9j5BRaJ33H1TAp9bpF6qqsADQHZWBmXZUlFxaVBjUkRiCo2DfQbYu2xR6N5DPzvq8p02Ios8TFi4QV2ZRaRKiUyWriAYTPtfoImZjSFInN5w9+UJjEOk3qhqnqXgsYo8iNTCw0BP4HpgNlCY1Ggkqfp1aE6rJtls3FbEuq2FLFyXR5/2zZIdloikoIQlS+6+vSpErwOvu/v3iYpJJNVFJkE5Ud3wIh8XaK4lke3ZC7jI3V9JdiCSfBkZxohebfh09mogKCGuZElEYkl4rUx3L3L39939anfvBowGPiGoQjTDzH4wsz+b2b6Jjk0k1VTXDU9zLYnUylLUmiQRIkuIT1q0IYmRiEgqS/rEAu4+1t1vcffBwBDgUeAA4Mt4PaeZnWZmr5jZIjPbFkrQ/mhmLeL1nCI7oqiKeZaCxxXLh4tItf4A3Bya32+nmFl3M/u3mX1rZnlm5mbWO8Z2jc3sL2a2InSu+dbMDoyxXYaZ3WJmC80s38ymmtmpOxunVG94RAW8SYuVLIlIbImshncB8LK751W1jbvPJuhL/icz6xzHcG4CFgO/IbjauCdwO3CIme3n7rpMLymhqIYtS4XqhidSLXd/yswGAQvNbCwQ/e3Y3f3CGh6uH8Ek6hMJLuz9pIrtHgGOBX4JzAd+BnxgZvu6+5SI7e4kOC/dGjrmWcBLZnacu79bw5ikloZ1b01mhlFS6sxZtYWN24po1SQ72WGJSIpJZIGHxwnGJ70KPOHun1W3sbuvjGMsx7v7mojHY8xsPfAEcDCg8rGSEiLHIkWPWYpsaSpUNzyRapnZRcAtQAkwnMpd8mrTPPuFu3cKHfcyYiRLZjYMOAe4xN0fCy0bA8wEfg+cEFrWkSBRusfd/xra/TMz6wfcAyhZipMmOZkM6dKS6cs2AjBlSS4HDeiQ5KhEJNUkshveEQTV704BPg51gbvLzAYkMAYAohKlMt+F7rslMhaR6lQ/z5LGLInUwh0E56AO7t7N3ftE3Wo80U4Nex+cABQBL0TsVww8DxxpZmXF/o8EcoCno/Z/GhhqZn1qGpfU3vCercM/a9ySiMSSsGTJ3T8JdXHoDFwE/EAwW/qsUD/uq8ysdaLiieGg0P2sWCvNrMqbSLxUW+BByZIkQAP67GsH3O/uuQl6vl2BBTG6ns8kSI76RWxXAMyLsR0EY3ljakB/m6QZ3kvjlkTqk2R87iWjGl6euz/l7j8hmEX9FqAZcD+wwsxeMrPjEhmTmXUj6BbxsbtPSORzi1SnqJp5ljRmSaRWvgIGJ/D52lJ5XBTA+oj1Zfe57h7dDTB6O4mDyCIPUxbnUlqqYjkiUlFSq+G5+wp3/7O7707Qh/wJgm56rycqBjNrDrwBFAMXV7Wdu1d5E4mXyCp31VfDU7Ik8dGAPvuuAy43s3PNrF2oAl2FW7IDrK0G9LdJmu5tmtChRdAjcnNBMXNXb0lyRCJSnWR87qXEycHMDiU4kZ0NGPBjgp63CfAW0Bc40t2XJuJ5RWrC3St2w6u2wIO+HIlsxyxgKPAksJpgPFHkra7nYNoAtImxvKylaH3Edq2tch+S6O0kDsyMERGtSxM1bklEoiSyGl4FZjYYuAA4l6CowibgOYJKed8m4PmzgZeBkcAR7j493s8pUhuRrUpZGUZGRtXd8IrUDU9ke35P7Sre7ayZwMlm1jRq3NIQgsRsXsR2jYBdqDhuqWys0vfxDjTdDe/VmvdnBgV4Jy3ewDn79ExyRCKSShKaLJlZB4JSqucTzG1UCnxIUDb1DXcvSFAcGcAzwKHAce4+NhHPK1Ib1RV3gIotTSodLlJZaN68bwDc/fYEP/1bBBX4TifoYo6ZZQFnAh9GnO/eJ2jZOje0fZnzgBnuviBhEaepCpPTqmVJRKIkclLatwnmosgCZgC/Ap6J83xKVbmP4AR2N7DVzEZFrFuq7niSCioWd6icLKl0uMh2fWlmqwkSl9eAT9y9TrrbmdlpoR9HhO6PNrM1wBp3H+Puk83sBeCfoZ4MC4CrgT4EiREA7r7azP4O3GJmm4FJBAnVoYTmYpL42q1bK7IzjaISZ/7arWzYWkibZjnJDktEUkQiW5b2Jqh494S7T07g88ZydOj+1tAt0h3A7QmNRiSG6uZYil6mangiMXUDTgJOJEiWCszsg9DP77j7pp049ktRj+8P3Y8hmNwcgqJBdwN3Aa2BqcBR7j4pat9bgS0EY3c7E0ytcYa7v70T8UkNNc7OZNeurZiyJBeAyUs2cOigTskNSkRSRiKTpa6hCfmSzt17JzsGke0piEiAGsXqhpelbngi1Qn1XHgAeMDMWgDHEiRO/wWamNkYgsTpDXdfXstjb3dSD3ffBtwYulW3XQlBQnVXbWKQujO8Z5twsjRxkZIlESmXyElpKyRKZtbNzP5uZhPMbL6Z7RZafr2Z7ZOouERSVcWWpcrfy3IiS4cXqxqeSHXcfbO7P+/uZwMdCJKmH4HbgCVmNt7MbklqkJI0IyInp12Um7xARCTlJKV0uJntCkwnKPSwHOhFMKM5oZ+vS0ZcIqkkshperAIPGrMksmPcvcjd33f3q929GzAa+JTgnCRpaHiv1uGfpy7NpVifqSISkqx5lv5GMOdFH4JJaCMvm38DjIq1k0g6KdxOgYcKpcN1YhepxMyGbH8rcPex7v5rd6/R9tLwdGnVhC6tGgOQV1jC7JWbkxyRiKSKZCVL+wP3uPsWKs97sYpggKtIWiusRYGHAhV4EIllhpmtNrNXzew6M9szxuSvIgAMj+iKN3mxSoiLSCBZyVJ13+zaA9sSFYhIqopsWYrZDU8tSyLbcw1B97p9gH8AE4D1Zva2mf3KzEaZWWZSI5SUETnf0kTNtyQiIQmdlDbCeIKSqm/FWHcG8HViwxFJPZEtS7Gq4TVSy5JItdz9PoJ59TCzfsBBwIHAAcAxBD0b8sxsLDDG3VWNLo0N79k6/POkxblJi0NEUkuykqU7gY/N7EPgWYIT1uFmdh1wMsHJTCSt5ReVhH9ulFX54nejbCVLIjXl7vOAecAjEFRkJUiezgCOJ5gEVslSGtu1aytysjIoLC5l8fo81mwuoEOLRskOS0SSLCnd8Nx9DMFEgX2ARwkKPNxDcLXvJHcfl4y4RFJJhWQpu/K/auPszJjbikjVzKynmZ0H/B/wO+AEYCvwcVIDk6TLycpg926two8nadySiJC8MUu4+zvu3h8YQFDwYbC793X395IVk0gqKSgqby1qHKtlKaJrnpIlkdjMbICZXWZmT5rZAmAh8FegLcHktHsBrd39yCSGKSkissjDdwvWJzESEUkVyeqGFxbRNUJEIhQUlydAjbfTshSZWIlIwMxWAB0JJp/9mqAL+JfuPjepgUnKGtW3LQ99MR+Ar+atTXI0IpIKEtayZGan7MA+XcxMcy5JWsqPbFnKrtyyVCFZKlbLkkgMnQiqq84CZoZuC5IakaS0ffq0IzszqC4/e+Vm1mwuSHJEIpJsieyG928zm2JmV5lZ2+o2NLMDzOwhghan3RMTnkhqqVjgIVbLUmQ3PLUsicTQGbgIWAScR9C6lGtmn5jZ7WZ2mJk1TWaAklqaNcpiz4gS4l+rdUkk7SWyG15/4Cbg9wSJ0yxgKrAGKADaAH2BkUAr4AvgCHf/JoExiqSMyAp3sVqWIivk5atlSaQSd18NvBy6YWatKC8dfhTwm9DyycAX7v7LJIUqKeSAfu0ZHxqv9OXctZy0Z7ckRyQiyZSwliV3z3P33wPdCa7wTQBGAJcANxCUbs0E7gV2dfdDlChJOotsWYo9ZkkFHkRqw903uvtb7v4rdx9FkDi9S3CR7sbkRiepYnT/9uGfv563FndPYjQikmwJL/Dg7oXAC6GbiFQhv0KBhxhjliJbltQNT6RaZpYBDCdIkA4kqMLahmDqitUEvRlE2L1bK1o0zmJzfjErN+UzZ9UWBnZukeywRCRJkl4NT0Rii0yAYo9ZUoEHkeqY2f6UJ0f7As0JkqOlwPvAGILudz8kLUhJOVmZGRzYvwPvTF8BwAczVypZEkljSpZEUtT2xyxVLPDg7phZQmITqSfKWot+JBi39AUwxt0XJi0iqReO3K1zhWTp2sP6JzkiEUkWJUsiKapiNbzKyVJGhpGTmUFhSZBUFRSXxkyqRNLYOQQtR8uTHYjUL4cM7BD+fJ25fBNL1ufRo60KJ4qko0SWDheRWthegQeARhHLNTGtSEXu/rwSJdkRLRpnM7pfu/Djt6bpbSSSrpQsiaSoyG54sVqWQOOWRKpjZm+a2Z612L6xmd1oZlfFMy6pH44f1jX880sTlqoqnkiaSliytL2JaKO2PSuesYjUBwU1aVnK0sS0ItVYCIw1s3Fmdq2ZDTezCt3PzayrmZ1kZo8AK4BLgUlJiFVSzNG7daFFo+DtsmDt1vDcSyKSXhLZsvSRmbXc3kZmdhHwVPzDEUltkclPVWORIpdrYlqRitz9WmAIMB64HfgOyDez9Wa2wsy2AUuAV4FdgeuB3d19fHIillTSJCeT4/cob116etziJEYjIsmSyGSpD/C+mTWvagMzuwJ4BPggYVGJpKjtzbMULNfEtCLVcfcf3f0aoDNwKPAb4EngDeDvwEVAH3cf5e5PuLv+kSTsnL17hn9+Z9pyFq7dmsRoRCQZElkN70jgI+AdMzvK3bdFrjSza4F/EpzAzkhgXCIpqWA78yyBJqYVqanQhOhjQjeRGtmtWysOHNCBL+asodThvs/m8ZfThyU7LBFJoIS1LLn7d8AxwJ7Am2bWqGydmf2SIFF6CTjN3YsSFZdIqsorLA7/3KQG3fC2qWVJRKTOXXNov/DPr0xayoxlG5MYjYgkWkKr4bn7N8DxwH7Aq2aWbWb/B/wJeAY4W10gRMDd2VpY/q/QrFHsRuDmEcu3FhTH3EZERHbcXr3bcuCADgCUOtz6+gxKSlUZTyRdJLx0uLuPAU4i6Ds+E/gdwTilC9xd/YhECLrUlZ2Mc7IyyKmiG15kErUlX8mSiEg83HHCruRkBp/DU5fk8q9P5iY5IhFJlESWDu9bdgN+BG4G+gHvAPcAfaK2EUlbWyJaiVpU0aoE0KJxRLKkliURkbjo075Zhe54//p0Lt/MW5vEiEQkURLZsjQPmBtx+0do+XHAnKh1umQjaS2yS11VXfCCdeVjlpQsiYjEz08P6ce+fdsB4A7XPj+ZlRvzkxyViMRbIqvhXZzA5xKp17bUMFlq3ig7/LPGLImIxE9mhnHvWXtwzL++ZO2WQtZuKeTqZybywhX7VtlVWkTqv4QlS+7+RKKeS6S+q2k3vOYRLUublSyJVMnMRgFHAaOArkATYC3wA0E58dfdfUPyIpT6oGPLxvz77OGc98g4SkqdyYtzueud7/n9ibslOzQRiRNdChFJQZHFGiK72kVr3ljV8ESqY2YXmtl04BvgBqApQVfvccAGYB/gYWCZmT1uZn2SFqzUC/vu0o5fHzUo/PjJbxfx/oyVSYxIROIpLZMlM+tuZv82s2/NLM/M3Mx6JzsukTJbI+ZYat44u8rtmuWoGp5IVcxsGkEBoXeBEUBrdz/Q3U919/Pc/Rh3Hwy0BS4HOgLfm9mZyYta6oPLDujDsUO7hB/f9voMcvMKkxiRiMRLWiZLBFX4ziC4qvhlkmMRqWRzROLTvIYtSyrwIFLJI0Afd7/Z3Se7e8zJcdx9o7s/4+7HEHTTy01kkFL/mBl/OHkoHVs0AmDtlgL+/MEPSY5KROIhXZOlL9y9U+jE+FKygxGJFtmlrnm1Y5aULIlUxd3vdfdalStz96nu/kG8YpKGo1XTbO48qXys0gvfLWHe6s1JjEhE4iEtkyVNfiuprubV8CqPWdqUX0RRid7iIiLx9pMhnRjdLygnXlLq/Ol9tS6JNDRpmSyJpKJnxy1mwG3vcdVTE8nNKwovr7ZlKaIb3qb8Yh75agG73/4hpz/wLXmFamkSKWNm7c3sGDO72sx+Fvq5VbLjkvrNzLjl6MHhxx99v4q5q9S6JNKQKFmqITOr8iays1ZuzOf2t2ZSWFzK+zNX8tTYReF1HUJ94mNp2zSHjNBbcP3WQu58+3sApizJ5fnxS+Ias6SHBvTZtxp4C7gP+Hfo59Vm9pKZ9U9qZFKv7datFUcM6RR+/NAX85MYjYjUNSVLIing1clLKSyO3XWuS6smVe6XlZlBxxaNY657cYKSJZEItwNnAfsCRwAXAE8DRwITzGyPpEUm9d5VB/UN//z6lGWs3FiroXIiksKULNWQu1d5E9lZc1dtqXJdl1axk6EynatYP3/tVkpL9f6UndNQPvvc/ffu/pK7j3P3T0LV7y4F+gKzgb8nOUSpx0b0asvIXm0AKCpxnvx2YXIDEpE6o2RJJAUsWLu1ynUdW1bdDQ+qTqYKi0tZsUlXN0Wq4+5rgbsIJqcV2WGXHVDeuvTSxKUqtCPSQChZEkkBVSVL7Zvn0Cir6nmWoPpueouqScJE0pWZjTSzc83sIDM7ArgMWJHsuKR+O2xwx/AY0zWbC/h09uokRyQidSFtkyUzO83MTiOY1R3g6NCyg5IZl6SfDVsL2bitKOa6qrrYRerauuptFq7L2+G4RBqwwcDDwKfA60ARcG4yA5L6LzszgzNGdg8/fn784iRGIyJ1JW2TJYLJaF8Crgo9vj/0+I6kRSRpaVnutvDPvdo1pWlOeUvS0bt12e7+R+3WucI+w3u2Dv+8dIOSJZFo7v4U0Bo4DvgYGASsTWZM0jCcObJn+OfP56yp8PkuIvVT2iZL7m5V3A5OdmySXtZuKQj/3L1NE24+ahCNsjI4dvcuXHFg32r2LNunKQ+cN4JBnVtw/qhenDK8/Mrmui2FcYlZpL4xs4sjH7t7gbu/5+4nErQuPZyUwKRB6dmuKfv3aw+AO7z4naqSitR3Vc92KSIJsTYioWnfvBEX7teb80f1IiOj5vPYHDigAwcO6ADA+zNWhpev21pQ1S4i6eZBM/s58AfgdXcviVg3BbghKVFJg3PW3j34al7QUPnyxKVcd1j/Wn2ei0hqSduWJZFUEdmy1L55MDh4Z06s7ZvnRBxbLUsiIXsD+QTdrdeY2dtmdq+ZPQg8AKgJQOrEEUM60bppNhB0s/7mx3VJjkhEdoaSJZEkWxeRLLWLSHR2VFnCBRUTMZF05u5T3H00cDTwCUHydA1wObCV8vGrIjulUVYmJ+3RLfxYE4SL1G9KlkSSLLob3s6KTLg0ZkmkInf/wN1Pd/eOBEUe2rt7L3f/PLmRSUNyxsge4Z/fn7mSjXmxK56KSOpTsiSSZJGtPx3qIFlq3iiLnKzgX3tbUQl5hcU7fUyRhsjdN7n7+mTHIQ3PkK4t2a1bSyCYIPzNqcuSHJGI7CglSyJJFtmyVBfd8MyM9s0ixi1tVuuSpCcze9PM9qzF9o3N7EYzU5c82WmRrUsvTVyaxEhEZGeoGp5Ikm2KmJC2TdOdT5YAWjfNYfnGfABytxXSk6Z1clyRemYhMNbMpgDPAF8B09w93NxqZl0Jxi8dD5wCLAcurnQkkVo6YVhX7npnFoXFpUxbupFZKzYxuEvLZIeVkuau2swL3y3hq3lrWb+1kOaNs9ije2tOHdGd/XZph5mqCUryKFkSSbKNEclSy8bZdXLMVk3Kj7Npm7rhSXpy92vN7F7geuB2oBXgZrYJKCAYs5QDGDA+tN3TUWXFRXZI66Y5HLlrZ96auhyAlyYs5XfHD0lyVKklr7CYu9+ZxXPjF1Pq5ctXby5g/pqtvDp5GcN7tubOk3Zj166tkheopDV1wxNJouKSUrYUBMmMGbRoXDfXL1o2KT9OZDImkm7c/Ud3vwboDBwK/AZ4EngD+DtwEdDH3Ue5+xNKlKQunTGyfJLw1yYvpbC4NInRpJYl6/M48T9f88y4iolStEmLcznpvq958tuFuFezoUicqGVJJIk255e3+jRvlFVnExdWaFnKV7IkAmS7+xhgTLIDkfSx3y7t6da6Cctyt7Ehr4hPZq3i6KFdkh1W0s1bvYXzHh7Hyk354WUH9G/PJfv3YVDnFqzYmM/rk5fx3PjFFJU4RSXO796YyXcLN/CnU4fSNEdfXyVx1LIkkkSRiUxkgrOzIo+lliURAJ6tbqWZ1c2AwYrHPNjMPMYtN2q7Nmb2sJmtNbOtZvaxmQ2t63gk8TIzjFNHlLcuPTt+cRKjSQ1zVm3mzAe/DSdKOVkZ/Pm03Xnq0n04ZGBHurRqwvCebfj9ibvx/vUHhqsKArw1dTmn/fdblm7Iq9OYiktK1WolVVKyJJJEkYlMXSZLkWOfNilZEgEYYGZ/jF5oZplmdjkwL47PfS2wb8Tt8IjnN+At4CiCSXJPBbKBz8yse+VDSX1z+ojulNUn+HLuWuas2pzcgJJoee42LnhkPOu2BlVam+Zk8vhFe1WoHBhplw7Nefmq/Th7757hZd+v2MSJ//ma8Qt2rur/yo353PX294y+51P63foee975ETe9NJUl6+s2EZP6T8mSSBLFo7gDQKumalkSiXICcLmZnVu2wMzOAWYBDwLr4vjcs9x9bMRtQlRco4Hz3f05d38/tCwD+FUcY5IE6dG2KT8Z0in8+JEvFyQxmuTJzSvkwkfHh1uUmjfK4qlL92a/fu2r3a9xdiZ/PGUofzxlKNmZQda5bmsh5/xvLM+MW1TrONydFycs4Yh/jOHhrxawLHdbKL4iXp64lGP+9SVfz1tb6+NKw6VkSSSJIivVxa1lKV/V8ETcfS5wJvDf0FxK04CnCarine7uNZ6PqY6dACx398/KFrj7RoLWphOTFJPUscsP6Bv++bUpy1izuaCarRue/KISLn9yAnNXbwEgO9N48PwRjOjVtsbHOHvvnjx7+Sjah+YjLC51bn1tBr95bXqNJ19fuTGfSx7/jl+9PK3CmOFIm/OLueyJCUxfurHGsUnDpmRJJIni1Q1PY5ZEKnP3T4Cbgb8SdHU7G9jd3V+J81M/Y2YlZrbOzJ41s54R63YFZsTYZybQ08yaV3VQM6vyJqllRK82DOvRGoDC4lKeGlv7FpH6qqTUuf75KXy3cEN42V9PH8bo7bQoxbJX77a88fP92bVr+TimZ8ct5sh/fsGXc9dUG8Nz4xdzxD/G8NkP5dv1ateURy4cydy7j+b5K0bRuWVjALYVlfDz5yaFq9VK6kjG556SJZEkqtANr0ndVfeJPJbGLImAmX1gZvcAucBHwGbgdY/vqO6NwN+AywjKlt9JMF7pWzPrGNqmLbAhxr5lAzLaxDE+SRAz4/ID+oQfP/HNQjanSaXSP78/m/dnrgw/vvWYwZy4R7cdPl631k14+ar9OH5Y1/CyJeu3cf4j4znjgW95e9pycvOCMVEbtxXx1tTlnHTf19zy6vQKrUkX7deb9647gMMGdyI7M4NRfdvx9GX70KJRcP5ctC6Pf38yd4fjlIZDtRdFkigR1fCULIkA0Ai4kmBi2jITzexLYDIwxd3H1+UTuvvk0LHLjDGzLwgmwL0WuG0nj78zu0uCHbVrZ3q2bcri9Xls3FbE418v5JrD+ic7rLh6acISHvxifvjxJaP7cPmBfavZo2aa5GTyr7P24ID+7bnr7e/D3c3HL1zP+IXBdYaczAwKSyrPa9WrXVP+fOru7NO3XaV1/To25/9O2JWbXpoKwKNfL+DsvXvSu32znY5Z6kZ1n3vxal1Sy5JIEsWtGp664YlU4O4Hu3sboC9Bxbk7gfnAscADwLcJimMSMAfYK7RoA7Fbj9pGrJcGICszg2sjkqP/fTm/QX8+T1i4nltfK+9hevjgjtx67OA6O76ZccbIHnz8i4M4Y2R3sqLmKYxOlHKygtf//esOjJkolTl1eDeG92wNQFGJ87eP5tRZzFI/KVkSSaKK3fDiVeChSFegRULcfaG7v+bu/+fuJ7h7T6AD8JNEhxK6n0kwbinaEGCxu29JXEgSbyft0ZU+oVaKTfnFPPpVw6yMt2LjNq58amI4YRnUuQX/PGtPMuto4vVIHVs05s+nDWPMrw7husP6M7RbKxplBV9vszKM3bq15PrD+/PFLw/hxiMG0CQns9rjmRm/PW5I+PE705azcO3WOo9b6g91wxOpY+u2FLAsdxtDurQkK7P66xGb4pQsNc7OpFFWBgXFpRSVONuKSrY74/nWgmKKS7xC2XGRdODu64BPEvFcZjYSGAi8HFr0JnCxmR3k7mNC27QEjmc7E+lK/ZOVmcF1h/Xn+hemAPDoVwu4eHRvWjet8zmRk6a4pJRrn5scnkupXbMc/nfBSJo3iu9Xzm6tm3DDEQO44YgBlJY6BcWl5GRl7FCCtmfPNhzQvz1fzl1LqcNDX87nDydrnuh0pZYlkTo0ZUkuh/z1c074z9cc/vcxrN6cX+32m+LUDQ8qJl+RJcpjuffjuezx+w/Z6+6PeWXi0jqNQyRdmdkzZnaXmZ1iZoea2S+A94FlwL9Cm71J0AXwaTM7y8yODC0z4M9JCVzi6vhhXdmlQ9C6tLmgmEcaWOvS3z+aE658l2Fw/7nD6dG2aUJjyMgwmuRk7lRL1k8P7hf++eUJS1m9qfrzuTRcSpZE6khRSSnXPDcpPNB04bo8Ht7O5IORcyDV5aS0UPPy4fPXbOEfH8+hqMQpLCnl5lemMW+1ev6I1IEZBPMoPQZ8AFwPvArs4+5rAdy9FDiOoELf/cBrQAlwiLsvSULMEmeZGcZ1hw8IP37s64Xh6m313Tc/ruX+z38MP/7FTwZWOz4olY3q25Y9ysq9l5Ty5LfpU+5dKlKyJFJH3piynCXrt1VY9vz4xRTFqMZTJl4FHgBaNo4oH15Nidpnxy2u8Li41PlfRPUiEdkx7v5Hd9/d3Vu5e7a793D3K9x9RdR26939Endv6+5N3f0wd5+arLgl/o4d2oV+HYMptLY0kNalvMJifv3K9PDjA/q35+qDdkliRDvHzLjqoPLKfU+PW8S2wpIkRiTJomRJpA6UlDr3fzav0vJN+cXMWrEp5j7uHrd5liCqZSmv6mTpq3lrKy17bfKy7XYhFBGRHZOZYRUq4zWE1qW/fTiHxevzgOBi3d9OH0ZGHAo6JNIRQzrTo20TAHLzinh1srqppyMlSyJ14L0ZK5gfqpbTonEWBw/sEF43aVHsyr95hSWUlAYFsRpnZ9Aoq/oKPbVVYa6lKlqWthYUM2fVZgDMoH/oSmdhSSmPf72wTuMREZFyxw7tEv7M3VJQvN1u26ls6pJcHv26PP7bjhtCx5aNkxhR3cjMMC7er3wy4Ue+WkBpqarLphslSyI7qaiklHs/Lp/l+8J9e3PwgPJkafKS3Jj7xbMLHtRsrqVpSzdS9rk/oGMLbjyivB/9U98uqrb7noiI7Ljo1qUnvl3I1oLqi/GkInfnjrdmUjZDxQH923P6iO7JDaoOnbFXD1qEKvnNX7OVMXPWJDkiSTQlSyI76ZGvFjA3VBChaU4ml+zfh6HdW4XXz1kVu1hCvJOlmhR4KGtVAhjavRU/2bUzfSOqND2lAa0iInFzzNAu4XmXNucX8+qk+tfN693pK5m0OBeA7EzjzhN3w6x+d7+L1LxRFmft3SP8uCGML5PaUbIkUoUZyzby1w9+4KPvV1U5qeuS9Xn88+Py2b1vOHwAbZvl0Ld98/CyBWu3xGy2T4VkaUHERHu7dGhOZoZxVcSA3Ie+mM/6rVX3oy8sLmXy4g2sUklVEZFay8wwLty3V/jxY98srFfdvAqKS7jn/Vnhxxfu25veoeSvIblwv96UDb/6at7aKsciS8OkZEkkhq/mruWU+7/hP5/N4/InJ/CHd2dV2sbd+b83Z5JfFFS7G9ylJReP7g1Am2Y5tAlN7ppfVMqKGMlEheIOdVw2PPqYVc2zND8iWSq7unnSHt3oGZoTY+O2Iv7ywQ8x9124ditH/GMMJ9//DQf++TM++n5VXYUuIpI2Th3RPTxh6/w1W/libv3p5vXUt4vCVWBbN83mmkP7b2eP+ql7m6YcvVuX8ONH1bqUVpQsiUQpKinl1tenUxhR8vt/Xy5g0uKKhRo+nrWaT2evBoLiCHefvBtZmeX/Urt0KG9dmr+mcle8VBiztGBteVxl3e9ysjL43XFDwsuf/24x05durLBfaanz02cmsWhdUPmooLiU656frAp6IiK11KJxNqePLB/j8/z4+jG9Vn5RCQ+MKZ9m4rrD+tOqad2fy1LFpQeUF3p4Y8pyne/SiJIlkSjvz1gZTgIiPRRxUiguKeVP788OPz5rr54M79mmwvaRXRHKyqlG2lShbHh8u+FtipEsFZWUsmxDcEXQjHBrEsBhgztySKiinzv87s0ZFbqGfDp7Nd9HdUPIKyzhgc81P5OISG2du095V7xPZq+qtvtzqnh+/GLWbikAoHPLxpyzT88kRxRfw3u2Yc+erYGgYqzmI0wfSpbqmaKSUuat3syWelgxp754Y8qy8M9H79Y5/PMH369k0bqg29qrk5cxL1TUoXmjLH555MBKx+naukn45+W52yqt35TkMUurNuWHK+F1aN6IxtnlpcvNjN8dvys5oZayyYtzeXVy8Lq4O/d/Xj6nVFmLFMBrk5dSWFz1JLyy4zblF/HJrFVMX7qxyjF0IlI/9evYPPxFvKjEK5yHUlF+UQn/HfNj+PHVB+9S59NfpKIrDyyfpPbxbxayMKIruzRcaZssmVkPM3vZzDaa2SYze9XMUvqyyPgF6zngT59x+N+/YK+7PubpsfWnUtnqzfn8+5O5PPntQvKL6mYG7ImLNnDew+M46p9f8N/PfwzPWbQzNmwt5PMfyvuL33zUIA4cUN7C8uhXC8gvKuEfH5UXdbjiwL60bZZT6VjdWpfPMbEit/oxS3FJlppWnyyt2FgeU5eIxK5Mn/bNuCyi28E9781iU34R4xesr1D56OlL96Frq+B33ZBXxGc/rK6T+Kcv3chNL03lZ89OYkoV5dfTxZdz13DAnz7j0icmcPx/vuLyJyfW2f+RiKSG0yLKbb88MbWr4r08cSmrNgWtSh1bNOLMvXpsZ4+G4chdOzOiV9CLpKjE+e0bM+pVQQ7ZMWmZLJlZU+BTYBBwIXA+0B/4zMxqXcYlN6+QR75awN8+/IGpcfpSt2R9Hpc98R0rQ4UCthWVcNvrM3h72vJaH8vd+XDmSm57fTr//mQu60LN6Dtj7ZYCvpy7hm2Flb/Ardi4jWP/9RV/+2gOv3tjJmc9NJaC4p37ojdrxSbO+d9Yvpq3ltkrN/On92dz1zvfV9hmY14Rb0xZxvszVtS4teO9GSspDn3w7dGjNb3bN+PyiIThpYlL+cdHc8KJRvvmOVyyf5+Yx+rSKqJlaWPllqVkV8OLbO3qUsXkgT87pB+dQ+vWbink3o/n8p/PyluVTh3ena6tm3Dy8G7hZbUpfVta6uQVVm4lnbl8I6c98A0vT1zKO9NWcMaD3zJ+wfoaH7cq67YUcMWTExh2x4f84sWpbE7APFKrN+fz8JfzeezrBeEuK7Xx45otXPXUxAp/w49nreJ3b8yoyzDDZizbyPXPT+bMB7/lLx/MrnK8m4jUreN270qjrOBr2czlm5i9MjUrrpWWeoXy2Vcc2LdCz4SGzMwqjOn9cu5a7os4J0rDlJXsAJLkcqAvMNDd5wGY2TRgLnAl8PeaHmje6i2c/8i48Jfn/3w2jztO2JUL9u1dadstBcW8NnkZK3K3sWfPNhw6qCOZGTWbi+Ce92azKb/yl8rfvDqdvXu3rdVM2X/+4Af++3l58/kT3y7iX2ftwX792tf4GJE+mbWKa56bTF5hCV1aNeapS/ehX8fy4gZ3vT2LNZvLvyROWZLLfZ/O48afVO66VhPFJaXc/Mo0CqISoMe+XsiBAzpwyMCOTF68gUse/44NecEXvV27tuTpS/ehTYwWoEivR3R9OGFYVwD279eeQZ1bMHvlZvIKS3jwi4oDWsuqGEWr2A0v8S1LzXIyycwwSkqdbUUlFBaXkpNVfn1kZYWWpdjvn2aNsrj12MFc89xkoOL8EmZwZajM+CnDu3PfZ8F76tPZq9mwtXC7r/XH36/it2/MYOWmfA4Z2JE/n7Y77Zs3orTUufW1GRX+voXFpfz61Wl8cP2BZGfu2DUed+fnz07m2/nrAHhl0lI2bivifxeMqDAnyFdz13L7WzMBuObQfpy4R7eYx6uJb39cx1VPlyc69332Iy9ftW+NS+u6O7e/OZOtMS5CvDhhKWfu1YMRvdrW6FiFxaV88+NaCotL2a9f+5jv289+WM0VT06gqCS4YDBuwXrembaCpy/bh+5tmlbaXkTqTqsm2RwxpBNvT1sBwDvTVjCoc8skR1XZZz+sDk870bJxFmfvndKdcurcsB6tufrgXcLfo/720Rzyi0u4/IC+ZGVmMHfVZqYt3cjUpbl8v3wTxaXOwM4tOGmPbhw2qCMZNfzeJ6kjLVuWgBOAsWWJEoC7LwC+Bk6MtUOsq9+b84u44skJFbozucPtb85kbOgLWZl1Wwo4/t9f8dvXZ3D/5z9y+ZMTOPn+r5m2NHe7wU5Zkss701eEHz920V7hwfib8ou57fUZNR7D8MWcNRUSJQhahc59ZBx3v/N9ra8ir96czw0vTCEv9GVuxcZ8fvHilHCz9JL1ebw7Y0Wl/f735YIaVZLJLyqpFNNjXy9kWqg6W2aG0aFFo/C6X740lU9nr+KCR8aHEyUIrtLdtp0r8ctzt4VbLzIMjhsWlAk1M34RI7Hr274ZZ1VzkugakYCs3Jhfqam+QrIUhwpCZlaxyENUK0qFbnitqk62j9u9C6P6Vv5CfubIHuFy47t0aM4ePVoDQdeE7bV4Lli7lZ8+M4kVG/NxDxKsix4bT15hMc99tzhmt7v5a7byxDcLqz1udT6YuTKcKJX5eNaqCt0uZ6/cxMWPj2fe6i3MW72F656fssOztb8/YyUXPTa+wt957ZYCfvny1Br/v346ezVfzl0LBO/Jt6/Zn6N2LR9H97s3ZtaoC8i81Vs4+t4vuOix77jiqYkc8tfPK1U4XLO5gF+8ODWcKJVZuC6PSx+fUGmcpMZNidS943YvL0/9zvQVKfl/9ujX5RfNzt67J82quGDYkP3iiAHs3af8vHjfZz+yx+8/Yrf/+4CT7/+G/3tzJq9OWsbslZuZt3oL70xbweVPTuCch8dqXsJ6KF2TpV2BWN+cZwJDYizntP9+y7KIbkvuzq9fmR6epyYnKyP8pb3U4eZXpoXHFBSXlHLNc5MrTAAKMG3pRk6872sO+POnHPH3MZz232+49+O5FboGuTv3vFc+x88xQztzyKCO3HPq0PCyD79fVSGZqkpJqVfoqtanfTPaha7+uwcJzOh7PuWP71ZsCSqTX1RS6YP7/s9+rNTiNXXpRj4Mzbnz/HeLKdvlgP7tGdwluEq2raiE+z6tuul66YY8rn1uMkNv/4Bhd3zIEX8fwxtTlvHDys387aPyeX9uPGIA7193QPi1X7ulkEsen8DmGAUw3pm2gnFRX5YjvTm1/Av+6H7t6diiPIE4YkgnLoiYOLBVk2z+dfae1bZyNM3JCicrhSWlrN1a8TWN9zxLwXHLT2LRSeeKiK6BkV0Go5kZfzh5KO2bl7cU7dKhGTcfNajCdqdGdMV7ZVL1g5P//cncCqXZAWYs28TZD43lnvfKqwxee2g/bj1mcPjxvR/PZc3mAopLSnl+/GLOf2Qcp9z/NXe9/T1LN1SuOFimoLiEu2PMlQXwr0/nht/Xd779faVk4XdvzKAoKtaiktKYScrKjcHYvKP++QVXPT2xUusnwHcLN9RoXFdhcSl3vVMe89l792S3bq249djBFbrqRLaG5heV8LcPf+Dk+7/msicm8OKEJbw3fQWnPfANP64p//xZs7mAix4bHz5puzs3vzItXIGrY4tG/PLIgeECHz+s2swNL5RfBMkvKuH6F6Zs93cQkdo5eGBHmuYEXdrmr9nKD6s2Jzmiimav3MTX84LzaGaGccF+vZMbUJJkZWbwyIUj2W+XdrXab+z89Zz2wDcsjlFxV1JX+l0OCLQFNsRYvh5oE2M536/YxKjbXmH1a3dTuHw2LUaeSNvDLg+v/8tpuzOqbzuO+PsYNuUXs2hdHv/6ZC6/OmoQf/nwB775sfxL+uGDO/HF3DUUFpfiTnhCN4AJizbw6uSlPH7x3vRp34zP56xh7PygtSMzw/jlkcEX1P12ac/Ze/fkufGLAfi/N2YytFsrlqzfxhdz15BfVMIhgzpy8IAO4S5G70xfwZxVQQW3ZjmZvHjlvrg7v3hpavjq9ZaCYh78Yj7Pjl/Mb48bwmnDu/Pm1OX869O5zF+zlR5tm/Cbowdz9NAurN1SwPPfLQ7H3r9jc+aGKsQ9MOZHDh3UkRe+Kx+/ct6oXmRnGpc8PgGAZ8cv5rID+tIj1Eq2rbCE6cs28uHMlTw1dlGFL5pzQ1f5Iw3u0pIrDuxLdmYGfz9jGBc8Op7IXK5102yev2IUD3z+I69PCRKhv300hxeuGFWh2xUEXxZfn1z+pTNW16s7TtiVwwZ3Ys3mAg4b1HG73cwg6IpXlqSsyM2vkIBtjJgoNh7d8KKPWzlZKr+61bWKbnhl+nZozrvXHcDbU1eQk5XBiXt0pUVUgnfc7l35fSjZmLIkl3mrN9OvY4tKx5q/ZkuFL/inDO/Gq6HkampEa0evdk356SH9yDDjufGLmb92K5sLijnv4XFkZFiFGdQnLc7l8W8Wcurw7lxxUN8Kc1wBPPrVwgoTJ75wxb4c/++vKCwpZfLiXL6et44WjbPCXwIiLVqXx0sTlnLOPj1Zs7mAW16dxqezV9OicTZXHNiXqw7ahcwM4/XJy/jNa9PDraxlurdpwjOX7cPj3yzksa8XAnDvJ/M4ZGBHzIzSUufpcYt4e+oKGudkcsGoXhw+pBOPfb0gfIGlReMsbjxiAAA92jbligP78u/QxYa/fTiHY4Z2YdO2Ii5/amKFcZMfz6o4UXBZt0yAdVsLuf75KTx92T688N2S8JxhAH8/Yw/2798+SJpengbAR9+vot0hF7F58rt0OPlWGnVpmJNPiiRT4+xMDh3UMdwV790U64r32FcLwz8ftWtnusUoDpQuWjTO5qlL9+HFCUt4bvxiZq/YjBl0a92Eod1bsXv31uzevRWNszJ5bfIyHv9mAaWh73znPDyWN342mnbNG23/iSTp0jVZ2iGZzdvQ+ew/kjf3W5oOHB1efv6oXuEv17ccM5hbXp0OwENfzCd3WxHPjitPKK47rD83HDGAReu2cufbs/h09iqiL1AvWpfH6Q98y8MXjuSed8uvsp+9d3m3p+C5BvHZ7NWs3JTPuq2FHPSXzysc58lvF3H23j2566TdcHf++XF5BbeLR/cJt8Y8cfHevDF1Gfd99mO4HPbm/GJ+9fI0bn9zZoUvf0vWb+PqZyZxzylDWbB2K/lFQUKza9eWPHbRXuz/p88oLCllypJc7n7n+/CA9k4tG3FYaIzWyF5tmLBoA0UlznXPT+awwZ34cu4aJoaWRcswKr1GTbIz+eeZe4Rbdg7o34F/n70nt70+g9y8Ivp2aMa/ztqTQZ1b8oufDOTtaSsoLnXGL1jPNz+uY3TU+KyyQhEAjbMzOHLXTpXiMDMOClXGq6murRqHv9Qvz93GsFBXNXePe+lwqH5i2shxVJ2raVkq07FF4yqLWQC0aZbDYYM68f7MlQD874sF/Om03Stt9+9P54X/ngcO6MDfz9iDlo2zeTyii11mhvGnU3cPDxq+48RdOf+R8QBVXmktLnVemLCEFycu4SdDOnHlQbswvGcbVm7MrzAA94bDBzCwcwvO2Ks7T48N/jfv/WQO7SNOWift0ZWBnVuG59L61ydzOWxwR87+31jmh1poNm4r4i8f/MBXc9fSu32z8IWLMjmZGZy0Z1duOXowbZrlcNVBu/DMuMUUFpcydUkuX8xdy0EDOvB/b87kqYjKll/MWcOwHq0rJIM3HD6gwkn1igP78uy4xazbWsiy3G1c8Mh4Fq3fGq5OFUu7Zjk8etFe5BWWcM7DY3GHb+ev47yHx1Xo9njx6N7s3z/4/zh9ZA+u/NUdtNz7ZABa7XsGrfY9o8rnEJGdd9zuXcLJ0tvTV3DDEQMqXeBLhg1bC3kt4kLXJfv3Tl4wKSIzwzh7756cvXfPcA+FWH+rod1bcUD/9uEeB0s3bOPqpyfxzOX77PA4XEmcdE2WNhC7BamqFifaNM1mQ14RlpVNs8EHhpfv0aM1tx1X3k3ozJE9eG3SMsYvXE9xqVdIlA4Z2IHrDguuxvZq14yHLxzJpvwiNmwtZFtRCZMX53LHWzPJLypl7ZYCTrrv6/C+TbIzufawildyWzbO5k+n7c4lj39XZdns58YvpqCohL37tA1/yWvROIvLDyifKyAjwzh5z+6cOKwbH81axR/enRWelDX6KnmZX4cSwjI/P6QfHVs25tQR3XguNPv4E9+WfwE8c6+eZIU+EG4+ehCnP/AtELQIlJWhjjaseytuO24IAzu34L5P5/HU2EXkFZbQq11T/nr6MAZ2rthqcdzuXTly187k5hXRrllOeBBlj7ZNOX1kj/CX2b99+AP77dIu/IG2rbCEu94u7+50xsgelVpNdlSFIg8RLTn5RaXhbmg5mRk0zo7Ph2VVE9MWFpeGE9kMg04t6ubq1sWje4eTpZcnLeWi0b3DXS8hqOwWOX9I2f/DbccOJjvTeHXSMlo3zeaXRw5iVN/y7g0H9O/AjUcM4O8RJdsbZWXw80P60b9TCx79ekF4vJk7fDBzFR/MXMVevduwIa8oPN6mX8fm4YkTrz64Hy98t4SiEue7hRX/7a88aBd6tWvKo18vYM3mAlZuymefP3wS83f+dv66CmOh+nZoxnWH9eewwZ0qFFHo1LIxZ+/VI/x/ce/Hc1i/taBColQmsnWof8fmnB/RBRSCK5o3HDGA214PehOPX1heKTAzw7j6oF1o0TiL92asZNO2Ivbp25YbDh8QLgRzzSH9+FeoZSoy9v4dm1fqXrnm4/9xyePfVRq7laVByiJxUdYVL6+wJNwVLxVal96cujxcWXZot1aVJmJPd9tLaA8Z1JH7zx3OZU9OwD343P73J3N3uNiVJE66prMzCcYtRRsCfB9jOW/+fH8GdKrYtWdot1b874KRFSZiy8gw/njqUFo0rpiH9u3QjH+euWelKigtG2fTq10zBnVuydl79+SpS/eptC/Ar48eVKELV5mDBnTgqUv2ZrduLcmwoMvPhfv24rBBHcPbvDp5WYXk5vID+sYsKJCRYRy5a2feu+4ALt2/T7hyWrOcTK46aBe+uvkQdutW+QN7RK82HBkadH75AX2J/rzIzDDOipiDYa/ewRe3WHbp0IzTRnTnwfNH8PrPRrNX77a0bJzNLccMZvLvjmD8bw7j85sOZq/esSuAZWcGY8eiX+efH9ovPP5i0uJcHvlqARu3FfHOtBWc+dC34daKJtmZ4QpvdSGyylxkqe4K45WaZMftqmFV3fAiB5h2bNE4nMjurL37tA334S4pda58aiLzVpe3BP3z47kVWpXK5qvIyszg1mOHMPG3R/DJLw7mqIjJgMtce1h/nrlsHy4e3ZsbjxjApzcdzDWH9eeo3Trz4pX78uKV+3JoxPsegvFBZa2lZnDXSbuFr+J1a92EU4d3r/Q8hw7qyOAuLWmak8U1h/aL+Xv+88w9+Pkh/Sq91w8a0IHXfzaaE/foFrPa3FUH71LhfXjDC1PD60b3a8dJe3StsH2bptncf+7wmFcez92nJ8cMrfg6tWycxeMX78VNRw7kyoN24fWfjebTmw7mj6fsXqFi5rWH9a8wOBmCiyj3nTu8UgngzAzjv+cN5+y9e4QTpIGdWvDs5aNivjYisnPKuuKVeXf6yiRGU+6ViGkhztirR0q0dtU3hw3uxE0RydF/PpvHxEU7Py2GxJelYqWVeDOz64G/AgPcfX5oWW+C0uG/dve/RWzrEHSbyi8q4a2py1mwdisDO7fgmKFdqmw+nbViE3e98z0L1+axd5+23Hrs4ArdfKrz/fJN/OKlqcxasYnG2Rlce1h/rj5ol1p9MJWWOre+Pj3cylOmR9smvHfdgVWWu46UV1jMyo35dG3dJPwFav3WQi5+/Lvwle+urRrz7OWjKpRCvvHFKeExKBDM7B19tRqCkuNlRRVG92vPQQM60KkWJdBr6w/vzuKhiLLfsdx10m6cN6pXtdvUxhtTloXHWh0ztDP3nzsCgDmrNvOTf3wBBAniJ784uM6eM9Kf35/N/aHqh784YgDXhFpyxi9YzxkPBq17e/Rozes/G13lMWpr3uotHP/vr9gWKnDSNCeTS0b3oVWT7ApFFl65er9wslSXfli5mQe/+JE3pywPz5llBrcfvysXRg1GXrwuj8P/Pibcytc4O4P3rjsw3N21sLiU8x8Zx7iIOZ5uO3Ywl4VaZsfOX8cz4xazrbCEnwzpxGkjum+3LOytr03nmXEVu+z1ad+Mt67Zn+aNshg3fx3vzVhJqybZnLNPz2r/J4pLSnlq7CK+nLuWnm2bcun+fcJjALdnS0Ex//xoDl/MXUPf9s35xU8G0L9T5TFmkbYWFLO1sJgOzRthZuHPJHfXt6YEijwvScP07vQV/PSZSQAM6NScD284KKnxRJ6zcjIzGH/rYbRuuv1xu1JZSalz7sNjw+PRa/O9TKoXr3NSuiZLzYCpwDbgNsCBO4EWwO7uviVi26SclNydNVsKaNk4e4cneystdf78wQ/878v5lJQ6vds15aELRjJgO1+ItqeopJSv5q0lr6CEgwZ2qPQPnl9Uwj3vzWb8gvUctVtnfnrwLnXWcrEz8otKOP2Bb5m+bGOlddmZxs1HDQp/Ca4r4+av48yHxgKwZ8/WvPbTICn5buH6cFfE4T1b8+pP6y5ZifTgmB/5Y6i63OUH9OHWY4Nij5FJ3NG7dea/542o0+f96PtV/PzZSTGrwUHQJ/8/5wyv0+eMtjx3Gx/MXMm2ohIOGdixQnfASN/8uJa/fziHUnduPXZIpQQuv6iElyYsYdG6PI4Y0ol9+tau+lGsuI7791fhynOtmmTzwpWjUqKbTW0pWUoOJUsNX15hMcPv/Cg8LvjjGw+MWTAnUf747qzwHIPHDu3CfefG9/O7oVuWu42j/vkFm0PVhM8c2SPmGF+pnXidk9IyjXX3rWZ2KPAP4CnAgE+A6yMTpWQys5jd7mojI8P49dGDuPyAPqzbWkjf9s3qJGnJzszgkIEdq1zfODuT20+I1csxuRpnZ/LM5ftw99uzeGta0Pd6UJcWHDqoE2eM7B6XSTcjxyytiCiosDEv/sUdoo8d2Q2v4hxLdV/N6IghnXj9Z6O5/vkplQoy9O3QjDsS8P7o2roJF4+uuiBFmf12ac9+V1c9IXPj7EzOjzHJ9M7E9cbPRvPwl/NplJ3J+aN61bg1SETSQ9OcLA4Z2JH3ZgRd8N6bvpJrDktOslRcUsprEdViTx2x4xN1S6Bb6ybcddJu4YuWL0xYwuFDOnHEkMrFpST50jJZAnD3xcCpyY4jEdo1b6TylCFlRTHuOXUopR6Mx4inji3LX/fVm/MpLiklKzOj0pileKmqGt7KWpQN31GDu7Tk3esO4N3pK3hz6nLWbC5gZK82/PSQfrStQdn1hqxH26bcceJuyQ5DRFLY0UO7hJOld2esDHejTrQv561ldWjuxfbNG3Fg/9pVhZXYTtyjGx99vypc+fCWV6cxvOeB+r6WgtI2WZL0ZmZkJqDjUKOsTNo3b8TaLQWUOqzZUkCXVk3ITUDZ8OhjV2xZKi820blV/MaJZWYYxw/ryvHDum5/YxERCTt0UEdysjIoLC5l1opNLFy7tcL44ER5ZWJ5YYeT9+yaEt3qG4q7TtqN8QvWs3pzAWu3FPKb16bzwHkjVDwjxegdLxJnXVpFVsQLWnTWby2fD6dds/hdRWodUfUwNy92y1KXOCZLIiKyY5o3yqrQilPWypRIG7cV8eH35ZNbnzqicgVR2XGtm+bw54ixSh/MXMWLE5ZUs4ckg5IlkTiLbLkpS1LWbSkML2vXPH5d0iIrMK6NeM7IMUs1mZBWREQSL3J6gPdmrEj48789rXxupd26tayXhWhS3cEDO3LeqJ7hx799YybTluYmLyCpRMmSSJx1jUiWyrq/RSYu7eOYLLWJKO26fmsBpaVOUUkpa0IT0ppBxzqakFZEROrWYYM7kR3qMz5t6UaWrM9L6PNHdsGLNS+d1I3fHDOYgaFKxYXFpVz11ETWbSnYzl6SKEqWROIssuWmrEVnXWQ3vDgO5szJygiPWyp1yN1WxOrNBZRVHO7QvFGVc4WJiEhytWqSzeh+5dU6309gV7wf12xh0uJcIJhe48Q9VAUvXprmZPHg+SNo0TgoJbB8Yz6XPjGBrQXFSY5MQMmSSNx12V43vDhXhovs5rduSwErI4o7aLySiEhqO2a3LuGf301gV7xXJ5W3Kh0ysGPaVzGNt97tm3HvWXtQVtthypJcrnp6YrgbpCSPkiWROKtQ4CGUqEQ2r8e7TGj7ZhXHLS3PjRyvpGRJRCSVHTGkU3iai8mLc1m0bmvcn7Ok1Hl1UvncSqepsENCHDqoE7cfXz4P4Zdz13LNc5OUMCWZkiWROIuc9HXlxnzyi0rYWlgCBF0bWjaObwX/Ci1LWwuiKuGpuIOISCpr0yyHA/uXd8V7acLSarauG9/+uC7cbbxtsxwOrmYieqlbF+7Xm+sPL59T64OZq7jyqQnkF5UkMar0pmRJJM46tWoUblZftSmfZbnl3eDaN28U9/kUIpOlNZsLoirhqWVJRCTVnblXj/DPL09cSkmpx/X5XonognfCsK7kZOnrYiJdd1h/rjiwb/jxZz+s4ZLHv9MYpiTRu18kzhplZdKlZZCUlDqMm78+vK5r6/i37HRuGVmNL59lueXVlDRmSUQk9R06qFO4curKTfl8MWdN3J5rc35RhTLl6oKXeGbGLUcP4ppD+4WXffPjOs55eJyq5CWBkiWRBOjVrnzW9a9/XBv+ORHJUrc25c+xbMM2Fq4tT5Z6t0v8bPAiIlI7OVkZnBJRuvuZcYvi9lzvTV9JflEwRmZQ5xbs2lVzKyWDmfGLnwzkl0cODC+buiSXU//7TULGrUk5JUsiCdCrXdPwz9/MK0+WuiUgWeoaMS5p6YY8Fq0v/5BVsiQiUj9EdsX7eNZq5q3eHJfneTmiC95pI7rHvau4VO9nh/TjzhN3DXfnX7guj1Pu/4apS3KTGlc6UbIkkgCRLUsb8orCP0e2+sRL5HNMXboxfMWwddNsWjXNjvvzi4jIztulQ3MOH9wp/PjBMfPr/DkWr8tj/IKgq3hmhuZWShXn79ub/547gkahsWPrthZy1kNj+WTWqiRHlh6ULIkkwC4dYrfgdGsd/zFDnVs2DpedjdRLrUoiIvXK1QeXD/p/dfIy5q3eUqfHjyzscNCADnRoEd+pLaTmjtqtM89ctk94ovltRSVc9uQE/vPpXNzjW/Aj3SlZEkmAod1bxVw+oFOLuD93VmZGzO5+/Ts2j/tzi4hI3RnRqy379m0HBHMh3fPerDo7dmmp8+rkil3wJLWM7N2WV67eL3xOd4e/fjiHq5+exBZVyosbJUsiCdC5ZeNKV+jaN89JyJglgKHdKidre/RonZDnFhGRunPrsYPD41c+nrWa9yMq1+2MsfPXsWR9MLVFqybZHDZYcyulon4dm/PGz0ezT5+24WXvz1zJCf/+ipnLNyYxsoZLyZJIApgZe0YlJ8O6t07YwNndY7RsKVkSEal/duvWitMjWn1ueXU6qzflV7NHzTz/3ZLwzyfv2Y1GWZk7fUyJj/bNG/H0Zftw0X69w8vmr93Kyfd/w1NjF9V5t7x5q7dw88vTGPWHT+h/67sc8OdP+f1b31eY5L4hU7IkkiBn79OzwuMjd+ucsOce3qtNhcctG2cxsHP8uwCKiEjdu/WYIeF58jbkFXHZkxPIK9zxblgbthby/oyV4ceRlfckNWVnZnD7CbvyzzP3oGlOkNgWFpfy29dn8LNnJ7Epv2g7R9i+0lLn/s/ncfS9X/DChCWs3JRPUYmzZP02Hv16AT/5xxjem143LZupTMmSSIIcPKADxw/rCsD5o3pVuDIYbyN7tWFU3/Im+58d0o/sTP37i4jUR62aZvO304eFi/dMW7qRa5+bTFFJ6Q4d7/UpyygM7bt791YM7qK5leqLk/bsxlvX7F/hb/bu9JUc+68vd6q8eGmp85vXpvPn93+gqCR2S9Wm/GKufmYST42N37xfqcBUQaN6ZuaAKo1InckvKqFxduK7N+TmFfKPj+bQtlkjfn5ov5gV8kRqo6wbqbvrzZRAOi9JmafGLuK3r88IPz58cCfuO3fPWnWhKy11Dv/HGOavCebgu/vk3Th3n151HqvEV35RCXe/M6tC4pKdadx81CAu3b9Prbr9F5eU8quXp/Hq5GXhZcO6t+K244awa9eWjJu/ntten8Gy3G3h9f84cxgn75ncoiDxOicpWdoOnZRERGJTspQcOi9JpD++N6vCnEsHD+zAA+eNqPFFuU9nr+KSxycA0KJRFt/ccigtGmsOvvrq3ekruPnlaWyOqI53+OCO/OW0YbRplrPd/YtKSrn+hSm8M628e90pe3bjz6ftTlZEj5SNeUVc8Nj4cOtVTlYGz18xiuE920QfMmHidU5SPxwRERGReurXRw3iyoPK51/6/Ic1XPL4d2ytYSnph74oT7TO2ruHEqV67pihXXjn2gMqFHb6eNZqjvnXl0xYuL7affOLSvjpM5MqJEpn792Dv54+rEKiBEFX0Kcu3ZsBnYJpSAqLS7nyqYmsqoNiI6lGyZKIiIhIPWVm/PqoQVx7WP/wsm9+XMd5j4xjY171g/y/nreWsfODL9CZGcZFo/vENVZJjJ7tmvLyVftx6f7lf88VG/M586Gx3PfZPEpLK7dKb8wr4oJHxvPR96vCyy7arzd/OHkoGVV022/ZOJuHL9iL1k2DBHvN5gKufnoihcU7NnYuVSlZEhEREanHzIwbjxjAL48cGF42eXEuZz70LWs2F8Tcp7TUuee92eHHpw7vlrC5/yT+crIy+O1xQ/jfBSNp1SRIZkpKnb988AMXPBp0n3N3Skqd92es4Oh7v2B8RMvTlQf15f+OH7LdsU492zXl/nOGU5ZPTVqcy+/fnhm33ysZNGZpO9Q3XEQkNo1ZSg6dl6Q6T3yzkP97s/zLap/2zXj6sn0qJUJPfruQ370RbNcoK4PPf3kwXVopWWqIluVu49rnJjNx0YYKy1s1yaa01CuMbwL4zTGDuOLAXWr1HA998SN/eLc8+f7zabtzxsjElqDXmCURERERqdaF+/Xmb6cPC1/pX7B2K6f/9xtmLNsY3mbCwvXc/c6s8OPLD+irRKkB69a6Cc9fMYqfHlwxAdq4rahCotSmaTYPnDe81okSBO+hY3fvEn582+szmLY0d4djTiVqWdoOXcETEYlNLUvJofOS1MT7M1Zy7XOTw/MnZWUYJ+/ZjWaNsnhu/GIKQuNKBnRqzlvX7F+rcuNSf81YtpGHv5zPZz+sYeO2YExb++Y5nD6yB5eM7kOHFo12+NhbC4o55f5v+GHVZgC6tmrMqz8dTefQBMrxptLhSaKTkohIbEqWkkPnJampL+eu4cqnJpJXWBJzfbtmObz60/3o1a5ZgiOTZCstdVZvLiDDoEOLRrWah6k6C9du5fj/fMXm/KDFqne7pjx16T70aNu0To5fHSVLSaKTkohIbEqWkkPnJamNBWu3cvPL0yoM3gcY2KkF/z1vOH07NE9SZNJQffbDai5/YgLFoap7rZpkc/sJQzhxWLcqK+vVBSVLSaKTkohIbEqWkkPnJaktd2fCog18++M6ikpK2b17aw4d1JHMOH5xlfT24cyV/OzZSRSVlH9OdWvdhH36tqVt0xwKS0rZuK2I9VsL2ZBXyKZtxbRonEWXVo0Z0astBw3owJCuLWv1nEqWkkQnJUklER8ESY5ERMlSsui8pM/CMnod9BqUScXXYdLiDfzsmUms2LhjE9Xu1q0l5+3Ti5P27Ebj7O2PqVOylCQ6KUkqScUPQ0lfSpaSQ+clfRaW0eug16BMqr4Om/KLeGjMfJ78diGb8ou3v0MM7ZvncP6o3pw3qiftmlddgELJUh0ysxuBQ4CRQGfgDne/vYpt0/6kJKkjVT8MJT0pWao7ZtYD+AdwBGDAx8D17r44xrZpf17SZ2FAr4NegzKp/joUlZQycdEGflyzha0FxeRkZtCySTZtmubQplkOLRpnsTm/mDmrNvPl3LV8OHNluGJjmUZZGZw6ojuX7t+HXWKMtVOyVIfMbBawCZgEXIWSJaknUv3DUNKLkqW6YWZNgalAAXAb4MBdQFNgd3ffGrV92p+X9FkY0Oug16BMQ3sdNuYV8eKEJTz29QKWx+jGd8jADhw6qCO7dWtF9zZNad88h4yMYPpYJUt1wMwy3L3UzLKAIpQsST3R0D4MpX5TslQ3zOw64O/AQHefF1rWB5gL/Mrd/x61fdqfl/RZGNDroNegTEN9HYpKSnl3+goe/nIB0yMmVo6WnWnM+8OxQN2fkzLq8mD1hbuXbn8rERGRhDgBGFuWKAG4+wLga+DEpEUlIpJk2ZkZnLhHN978+Wiev2IUhw/uRKwpoSKr7tW1rLgdWURERGpiV+CNGMtnAqcnOBYRkZRjZozq245RfduxYO1WPpu9momLNjB/7VaWbcjb4eIRNaFkqYbqamZjkbqg96NIg9IW2BBj+XqgTVU76XNAr0EZvQ56Dcrodah79b4bnpkdbmZeg9vnyY5VRERERETqj4bQsvQNMLgG2+XtyME1cFlEROJsA7FbkGK2OOm8JCKSOPU+WXL3PGB2suMQERHZQTMJxi1FGwJ8n+BYREQkQr3vhiciIlLPvQmMMrO+ZQvMrDcwOrRORESSJC2TJTMbaWanAaeEFg0xs9NCt6ZmlmFmt5jZQjPLN7OpZnZqDY/9eBVjpv4Zt19I6j0z62FmL5vZRjPbZGavmlnPGu7b2Mz+YmYrzGybmX1rZgfGO2ZpuHby/VjVuNE94hx2ffY/YCHwhpmdaGYnEFTHWwI8CDv3N6mvzKy7mf079JmWF3of9Y6xXYP9DAx9L3nFzBaFfrcfzOyPZtYiars2Zvawma01s61m9rGZDU1W3HXJzI40s0/NbKWZFZjZUjN70cyGRG2XVv8jZvZ+6H/irqjlDfm9cHAV55fcqO3q9DWo993wdtDPgQsjHp9OeXnWPsDlwE3ArcBE4CzgJTM7zt3frcHx1xDMmxFpxU5FLA2WmTUFPgUKCN6XDtwFfGZmu7v71u0c4hHgWOCXwHzgZ8AHZravu0+JW+DSINXB+xHgcUJf8iPMqcs4GxJ332pmhwL/AJ4CDPgEuN7dt9TR36Q+6gecQXAe/hL4SRXbNeTPwJuAxcBvgKXAnsDtwCFmtp+7l5qZAW8BvYFrCMa53ULw/tjD3ZcmI/A61JbgPXA/wfernsCvgbFmNtTdF6Xb/4iZnQ0Mi7G8ob8XylwLfBfxOFw3PC6vgbvrFnEDOhL8s90RtfwTYFoN9n8cWJrs30O3+nMDrgNKgH4Ry/qE/vlv3M6+wwhOChdHLMsCfgDeTPbvplv9u+3M+zG0rQN3Jfv3aEi3nf2b1NcbkBHx82Wh91bvqG0a9Gcg0CHGsgtCv/Ohoccnhh4fErFNK4LS8/9K9u8Qp9dlYOh3/kXocdr8jxAUg1kJnB39edvQ3wvAwaHf7/Bqtqnz1yAtu+Ftx5FADvB01PKngaFm1ifxIUkDdwIw1t3nlS1w9wXA1wT/9Nvbtwh4IWLfYuB54Egza1T34UoDtzPvR4mPtPybuHtpDTZr0J+B7r4mxuKyK+rdQvcnAMvd/bOI/TYSXF1vqO+PdaH7shaFdPof+RMww92fi7EuHd8L0er8NVCyVNmuBC1L86KWzwzdD2H7Oob6SRab2Rwzu9nMMus0SmlIdgVmxFg+k+2/33YFFnhQFTJ63xyCbiwitbEz78cyV4fGFuSFxhocUHfhpaW6+Js0VOn4GXhQ6H5W6L6690dPM2uekKjizMwyzSzHzPoTdPNdCZQlDGnxP2Jm+xO0LP6sik3S4r0APGNmJWa2zsyejRqbVuevQbqOWapOWyDXQ+12EdZHrK/OFIK+tTOBxsDJwB+B/gTdCESixZxLheA9F2vulZruW7ZepDZ25v0IQSv828ByoBfBOJJPzewId/+8roJMMzv7N2nI0uoz0My6Ab8HPnb3CaHFbQkKhEQrew3aAFviH13cjQNGhH6eR9ANcXXocYP/HzGzHIIk8a/u/kMVmzX098JG4G/AGGATwRi+3wDfmtmeofdDnb8GDT5ZMrPDgY9qsOkYdz94Z5/P3f8ZtehdM9sCXG9mf3L3uTv7HCIiqcrdz494+KWZvUFwle8uYP/kRCVS/4WuiL9B0PXs4iSHkwznAy2BvgSFLz4ys/3dfWFSo0qcXwFNgLuTHUiyuPtkYHLEojFm9gUwnqDow23xeN4GnywB3wCDa7BdWRP+BqC1mVlU61LZ1an11N5zwPXASEDJkkTbQOwrX1VdKYvet1cV+8KOvV8lve3M+7ESd99sZu8Al+5sYGmsTv8mDUxafAaaWROCMRd9gYO8YkWv6t4fZevrPXcv63Y4zszeI2g9+DVwFQ38fyTUzexWgh5KjaLG4jUys9bAZtLkvRDJ3SeZ2Rxgr9CiOn8NGnyyFOrHPLsWu8wEGgG7UHHcUlmf152ZTT26a58IBO+5XWMsH8L2328zgZPNrGlUn/0hQCGVx96JbM/OvB+ro8+/HRevv0lD0OA/A80sG3iZ4ILrEe4+PWqTmcQuqz4EWOzu9bnbVUzunmtm8ygfk9bQ/0f6EgztiC4+BkEr200EXdLS7r0QoewcU+evgQo8VPY+QWWdc6OWn0dQfWTBDhzzXII/4nfb21DS0pvAKDPrW7bAgokXR4fWVectIJvyecIwsyzgTOBDdy+o82iloduZ92MlZtYSOI6gm4TsmDr9mzQwDfoz0MwygGeAQ4GT3H1sjM3eBLqZ2UER+7UEjqeBvj/MrBMwCPgxtKih/49MAQ6JcYMggTqE4MJAOr4XRhKUki87x9T5a2CV6xiImd1D0G3uN8Akgg/dK4ET3P3tiO0+AXq5e7/Q414EEwo+T/CmbURQ4OEi4EF3vzpxv4XUF2bWDJgKbCPob+vAnUALYPeyqyCh99ePwO/d/fcR+z9PUPL+l8AC4GqCL6f7ufukBP4q0gDszPvRzG4iOGl9RnmBh7Jlh7n7l4n9bRqGmv5NGiIzOy3042EE3a1+SjAx6Rp3HxPapsF+BprZfwl+77sJCqdEWuruS0MJ1VdAD4LXoGwSzt2BYe6+JIEh1zkze43gu9g0gkH9A4AbgM7A3u4+J13/R8zMgbvd/bbQ44b+XniG4H98EpBL0Jp2C8FQmuHuvjYur0EiJ5OqLzcgk+CfbRFBGfFpwGkxtvscWBjxuC3wemi//NAfbxLwcyIm19NNt+gbwYzkrxCcCDaH3ke9o7bpTXACuD1qeRPg7wRlVPMJKgYdnOzfSbf6e9vR9yPBlbuvgbUELfTrCK7k7Z3s36m+32ryN2mIt9B7LNbt84htGuxnIMG4nKpeg9sjtmsLPEowRisP+ITgi2HSf4c6eA1uJqgynBv63X4gqArXO2q7tPsfIcYk4A38vXBL6Dv5xtA5ZgnwENAlnq+BWpZERERERERi0JglERERERGRGJQsiYiIiIiIxKBkSUREREREJAYlSyIiIiIiIjEoWRIREREREYlByZKIiIiIiEgMSpYk4cxsXzN70cyWm1mhma0zs4/M7EIzy0x2fGXMbKGZPb4D+51kZjfGWH6wmbmZHVwH4dUmnovM7JIqlntolvOUYGanmNkqM2sah2Nfb2bTQxPWiYiIiGyXvjRIQpnZ9QSTVrYlmGjucOASYA7wX4JZ1+u7k4BKyRLBBMX7hu4T6SKC1zjaOwTxrEhoNFUwsyzgj8Bf3D0vDk/xINABuDAOxxYREZEGSMmSJIyZHUgwy/p/3P1wd3/K3b9w9zfc/WfAUGBBHTxPoyqWZ5uZ7ezxd5S7b3L3se6+KVkxRHL3NaF4CpIdS8iJQG+CWbfrnLtvA54EborH8UVEGhIz+5eZvR362WtwWxjatqzXQr8Yx8wKrbu9FnGoV4Akld54kkg3A+uBX8Va6e4/uvu0ssdmtreZfWxmW8xsq5l9YmZ7R+5jZo+b2dJQ175vzGwb8Gcz6x36QP6pmf3ZzJYDBUDr0H6nmNlYM8szs1wze8nMelYXvJl1MLMHzWxOaL8lZvasmXWLjIeg5aJbjBNIpW54FrjBzH4IdUlcYWb/MbOWUc/tZnaXmV1rZgvMbLOZjTGzXbcT8+fAQcDoiHg+D62r1A0v1PXwaTM7PxTTNjP70sz6m1mz0O+/LtRV7m+h1qDo1+gBM1tmZgVmNtvMrqguxgiXAe+7+/oYv/vdZnZr6G+9zcy+MLM9orY7MvQe2Bh6z/xgZr+Leo7ngSFmtl8NYxIRSTtmtgtwFXB7aNG+UbeVwAdRy06OUzjqFSBJlbX9TUR2ngVjkQ4BXnf3/BpsvzswBvieoBuZA78GxpjZKHefGrF5K4IvwX8FfgNsi1h3K/AdcAWQCeSb2VUEXf4eA34PtCA4IYwxs93dfXMVYbUF8oFbgDVAV+AXwNdmNij0e91J8KG+F3BCaL/qWm7uDh3vPuAtYEjoGMPM7CB3L43Y9jzgB+A6IAf4C/BG6LmLqzj+T4GnQ7/7laFl22vZOhDYhSC5zQH+CbwCzAfmAWeFtrkN+BG4HyCU4H0FNCF4PRcARwL/NbNG7v7vqp7QgtbAg4HfVrHJBcBi4OdAI4K/2ydm1t/d15tZX+BN4OXQukKgP9A36jhTgM3AUcA323kdRETS1fXAVHefAODuYyNXmlkBsDZ6eTy4+zYzK+sV8Fi8n0+kEnfXTbe434BOBAnPH2u4/ctALtA6YllLgpapVyOWPR467olR+/cOLZ8EWMTy5sBG4NGo7fsQfMG+PmLZQuDxamLMBHqEnufkqJiWxtj+4NC2B4cetyVIpB6P2u680HYnRCxzYC6QHbHstNDy/bbzWn4OfBVj+UWh/XtH/c7rgVYRy64Nbfdw1P6TgM8iHv+WIJnsH7Xd/4C1QFY1Me4Teo4jYqzz0P7Nov6+RcCdUa9Fyxq8t74EPkz2/4RuuummWzxvBBeOHGgasewqYCvQppr9GgEbgBuq2WYh8HQV68rOLf1irMsKrbs99LjsvBjr9njEfsNrcr7TTbd43NQNT1LVgcDb7p5btsCDsT5vEnQri1QEvF3FcV53d494vC9B0vVMqO90Vqgr2RJgduh5q2RmV5vZVDPbAhQTtHYADKzZr1XBKIKWm6ejlj8fOnb07/mRuxdFPJ4euq+2++AO+NbdN0Y8nh26/yBqu9kEyWKZo4BxwIKo1/YDoB1Bq1lVuobu11Sx/l1331r2wN0XAmMJ/p4QtBgVAc+b2Wlm1rGa5yprFRQRaciWhe67Ryx7EWgKHFbNfqMIuqx/uZPPnxl5LgidD6Ir3pYVPoq83RpaNytiuymU9woQSSglS5Io6wi6x/Wq4fZtiV2lbSXQJmrZGncvqeI40cco+xL9McGX68jbUIIv9TGZ2TUEXc4+Bk4B9iY4qQA0rmq/arSNFaMHXerWRawvsz7qcVn3vh157upsiHpcWM3yyOfuSJBsRr+uL4XWV/naRhynqi6Lq6pY1g3A3ecRdPnLAJ4CVobGpEUnnBC8D5tUE4uISEOwNHQfTpY8GBNaSPXn4lEErTjTqtmmJmZT+XxQoRu+lxc+GutBl771BN3tXgH+HLFdKTCV8nOuSMJozJIkhLsXhwoLHBEav7K9Cmzrgc4xlnem8pd2j7FdVevWhe4vAmbG2L6q8UoQjNX5xN1/UbbAzPpUs/32lCU/nSNjCV19a0fl5CjVrQNWE4ypiuWH7ewLlRPhMp2qWFZ25RR3/wz4LDT+aTRBF5R3zKy3u6+N2K8tQbc+EZGGrFLLUqhwQ07Euli6ApvcvbCabWriZMoTtjKZBL0CKjGzNgRjd+cB50f1CoGgV8CAnYxJpNaULEki3UMwfubPxPhCHUo8WnhQEW8McIyZtfBQwQUzawEcHzrGjvqGICHq5+5P1HLfplQujnBxjO0KqFnLxViCK3xnAZ9ELD+T4H/z81rGV5UCgiIW8fY+cA2w2N1X13Lfsq5+fYldeOEYM2tW1hUvVMFvFMF7qoJQIv6pmTUH3iAYjxaZHPUBxtcyPhGR+qZSyxLwS4Jxu+9Ws19jqi9MVFMzQq3+YdEVVCOWZxOMVW4MHOTBVA/R1CtAkkLJkiSMu39hZjcCfzezIQSFEBYTtCYcRlA6+hyCpv87CSao/cTM/kTQQnQzQcLy+52IYZOZ/RK4z8w6AO8RnDi6EYwR+tzdn61i9/eBm83sNwRftg8lKCwQ7XugrZldDUwA8t19evRGHlRx+xtwi5ltJTh5DQbuIqgq986O/p4x4vmpmZ1JUL1us7tX18qzo/5BkOh9aWb/IGhJagYMAg5w9xOr2tHdF5vZIoKujdFjuCA4SX5oZn8hGHx8B0Hi+g+AUIXDAwlewyVAe4Iqg8uBGWUHMbPWBFcm/7ozv6iISKpz97WhqnXdAczsOILKsJd79fP9rSM0zUYC3UdQRXa0u6+sYhv1CpCkULIkCeXu/zSz8cANBF9Y2xO09EwgKG39Vmi7aRbMR3Q38ARgBC0xB3nFsuE7EsODZraE4ArbOQT/B8sIBrNOqWbX3xOcQG4guPo1hmCczPyo7R4maPX4Q2j7RQTV22K5laBrwVUEZb7XEUyceotXLBu+M/5EUIDiYYJqgGMIKhDVKXffGJq/6HcEiW03goqGPxD0P9+eF4DTCarvRXuSoILTfwjeM98BZ3n5nExTgaOBPxKMnVpPkHCeG3WF8liC1rzXavO7iYjUU8uA7mY2AngW+JO7P7KdfWYDOWbW3d2ju9HVOTO7AbiEoAJspQuLEdQrQJLCKncJFRFJvFBf+h8ISqt/FbHcgbvd/bY6eI73COYGOX9njyUikurM7AuCefOaEkyZ8Yvt7FLWzXkBcKq7v1rFNgsJpqQ4L8a6iwjmQ+pfRTe8IuAOd789dIHtS4ILYg9GHWqNu/8Y2q81wUWwK9z94e39DiJ1SdXwRCQlhE6KjxFMPlznzGwPgq6Td8Tj+CIiKWgpQcGGf9QkUYLw1AzjCcYIx9sAgu+iFwHfRt0iJylXrwBJGrUsiUjKMLPOBN0x/+LueaFlddKyZGZHEUzE+NzORyoi0nCFWofuBbqUfRYnk3oFSDIpWRIRERGRsFB3uenAI+6e1II4oV4B44Bdo7v1iSSCuuGJiIiISFhocvSLgaS3KhHMRXiREiVJFrUsiYiIiIiIxKCWJRERERERkRiULImIiIiIiMSgZElERERERCQGJUsiIiIiIiIxKFkSERERERGJQcmSiIiIiIhIDEqWREREREREYlCyJCIiIiIiEoOSJRERERERkRiULImIiIiIiMSgZElERERERCQGJUsiIiIiIiIxKFkSERERERGJQcmSiIiIiIhIDEqWREREREREYlCyJCIiIiIiEoOSJRERERERkRiULImIiIiIiMSgZEkkhZhZppl9b2av7cC++5uZm9kx8YhNRETSR23PR2a20MwWRi172MwWmVnjuAQpkgBKlkRSy2XAIOCO2u7o7l8BnwJ/MjP9b4uIyM7Y4fNRhD8AXYFr6yQikSQwd092DCICmFkWsBD43t1/soPHOAZ4BzjL3V+ow/BERCRN7Mj5qKxVyd17Ry1/ETgc6Obu2+o0UJEE0NVnkdRxHNANeGYnjvEhsAa4qk4iEhGRdFQX56MyzwBtgDPq4FgiCadkSSR1XASUApX6h5tZFzO718zmmVm+ma0xszFmdlHkdu5eDLwBHGxmvRMQs4iINDwXUfX56BAz+9rM8sxstZk9YmZtqznWe0AecHF8QhWJL3XDE0kBoTFG64Cl7j40at1g4DOgU+h+PNASGA40cvc9o7a/BHgEuNTdH01A+CIi0kBs53z0E4Ku3kXAc8Ba4JjQ485AYXQ3vNB+XwD7AK3VFU/qm6xkByAiAAwGWhO0CkV7miBRusDdn4pcYWbdYmw/IXQ/GlCyJCIitRHzfGRmmcCDgAEHuft3oeW3Ah8AewKLqjjmBOAAYCTwZVyiFokTdcMTSQ3dQ/erIhea2T4ELUifRCdKAO6+LMaxyo7RPcY6ERGR6sQ8HxFcgOsNvF6WKEG4+/dvt3NMnZek3lKyJJIayvp750Yt3yt0/2EtjrU+dN9+ZwISEZG0VNX5aFjo/qsY+4wFiqs5ps5LUm8pWRJJDfmh++iJ+1qF7pfX4lhNQvd5OxWRiIiko+2dj9ZE7+DupQTjl6qi85LUW0qWRFJD2cknuqJQbui+ay2OVXaMSic0ERGR7ajqfLQxdN8heodQUYjqWo10XpJ6S8mSSGqYCTjQP2p5Wb/w2kxSOzB0P31ngxIRkbRT1floauh+/xj7jKL6omE6L0m9pWRJJAW4+wZgBuVjlMqWjwcmAYeZ2XnR+1VRDW+f0P2Yuo5TREQatqrOR8DXwELgJDMLrzOzLODO7Rx2H2CJuy+ow1BFEkLJkkjqeAP+v737DpOrLP8//r637ybZbHrvIQkJhN6RJkqR4k8QxUZRVFQUCyqggopfUBGxoSjYCAIKIkXpJbSE3lJISO8km7rZzfb798c5uzuZzJZJZvbMznxe1zXXzDnnOTP3nJ2ZZ+9znkJ/Mzswbv2ngPXAbWb2hJlda2a/NbPngAcTPM+JBG3Hn09vuCIikqV2qY/cvQn4IsFVp5nhZLQ/BV4H+gFrEz2RmU0AxgH/SXfQIukQebJkZqea2TNmtt3MtpnZK2Z2Qsz2fmZ2i5lVmlm1mT1uZvsmeJ4SM/u5ma01sx1mNsvMjklQLs/MLjezZWZWa2ZvmtlZ6X6fIl1wC8GM6TtdQXL3+QTDh98ETAC+CZxDMPLQL2PLmtlogiYSf3P3um6IWSRrmNlJZvakma0zszozW2Vm/zSzqXHlRpnZ3Wa2Nay3/h1+9+KfL6X1l0g3aq8+egQ4CXgD+ARwIUFz8ROB+nae6xPh/R/TEahIupm7R/fiZl8Afhve/keQvO0PzHX3B83MCCYvGwtcBmwGLgemAfu7+6qY57od+FBYbgnwZeAU4Ah3fyOm3E+AbwFXAq8CHwcuAk5z9/+l792KdM7M/gUcA4zdnVnOzewq4Apgipo7iCTHzM4lODHxIkFH9NHAd4FRwL7uvtzMygj6btQB3yM4y34NUAZMd/fq8LlSXn+JdKc9rY/C58gHFgBL3f0DqYxPpLtEliyZ2VhgPnC5u9/YTpkzCS7bnuDuT4Xr+gJLgRnu/tVw3X4EZzkudPe/hOsKCDopLnD3M8J1g4GVwHXuflXM6zwBDHL36Sl/oyJJMLNJBJ/by9r7XnSwbzlBe/K/u/ulKQ9OJAeZ2WTgHeBb7v4LM/sacAMw2d0XhWXGAe8C33b3G8J1Ka2/RLrbntRHMc/xaeBvwEHu/noKwxPpNlE2w7uQ4BLvHzoocwawpqWiAXD3rcADwJlx5RqAu2LKNQJ3AieZWXG4+iSgCJgR9zozgH3DCk8kMu6+EDiftnkukjEW+DWdd7QVka7bGN63TLh5BjC7JVECCK/iPs+u9VIq6y+RbrWH9VELAy5SoiQ9WUfDPKbb0QRn6z5uZt8HxhCcFf+lu/8uLDONYESWeHOBz5hZb3ffHpZb6u7xk53NJUiOJoaPpxE0nViUoBzAVIKzfq3MLLp2ipLTzOz3u7nrVUELIJHu4e5Z9YELmw7lE9RL1wHrgDvCzdMIOr/Hmwt8NGY51fVXbHyql6Rb7UF91LL/LamKRaQzqa6ToryyNJxgDP+fE1RGHwQeA34bNnOAYBKzzQn23RTe9+tiuf4x91t817aH8eVERCR3vUhwYm0hMJ2gKd36cFtH9U2/mOVU118iIhKBKK8s5QF9gPPd/d/huifDvkyXm9mvI4ssgSgHwsgELVcqcvk46BgEdBx0DFpk8RXMTwPlwHiCAYEeM7Oj3X1ZpFHFScXnL9nPcmfl29ve1fUdLbf3OBWSeb6ulE3mOCRzDOKXU3kc9FnoOL7dLbsnn4X4ddn2WWhv255+FlItyitLLe3AH4tb/ygwBBhGcLatH7tqOdO2Oea+o3KbYspV2K5HM76ciIjkKHef7+4vuvsdwPuB3gSj4kHH9U3sFaJU118iIhKBKJOluZ1sb6atn1G8qcCKsL13y3ONC4d0jS9XT1sfpblAMcFcNfHlAOZ1IW4REckR7r6FoA6ZGK7qqF6KrUNSXX+JiEgEokyW7g3vT4pbfzKwyt3XAfcDI8zs2JaN4fDIp4fbWjwAFBLTuTYcevVjwKMxk3M+TDDq0CfjXvNTwBzNSyMiIrHMbAgwBVgcrrofONzMxseUGQscxc71Uqrrr7Rw96Sa7XRWvr3tXV3f0XKysSYjmefuStlkjkMyxyDZWJOhz0LH8e1u2T35LMSvy7bPQnvbMuWz0CLKeZYMeALYj2CC2CUElcXngAvc/a9mlgc8RzAhYOykftOB/dx9Zczz3UmQeF1GMKLdxcBpwJHu/lpMueuASwkm7nyNoEL6AnCGuz+YIE4H9U1QHw0dgxY6DjoGLWKOQ1Z0XjKzewnqhbeAbcAk4OvAUOBQd19oZr0IJqXdQduktD8m6IM7veWKUTrqr5jyOV8v6TsY0HHQMWih45C+OimyZAlaz7JdC5xN0Gb7HYIJY/8RU6Y/cD3wYaAEmAV8w93fjHuuUuAnwCeACoLK7Dvu/nRcuXyCCusiggpwAfAjd7+7nRhzvlICfQlBx6CFjoOOQYssTJa+A5xD0FS7iGAS86eBaz1mcAczGw38EvgAwTwyTwCXetwAEKmuv2LK53y9pO9gQMdBx6CFjkOWJks9gSqlgL6EOgYtdBx0DFpkW7LUU6he0newhY6DjkELHYf01UlRDh0uPUguf/la6BgEdBx0DESipu9gQMdBx6BFJhwHd6ex2alvbKahqZn6pmYam5zGJqe+qZmmZqchvG9sDrYFj2Pvm2lqhsbmoFxTs9PsTrPT9rjZafLg9YJ10JzG969kSUREREQkizU3O1V1jWyva6S6rpGq2uC+pr6R7XVN1NQ3UlPfRE19EzvqG9nR0MSO+mZqG5uorW+irrGZ2oYmahubqG9spq6xeaf7+sYgOcpGSpZERERERHqIHfVNVG6vo3J7HZuq69lYXc+m6no219SzpbqBzTX1bN3RwNYdDVTVNrJtRwPb6xvJgItPPZKSJRERERGRiLk7m6rrWbOlltVbdrBmyw7WbavlvW21rNtay/qqOiqr6qiqa4w61HYV5BmF+XkU5htFBXkU5OVRkB+sK8gzClrvjYI8Iz8sn59n5FuwXJBv5IWP883Ii73Pgzxr255nkJcXLH/3p+l5TxrgoRPqSCsikpgGeIiG6iWRnsvdWbO1liUbtrNsYw3LKqtZvrGaFZtqWLV5BzX1TWl77V5F+fQpKaR3SQG9igvoXZxPr6ICehcXUFqUT6/iAkoL8yktyqesKJ+SwnxKC4P7ksI8igvyKS7Io6QwuC+KveXntSY9UdEADyIiIiIiPYC7s76qjvlrt7FgXRUL1lXx7vrtLN6wfY8TosJ8Y2DvYgb2LqZ/ryIG9C6if1kR/XoV0a+siIqyQipKCykvLaRvaSHlYYIUZSLTkylZEhERERHZAxuq6nhj5RbeWrWFt1dvZc7qbVRur0v6eXoXFzCyXynDK0oZ1reEYX1LGFJewtDwfnCfYvqWFrZeRZH0U7IkIiIiItJF7s7iDdt5cekmXlq6iddWbGblph1d3r+irJAJg3ozbmAvxg3sxZgBZYzuH9yUCGUeJUsiIiIiIh1YtbmG5xdV8uy7lcxavJGN1fWd7tOrKJ8pw8qZPLQPU4b2YdKQPkwc3JsBvYqUEPUgSpZERERERGI0NDXzyrLNPLVgPU/Mf4/FG6o7LF9UkMf0EX3Zb1QF00f2ZZ8RfRk3oBd56ifU4ylZEhEREZGcV9vQxHPvVvLQnHU8Pv89tu5oaLdsRVkhh47tz6Hj+nPw2P5MHVZOUUFeN0Yr3UXJUhedcP3TPHzpMfoiiIiIiGSJpmZn1uKN3Pv6ah6Zu47t7cxhVFyQx6Hj+vO+vQZy9MRBTBnaR1eNcoSSpS5aUlnNO+u2MX1kRdShiIiIiMgeWLJhO3e9spJ7X1vN+qrEo9YN71vCCXsP5v1ThnDEhAGUFOZ3c5SSCZQsJeH1FVuULImIiIj0QPWNzTw0Zy3/eHEFLy7dlLDMmAFlnLLPME7ZZyjTR/bVQAyiZCkZb63aGnUIIiIiIpKEDVV1/OPFFcx4cTkbElxFGti7iNP3G86H9x+hBEl2oWQpCcs3djwSioiIiIhkhmWV1dz8zGLueXU19U3NO23LzzOOnzyYcw8dxbGTBlGQrz7pkpiSpSSs2FQTdQgiIiIi0oH5a7fx26cW8dDba2n2nbcN7lPMpw4fw8cOGcWQ8pJoApQeRclSEtZX1bGjvonSInXwExEREckki9Zv58bHF/LgW2t32bbfqAouPGosp+wzTCMbS1KULCVpQ1UdoweURR2GiIiIiADrttZy/aML+Pdrq3a5knTMpEF86bgJHDauv/oiyW5RspSkDduVLImIiIhErbqukZtnLuaPzy6htmHnPkkfmDqEr71/L/YZ0Tei6CRbKFlK0sbticfiFxEREZH0c3fue2MN//e/+bvMkXTMpEF84wOT2H9URTTBSdZRspSkyu31UYcgIiIikpPefa+K7983h9lLdp4nadrwcq780N4cOWFgRJFJtlKylKRKXVkSERER6VZ1jU385olF/GHmYhpjOiYN7lPMt0+ewkcOGEFenvokSeopWUqSmuGJiIiIdJ/XV2zmsrvfYtH67a3r8vOMC48ay9dOnETvYv07K+mjT1eS1AxPREREJP3qGpu44dGF/OnZJTuNcnfI2H78+MP7MGVoeXTBSc5QspSkDbqyJCIiIpJWi9ZX8dU73mDe2m2t68qK8rn8lCl88rAxanIn3UbJUpLUDE9EREQkPdydGS+u4JoH51HX2DYc+JETBvDTs6Yzqr+mb5HupWQpSZuq1QxPREREJNWqahv4zj1v8b+317WuKyrI44pTpnDekWM1qaxEQslSkrbVNuLu+sKKiIiIpMg767bxpRmvsaSyunXdlKF9+NXHD2Dy0D4RRia5TslSF5UV5VNT30RTs7O9rpE+JYVRhyQiIiLS4933xmq+c89b1Da0Nbv79OFjuPJDe1NSmB9hZCJKlrqsvKSQmvomALbuaFCyJCIiIrIHmpudnz+6gN8/vbh1XWlhPtedtS9n7j8iwshE2ihZ6qK+pYWs21YLBMnSyH4RByQiIiLSQ22va+TSO1/n8fnrW9dNGNSLP3zqIPYaomZ3kjnyonxxMzvOzDzBbUtcuX5mdouZVZpZtZk9bmb7Jni+EjP7uZmtNbMdZjbLzI5JUC7PzC43s2VmVmtmb5rZWR3F2re07UrS1h0Nu/+mRUQkI5nZ2WZ2j5ktD+uQBWZ2rZn1iSkztp16y82sIu750lYnifRka7bs4KybXtgpUTphymD+8+WjlChJxsmUK0tfBV6OWW5seWDBSAoPAGOBS4DNwOXAU2a2v7uvitnvVuBDwGXAEuDLwCNmdoS7vxFT7sfAt4ArgVeBjwP/MrPT3P1/iQIsj0mWtilZEhHJRt8CVgBXAKuAA4CrgePN7Eh3b44pey1wf9z+VXHLaauTRHqqd9Zt4/w/v9zaWgfgC8eM59snTyFfcydJBsqUZGm+u89uZ9sZwFHACe7+FICZzQKWAt8mSLQws/2ATwAXuvtfwnUzgbnAj8LnwcwGE1RK17n79eFrPGVmE4HrgIQVk64siYhkvdPdfUPM8kwz2wT8DTgOeDJm25IO6q2010kiPdELiyr5wm2vUlUXnBMvzDeu/ch0zj5oZMSRibQv0mZ4XXQGsKYlUQJw960EV5vOjCvXANwVU64RuBM4ycyKw9UnAUXAjLjXmQHsa2bjEgWhZElEJLvFJUotWlo9JNvbPK11kkhP87+313LeX15qTZT6FBfw1wsOVaIkGS9TkqXbzazJzDaa2T/MbHTMtmnAnAT7zAVGm1nvmHJL3b0mQbkiYGJMuTpgUYJyAFMTBXjDdT9uffyd7/0QM2u9iYhkq9jfuvhbjjg2vJ8ft/5aM2s0s61mdn+CfrRprZNAfxvpOf75ykq+8o/XaGhyAIaWl/DPLx7BURMHRhyZ9DRR/O5F3QxvK/ALYCawjaB9+BXALDM7wN3XA/2BZQn23RTe9wO2h+U2d1Cuf8z9Fnf3TsrtpLl2e+vjvJLeiYqIiEgWMbMRBE3mHnf3V8LVdcDNwKPABmAKQb31gpkd6u4tSVVa6ySRnuIvzy/lhw/Ma12eMKgXt332MIZXlEYYlUjXRXplyd1fd/dvufsD7j7T3W8ETgaGEPZFyhR/u+X3rY8/ecFFuHvrTUQkW8X+1sXfslnYauE+ggGHLmhZ7+5r3f2L7v5vd3/W3f8EHAM4wQAN3SZX/zbSc9z09KKdEqWpw8r55xeOUKIkuy2K371MaYbXyt1fAxYCh4SrNhNcPYrXP2Z7V8ptiilXYbter4svtxP1WRIRyQ1mVkrQL3Y8cFLcqKu7cPeVwHO01VuQ5jpJJNP9/unF/OzhBa3LB43pxx2fP5wBvYs72Esk82RcshSjJUWcS9CmO95UYIW7b48pN87MyhKUq6etPfhcoBiYkKAcwDwSKC9pS5aqapUsiYhkIzMrBO4GDgZOdfe3k9g99tRmWuskkUx288zF/PThd1qXj5wwgNs+e+hOJ55FeoqMS5bM7GBgMvBSuOp+YISZHRtTphw4nZ3nuHgAKAQ+GlOuAPgY8Ki714WrHyYYoeiTcS/9KWCOuy9NFFefnZKlxkRFRESkBzOzPOB24ATgwx0NDR6332jgaNrqLUhznSSSqW55dgnXPtSWKB0xfgC3nncIZUVRd5MX2T2RfnLN7HaC+ZJeA7YQDPBwObAa+HVY7H5gFjDDzC6jbVJaA37W8lzu/rqZ3QXcGJ4ZXApcDIwjphJy9/VmdgNwuZlVha/9MYLK8Yz2Yu1d0naottcpWRIRyUK/I0hufgJUm9nhMdtWufsqM/sFwYnGWQQDPEwmqJOaw/2A9NdJIpno9heXc81/2waOPGxcf249/2BKi/IjjEpkz0Sd5s8BzgUuAcqAdcC/gavcvRLA3ZvN7DTgeuAmoISgkjo+bCce6wKCyuoaoAJ4Ezg57AcV60qCEfS+BgwFFgDnuPuD7QXaJyZZ0pUlEZGsdEp4fyW7DtbwQ+BqgmZzFwPnA72BjQST1f7Q3RfE7ZO2Okkk0zzw5hq+95+2mV4OHdufv1ygK0rS85lGzemYmTlAY1MzE65om0h9yf+dSl6e5rIQkdzVMiaBu+vHsBu11EuqvyVTPLVgPRf97RUam4PP5PSRffnHRYfTu1iJknSfdNVJGddnKVPl5xm9Yi4jV9fr6pKIiIjktleXb+biGa+2Jkp7De7NXy84VImSZA0lS0nQIA8iIiIigSUbtvO5v71MbUMzACP7lXLbZw+jf6+iiCMTSR0lS0nQIA8iIiIiULm9jvP/8jKba4LpVAb0KmLGZw9jaN+SiCMTSS0lS0nYeZAHzbUkIiIiuaemvpHP/vVlVmyqAaCkMI9bzz+EsQN7RRyZSOopWUpCbPtbNcMTERGRXNPc7Fx65xu8uWorAHkGvzn3QPYfVRFtYCJpomQpCX3UDE9ERERy2PWPLuDRee+1Lv/wjGl8YOqQCCMSSS8lS0noU6wBHkRERCQ33fv6Km56enHr8mePHsenjxgbXUAi3UDJUhJ2GuBByZKIiIjkiFeXb+Y797zdunz85EFccereEUYk0j2ULCVhpz5LaoYnIiIiOWDd1lq+cNur1DcGQ4TvNbg3vz73APLzNB+1ZD8lS0nQaHgiIiKSS+oam7j49lep3F4HQL+yQm4975Cd5p4UyWZKlpLQR83wREREJIf8+MF5vL5iCwD5ecbvPnkgoweURRuUSDdSspSE2LMoGuBBREREstk/X1nJjNkrWpcvP2UKR04YGGFEIt1PyVISYvssaehwERERyVZzVm/le/+Z07p82vRhfPbocRFGJBINJUtJiB0NTwM8iIiISDbaVtvAl25/rXVAh8lD+vCzs6djpgEdJPcoWUpCuQZ4EBERkSzm7nzn7rdYsakGCFrV/OHTB1FWVNDJniLZSclSEnrHTEqrAR5EREQk2/zthWU8NGdd6/JPz5rOuIG9IoxIJFpKlpKw02h4aoYnIiIiWeStVVv4yf/mty5/5ogxfGj6sAgjEomekqUklBXl09Jct6a+icam5mgDEhEREUmB7XWNXHLH6zQ0OQD7jujLlR/aO+KoRKKnZCkJZrbTiHjVdU0RRiMiIiKSGlfdN5flG4N+Sn2KC/jdJw6kuCA/4qhEoqdkKUnlMXMtbdMgDyIiItLD3ffGau55bVXr8jX/bx9NPCsSUrKUJM21JCIiItli5aYavndv23xKHzlwBGfuPyLCiEQyi5KlJPXWIA8iIiKSBZqanUvveqN17sjR/cv40Zn7RByVSGZRspSkPpprSURERLLAH2Yu5tXlmwHIzzN+9fH9d2pBIyJKlpIW+yNSpbmWREREpAeau2YrNz6+sHX5a+/fiwNG94swIpHMpGQpSX1iBnhQsiQiIiI9TW1DE9+4683WYcL3H1XBl46bEHFUIplJyVKSNDGtiIiI9GS/fGwhC96rAqCkMI8bztmPgnz9SyiSiL4ZSdppNDxdWRIREZEe5JVlm/jjs0tal684dW/GD+odYUQimU3JUpI0wIOIiIj0RLUNTVx291t40PqO9+01kE8fPibaoEQynJKlJO00wIOa4YmIiEgP8YtHF7C0shqAPsUF/PSs6ZhZxFGJZDYlS0mKHeBBzfBERESkJ3h1+WZueW5p6/KVH9qb4RWlEUYk0jMoWUrSzs3wlCyJiIhIZgua3725U/O7jx0yKtqgRHoIJUtJ2mmABzXDExERkQz3qyfeZcmGoPldr6J8rlPzO5Euy6hkycweNjM3s2vi1vczs1vMrNLMqs3scTPbN8H+JWb2czNba2Y7zGyWmR2ToFyemV1uZsvMrNbM3jSzs7oSowZ4EBHJTmZ2tpndY2bLwzpkgZlda2Z94splTJ0k0pm5a7byx2faRr+7/NS9GaHmdyJdljHJkpmdC+yXYL0BDwAnA5cAZwGFwFNmNjKu+K3ARcAPgNOAtcAjZrZ/XLkfA1cDvwVOAWYD/zKzUzuLU5PSiohkrW8BTcAVBHXO74GLgcfMLA8yr04S6UhjUzPfvedtmpqD9neHjevPJw4dHXFUIj2LeUsD1iiDMOsHzAe+DvwD+Im7fy/cdibwH+AEd38qXNcXWArMcPevhuv2A94ALnT3v4TrCoC5wAJ3PyNcNxhYCVzn7lfFxPAEMMjdp8fF5gAtx6m2oYkp338YgMJ8Y+E1p+hStojkpJbfPnfPih9BMxvk7hvi1n0G+Bvwfnd/Muo6Kdy2U70k0p5bnl3CNf+dD0BRQR4Pf+19mlNJsla66qRMubL0U2COu9+RYNsZwJqWSgnA3bcSnNk7M65cA3BXTLlG4E7gJDMrDlefBBQBM+JeZwawr5mN6yjQksJ8isJZrhuanLrG5s7fnYiIZLz4RCn0cng/IrzPqDpJpD0rNtZw/aMLWpe/9v69lCiJ7IbIkyUzOxr4DPDldopMA+YkWD8XGG1mvWPKLXX3mgTlioCJMeXqgEUJygFMbSfO1tuObRtb1/fqN7CdsEVEer7Y3774W444NryfH95nRJ0E+ttI+9ydK//zNrUNwQndKUP78Pljxkcclciei+J3L9JkycyKgJuB6919QTvF+gObE6zfFN7362K5/jH3W3zX9gvx5drVXNdW9+UV9+qsuIiI9EBmNgL4EfC4u78Srs64Okkk3gNvreXZdysBMIPrzppOYX7k58dFeqSovznfBkqBn0QcR6fcvfV20PS2E30vvf52hFGJiKRX7G9f/C2bhVeI7gMagQsiDiehXP3bSMe27mjgRw/Ma10+74ix7D+qIrqARFIoit+9gs6LpIeZjQauBD4HFMe03yZcrgCqCM7M9dv1GVrPtm2OuR/TQblNMeUqzMzizuTFl2uXJqYVEcleZlZK0AdpPHCsu6+K2ZxxdZJIrOsfWUDl9joAhpQX880PToo4IpGeLcorS+OBEoJOrJtjbhAM37oZ2Jeg3fa0BPtPBVa4+/ZweS4wzszKEpSrp609+FygGJiQoBzAPDpRruHDRUSykpkVAncDBwOnunt884GMq5NEWryxcgszXlzeunzV6dN2mvJERJIXZbL0BnB8ghsECdTxBJXJ/cAIM2vpZIuZlQOnh9taPEAw18VHY8oVAB8DHnX3unD1wwQjFH0yLp5PEYzIt7SzwDUxrYhI9gnnUrodOAH4sLvPTlAs4+okEQjmVLri32/Tcn3yuMmDOGWfodEGJZIFImuG5+5bgKfj14ejWSx396fD5fuBWcAMM7uM4IrT5YABP4t5vtfN7C7gxvDM4FKCyQTHEVMJuft6M7sBuNzMqoDXCCqvEwiGeu1U7FmabUqWRESyxe8IkpufANVmdnjMtlVhc7yMq5NEAGbMXs68tdsAKC7I48dn7qOREUVSILJkqavcvdnMTgOuB24iaLo3Czje3VfGFb+AoJK7BqgA3gROdvfX4spdCWwHvgYMBRYA57j7g12JSX2WRESy0inh/ZXhLdYPgaszsU4S2VBVxy8eXdi6/NX378Wo/vEtQEVkd5hGzelYopnSb31uKT9+MGhGfv6RY7n6jETN10VEslu6ZkuXjiWqlyS3feOfb/Dv11YDMH5gLx669H0UF+RHHJVI90pXnZTUlaWwScLJwOHAcIJhvysJzoLNBP7j7onmlcgq5TFXltQMT0QkGqqTRODlZZtaEyWAq8+YpkRJJIW6NMCDmZ1nZm8DLwBfB8qAd4EXCdprHwbcAqw2s7+a2bg0xZsRduqztEPN8EREupPqJJFAY1Mz3//PnNblU/YZyjGTBkUYkUj26fTKkpm9BQwC/g58BngjwUzjmFlf4DSCjqvzzOx8d78rxfFmhHKNhiciEgnVSSJtZsxezjvrqgAoLczne6dN7WQPEUlWV5rh3Qrc7O61HRVy960EQ67ebmb7EXRSzUp9NM+SiEhUVCeJABu313HDY22DOnzlhImMqCiNMCKR7NRpsuTuv0r2Sd39TYJRf7JSeWnMlaU6XVkSEekuqpNEAtc/upBt4QnbsQPK+Nz71NpUJB2inJS2x9KVJRGRaJhZ/yTKfjydsYhEZc7qrdz58orW5R+cPlWDOoikyW7Ns2Rmo4BRBPNL7MTdn9zToDJd/DxL7q6J30REusdjZna8u2/rqJCZnQ/8CbizW6IS6SbuzlX3z6Wlp97xkwdxwpQh0QYlksWSHTp8PEEb8ENbVoX3Hj52IOtPbRTm51FSmEdtQzNNzU5NfRO9ijN+fl8RkWwwDnjYzD7o7tsTFTCzzwO/Bx7q1shEusF9b6zh1eXBiPiF+cb3NaiDSFol+x/+LcBo4FLgHaA+1QH1FOUlhdQ21AHB1SUlSyIi3eIk4DHgv2Z2srvviN1oZl8FbgTuA87p/vBE0qe6rpFrH5rfunzhUeMYP6h3hBGJZL9k/8M/BDjf3e9JRzA9SZ+SAtZXtSRLDQztu0uLRBERSTF3f9nMTgUeBu43s9PcvQ7AzC4Dfgr8C/iEuzdFGKpIyt08czHvbQv+9xjYu5ivnDAx4ohEsl+yAzysIoevJsXaaWJazbUkItJt3P0F4HTgSODfZlZoZlcRJEq3A+cqUZJss2pzDTc/s6R1+dsnT97pfxERSY9kk6X/A75jZr3SEUxPEjvIwzaNiCci0q3cfSbwYeAEYC7wA4I5mD7j7s0RhiaSFtc99A51jcFHe58R5Zx94MiIIxLJDUk1w3P328xsCrDMzGYDm3ct4uelLLoMVq7hw0VEul040FCLxcB3CPooPQhcB4yLHZ3U3Zcg0sO9vGwTD761tnX5B6dNIy9Po/CKdIdkR8M7H7gcaAIOZNcmeZ6asDLfThPTqhmeiEh3WUTiuuY04EMJ1mf9CK2S3ZqbnR89MK91+UPTh3HouC5PNyYieyjZAR5+CNwLfNbdt6Q+nJ5jpz5LO3RlSUSkm1wQdQAi3ene11fz9uqtABQV5HH5KVMijkgktySbLA0Absr1RAmgPKbP0tYdurIkItJN3g0HeBDJejX1jfz8kQWtyxe9bxwj+5VFGJFI7kl2gIfngL3TEUhP07esqPWxkiURkW7zrJmtNbM/mtkpZlbU+S4iPdOfnlnKum21QDBU+MXHaahwke6W7JWlrwH/NLPNBHNcxA/wQK6MQlRR2tYMb+sOjaYuItJNRhCMgncmQbPwOjN7JHz8X3ffFmFsIinz3rZa/jBzcevytz44id7Fyf7bJiJ7KtkrS/OBfYG/A+uBhrhbzmQNFWWxyZKuLImIdAd3X+fuf3D3U4BBwBcIBh36PbDBzB41s4vNbHikgYrsoesfWcCOhmC6sClD+/DRg0dFHJFIbkr2FMWPyKER7zpSUdrW8mNLjZIlEZHu5u5VwJ3AnWZWCLyf4IrT94DfmtmrwL3ufm2EYYokbc7qrdz92qrW5e99aCr5GipcJBLJzrN0dZri6HFirywpWRIRiZa7NxA0D38YuNjMDidorvdpQMmS9Bjuzv/9bz4enpo+Ycpgjt5rYLRBieSwZJvhSai8VM3wREQylbvPdvfvuvvUqGMRScbTCzbwwuKNAOTnGVecqqHCRaKUdE9BMzsPOBcYDZTEbXZ3n5CKwDJdn+IC8gyaHbbXNdLQ1ExhvnJPEZHuZmajgFHsWifh7k92f0Qiu6exqZn/+9/81uWPHzKKiYP7RBiRiCSVLJnZ9wkmpp0DvAHUpSGmHiEvz+hbWsjmsAne1h0NDOxdHHFUIiK5w8zGA7cDh7asCu89fOxAfgShieyWf76yinfXbwegV1E+l544KeKIRCTZK0ufBX7l7l9PRzA9TUVZUWuytKVGyZKISDe7haCVw6XAO+TQiKySfbbXNXLDYwtbly8+bgKD+uj/CpGoJZssDQAeSEcgPVFfzbUkIhKlQ4Dz3f2eqAMR2VN/fGYJlduDBjtDy0v47NHjI45IRCD5AR5mAvulI5CeSCPiiYhEahW6miRZ4L1ttfzpmSWty9/84CRKi9SCVCQTJJssXQpcYGafMbOBZpYXf0tDjBmrolTJkohIhP4P+I6Z9Yo6EJE9cePjC3eagPYjB46MOCIRaZFsM7yWxrR/aWe778Zz9lgVZTET02r4cBGRbuXut5nZFGCZmc0GNu9axM+LIDSRLnv3vSruenll6/IVp+6tCWhFMkiyic2PCBIiQXMtiYhEyczOBy4HmoAD2bVJnuoryXjXPfQOzeEn9X17DeSYSYOiDUhEdpJUsuTuV6cpjh4pthne1ho1mxcR6WY/BO4FPuvuWyKORSRpsxZv5Il31gNgBt89RRPQimSanOpjlGo7DfCgK0siIt1tAHCTEiXpiZqbneseapuA9v8dMIJpw/tGGJGIJNJpsmRm95vZAV19QjMrMbNvmNkXu1D2JDN70szWmVmdma0ys3+a2dS4cqPM7G4z22pm28zs32Y2OsHz9TOzW8ys0syqzexxM9u3nRh/bmZrzWyHmc0ys2O6+h5bxCZLmzXAg4hId3sO2DtVT2ZmI83sN2GdUGNmbmZjE5Tzdm77x5XLM7PLzWyZmdWa2ZtmdlY7r32Rmb0T1oULulKHSs/237fX8uaqrQAUFeTxzQ9OjjgiEUmkK1eWlgGzzexFM/uqmR1oZjs13zOz4Wb2YTO7FVhLMHnta1147v7Aq8BXgA8StD2fFr7emPC5y4AngSnAecCngb2Ap2JHQDIzI5gD6mTgEuAsoDAsFz+szK3ARcAPgNPCmB+Jr+g6s9MAD2qGJyLS3b4GXGRmnzSzASkYoXUicA7BQBHPdlL2r8ARcbeFcWV+DFwN/BY4BZgN/MvMTo0tZGYXATcD9xDUYf8CbjKzi5OMX3qI+sZmfv7IgtblC44ay4iK0ggjEpH2mHvn/V/NbALBsOGfBPoSdJrdBtQBFUARYMBLwO+BGe7etFsBmU0mmIn9W+7+CzP7GnADMNndF4VlxgHvAt929xvCdWcC/wFOcPenwnV9gaVhPF8N1+0HvAFc6O5/CdcVAHOBBe5+Rlw8DpDoOC3fWM2xP38agBEVpTz/3RN25y2LiPRIwTkqcPdIhu4ys+bwYXsVmbt7l/vmmlmeuzeHjz8H/AkY5+7L4so58BN3/14HzzUYWAlc5+5Xxax/Ahjk7tPD5QJgDfBQ7Mh9ZvZn4AxgmLs3xD13u/WS9Ax/fX4pVz8wDwgmuH/msuPpG9NaRUSSl646qUuViLsvBi4xs28SnD07DBgOlAAbCZKbZ9x9eQpi2hjeN4b3ZwCzWxKlMJ6lZvY8cCZBItVSbk1LohSW22pmD4TlvhpTrgG4K6Zco5ndCXzXzIrdva4rgfbv1XZlaWN1l3YREZHUSekIrS2JUoqcRHAicUbc+hnAn81snLsvJahTByUodxtwAXA08BSSNapqG/j1k63/0nDJCROVKIlksGRHw6sHZoa3lDGzfCAfGANcB6wD7gg3TwPuS7DbXOCjMcvTgDntlPuMmfV29+1huaXuXpOgXBFBM4y5CWJMGPvob96LFRRS29BMTX0jZUU5M82UiOSA9n77omJmR7r7CxD5CK0Xm9llBMOWzwaucvfYpnvTCFpfLIrbr6V+mUrQ8mFauBxff8WWS5gsdfS30VWnzHXzzCVsqg6a7o+oKOXTR4yJOCKRniOKOilTRsN7kaBSWQhMJ2hKtz7c1p9dJxoE2AT0i1nuqBwxZTsr17/rYUNTzZbWxxu3q9+SiEiaPRsOzvNHMzvFzIo63yXlZgBfAk4EPk8wKt+TZnZcTJn+wBbfNWuJr2ta7uPrpd2qkySzvbetllueW9K6/K2TJlFckB9hRCLSmUxJlj4NHA58gqAv1GOJRiCKkrsnvO03ZUJrmZYzRSIi2aK9374Ir1yMIJhfaRTBHEsbwlFUzzWz8u4IwN0/7e53ufuz7j6DoKncGuCa7nj9mDgy7W8jnbjx8YXUNgStPacOK+fM/UZEHJFIzxLF715GJEvuPt/dX3T3O4D3A72B74abN7PzFaQW8VeIOipHTNnOym1KsK1d6rckItJ93H2du//B3U8h6OvzBYKmcL8nSJweNbOLzWx4N8ZUBfwXOCRm9WagwnZtMxJf17TUTfH10m7VSZK5Fq2v4q6XV7Yuf/eUKeTlZVYzVxHZVUYkS7HCyQUXEfQdgqDd9rQERacC82KWOyq3Iuyv1FJuXDgkeXy5enZtX96hAbHJkprhiYh0G3evcvc73f1cgsTpTGAx8D1gpZm9ZGaXd2dIMY/nAsXAhLgyLfMIzospB7vWX/HlpIf72cMLaA4/IUdPHMgxkwZFG5CIdEnGJUtmNoRgTqXF4ar7gcPNbHxMmbHAUeE2YsqNMLNjY8qVA6fHlXuAYP6lj8aUKwA+Bjza1ZHwWvTvVdz6WM3wRESi4e4N7v6wu1/s7iMI6ognCZp5p1VY15xGMH1Gi4cJRl79ZFzxTwFzwpHwAGYBle2U2wQ8n/KApdu9smwTj857r3X5u6dMiTAaEUlGpEO3mdm9BJPXvkXQV2kS8HWCYcN/ERb7E8GktfeZ2fcIztz9mGD+iptjnu5+gkpnRjhC0WaCSW4N+FlLIXd/3czuAm40s0KC0YguBsaxa2XVqQG9264sKVkSEUkvM5vq7p1ebXH32QSj1H23s7Jxz392+PCg8P4UM9sAbHD3mWb2LWAywQh1awhGcf0WMJSYOsTd15vZDcDlZlZFUNd9DDiBYAqLlnINZvZ9gkloVwOPh2UuBC4JR6GVHszdufahd1qXz9hvOPuM6BthRCKSjKjHuZ5NMFv6NwmG7V4JPA1c2zIJoLtXm9kJwC8J5p0w4Ang0pimdbh7s5mdBlwP3EQwB9Qs4Hh3b2skHLgA+AlBZ9wK4E3gZHd/Ldk3ENsMr1LN8ERE0m2OmVUCzxFMY/EM8EaCUed217/ilm8K72cCxwELgP8X3voSnOh7Hvisu78Ut++VwHbgawTJ1ALgHHd/MLaQu/8hnGj2m8BlwArgK+5+E9LjPTbvPV5dHnRNK8w3LjtpcsQRiUgyLJn6xcwOB04mGLluOFBK0HxgAUFF8h93TzQsd4/V2Uzpj85dx+dvexWA4ycP4i8XHNp9wYmIRChds6V38ppfBt4X3oYRtDZoSVieCW8vu3tTd8XU3TqrlyRzNDY1c9KNz7B4QzUAFxw1lqtOT9S9WkT2VLrqpC71WTKz88zsbeAFgmZyZcC7BPMjbQYOA24BVpvZX81sXCqDzGRqhici0n3c/Xfu/vGwX9IkgnmO7icYEOE6gqRpi5k9FjbdFonM3a+uak2UehcX8JXjJ3ayh4hkmk6b4ZnZWwSjDP0d+AztNHcws74EHVw/Ccwzs/Pd/a4Ux5txBsQM8LBRyZKISLdx90UEI5jeCmBmI4BjCZp3n07Q96db5z4SabGjvolfPr6wdfmLx45nQO/iDvYQkUzUlT5LtwI3u3ttR4XcfStwO3C7me1H0D476/XXlSURkUiZ2WjgmJjbJIK+QrOijEty25+fX8p724IBdgf3KebCo3Om0Y1IVuk0WXL3XyX7pO7+JsGgCVmvT3EBRQV51Dc2U1PfRHVdI72Kox43Q0Qke5nZJNoSo/cRjEi3nmDQh9+H96+7e3NkQUpO21xdzx+eXty6fOmJkygr0v8GIj1RUt9cMxsIHEpQMeURDLv9fHhVKSeZGYP7FLNq8w4A1lfVMU7JkohIWpjZWmAwwVx8zxNMJfGsu78baWAiMX731CKq6hoBGD+oF+ccPDLiiERkdyX7X/16gpGHWkaZcKDRzO4HrsjVyio2WXpvWy3jBvaKOCIRkaw1BKgB5gNzw9vSDvcQ6Ubrt9Xy99nLW5e/fdIUCvK7NJ6WiGSgZJOlqwkqqBVAb4J+SScAHwU+aGbHuvsbqQywJxhSXtL6eH1VXYSRiIhkvaG0NcH7FMEIeLVm9iLwbHib5e410YUouezW55ZS3xi0AN1vZF9OmjYk4ohEZE8klSy5+48SrL7dzL4D/Be4gSB5yimD+7SNbrN+W4fjYIiIyB5w9/XA3eGtZSTWlr5LJwNXhOtfB55x98siClVy0NaaBmbEXFX68vETW+d+EZGeKSXXhd29kmB41sNS8Xw9zWBdWRIRiYS7b3X3B9z92+5+OEHi9D/gYOAb0UYnueZvs5ZRXR/MhzxpSG9O3FtXlUR6ut0eicDMDgYmA6uAIuBzwNoUxdWjxDbDe09XlkREuoWZ5QEH0tYs72igH0G/2vXAM9FFJ7mmuq6RPz/f1n3uS8dNJC9PV5VEero9GbZtb+CPBIlSLfAQwYS0OWfnZni6siQiki5mdjRtydERBP1njeDE3cPATILmdwsiC1Jy0h0vrWBLTQMAo/qXctr0YRFHJCKpsNvJkrvfZmb/JOij9EVgClCZqsB6kp2uLFXpypKISBq1XC1aTNBv6RlgprsviywiyXl1jU3c8mzbVaUvHDNBI+CJZIlk51m6wN3/0rLs7nUEV5QeMrNrgFuA41MbYuaLvbK0QVeWRETS6RMEV47WRB2ISIs/P7eMdWEz/EF9ijn7IM2rJJItkj3tcbOZvWpmZ5lZfty2NwgmrM05FWWFFIVnkKrqGqmpb4w4IhGR7OTudypRkkyyYmMNv3piYevyF4+dQElh/L9IItJTJZssHUrQP+lfwAYze9DMfmVmNwN/AFamOsCewMwYpH5LIiJpZ2b3m9kBSZQvMbNvmNkX0xmX5CZ353v3zaG2IZhXaeqwcs47YkzEUYlIKiWVLLn7G+5+FHAK8ARB8nQJcBFQTdB3KScNKW9LltZpRDwRkXRZBsw2sxfN7KtmdqCZ7dSk3MyGm9mHzexWglFaPwu8FkGskuXuf3MNzyzcAIAZXPuRfdVXSSTL7NYAD+7+CPAIgJmVAwXuvimVgfU0wypKYcUWANZs2RFtMCIiWcrdv2pmvwIuBa4G+gJuZtuAOqCCYJRWA14Ky81w96YIwpUstrWmgR8/OK91+bwjxrLfqIroAhKRtNiTocMBcPdtqQikpxtZUdr6ePVmJUsiIuni7ouBS8zsmwTDhx8GDAdKgI3AOwSDQCyPLkrJZrUNTXzljteo3F4PwNDyEr75wUkRRyUi6dBpsmRm9wNXufvrXXlCMysBvgTUuPsf9jC+HmNEv5hkSVeWRETSzt3rCeZVmhl1LJI7ahuauOjvr/Dsu22zpVx9xjT6lBRGGJWIpEtXGtYuQ+3DOzW8r5IlERGRbFbb0MTnb3t1p0Tpmx+YxMn7DI0wKhFJp06vLKl9eNfsdGVJzfBERESyzrfvfqt1QAeAr584iUvev1eEEYlIunWpz5Lah3cuvhmeu2NmEUYkIiIiqbK0spr732yb4uvSE/fiaycqURLJdkkN8KD24e0rLymkT0kBVbWN1DU2U7m9fqe5l0RERKTnuvPlFa2Pj588iEtP1IAOIrlAkwGk0IgK9VsSEekuZtYr6hgkN9Q3NnP3K6talz91uCaeFckVSpZSaKT6LYmIdKd/dLTRzIq6KxDJbo/Ne4+N1cEw4cP6lnDspEERRyQi3WWPkiUzyzezaWZ2rpldZ2b/S1VgPdHOV5ZqIoxERCQnTDKza+NXhnXTRcCiCGKSLHTHS21N8M45eBQF+TrXLJIrutxnycwGAvsB02Pu96ZtJLw64O00xNhjjOpf1vp4+UYlSyIiaXYGMMvM5rj77QBm9gmCkVsnAm9GGJtkieUbq3luUTBUeJ7BOYeMijgiEelOXZmU9gLgRwSj37WoJhgm/HfAG+Ftfq4NFx5v7IC25vNLK6sjjEREJPu5+7tm9jHgXjMbApwP7APMBT7q7vdEGZ9khztfXtn6+LjJg3dqRSIi2a8rV5auAzYD3wUWAN8EDicYEe//cj1BijVuUFuytEzJkohI2rn7E2b2HYKTdwuAc4F/urtHG5lkg4amZv4VM7DDuYeOjjAaEYlCV5KlQcC57v5kuHy/mX0ZuBY408zOd/c5aYuwBxnVr4w8g2aHNVtrqW1ooqQwP+qwRESykpk9ArxO0NzuMaAf8B8lSpIqd760gsrtdQAMKS/m+Mka2EEk13Slh+J44MXYFe7+O4I+S1uAV8zsSjPL+d6ORQV5jOzX1m9p2UZdXRIRSaNi4AvA7cAHgIOBV83s92b2eTM7NNLopEfbUlPPLx5b2Lp8/pHjNLCDSA7q9Fvv7svcfZf/+sP1JwJfBS4DXjSzaWmIsUcZN1BN8UREuoO7H+fu/QhO6p0F/BhYAnwI+AMwK8LwpIe78fF32VLTAMCo/qVccNTYaAMSkUjs8SkSd/8jQYfaSuDVru5nZmeb2T1mttzMdpjZAjO71sz6xJXrZ2a3mFmlmVWb2eNmtm+C5ysxs5+b2drw+WaZ2TEJyuWZ2eVmtszMas3sTTM7azfeekKxydISJUsiImkXnry7192vcvcz3H00QRPyDybzPGY20sx+E9YfNWbmZjY2QbmU1zdmdpGZvWNmdWF9+MVkYpfUeve9Km6bvbx1+cpT91azepEclZLrye6+yt1PIWgO0VXfApqAK4CTgd8DFwOPtTTpMzMDHgi3X0Jw5rAQeMrMRsY9363ARcAPgNOAtcAjZrZ/XLkfEwwr+1vgFGA28C8zOzWJ2NulK0siItFz943u/kSSu00EziEY1OjZDsqltL4J54S6GbiHoL77F3CTmV2cZPySAu7Oj/87n6bmoOvb4eP7c9K0oRFHJSJRsaj6wZrZIHffELfuM8DfgPe7+5NmdibwH+AEd38qLNMXWArMcPevhuv2Ixi+/EJ3/0u4roBg+NgF7n5GuG4wsBK4zt2vinndJ4BB7j49QZwOwY9nV8xcuIHz/vwSAAeP6cfdFx/Zpf1ERHqa4HwWuLtFHEpKmFmeuzeHjz8H/AkY5+7LYsqktL4J910DPOTu58WU+zPBPFLD3L0hLs6k6iVJzpPvvMeFf30FCOZVevCS9zF1eHnEUYlIZ9JVJ0XWUzE+UQq9HN6PCO/PANa0JErhflsJrjadGbPfGUADcFdMuUbgTuAkMysOV59EMInujLjXnQHsa2bjdu/dtNlrcO/Wxwveq1JlJiLSQ7QkSp1IdX1zBEGTwfhytwEDgKOTeQ+yZ+oam/jxg/Nblz9+6GglSiI5LtOGdTk2vG/5pZoGJBqWfC4w2sx6x5Rb6u41CcoVETStaClXByxKUA5g6m7G3WpY3xL6lAQjslfVNrJ2a+2ePqWIiGSOVNc3LQMjxdd1KauXpOv+8vyy1knly0sK+OYHJkUckYhELWOSJTMbAfwIeNzdXwlX9ydoOx5vU3jfr4vl+sfcb0kwB0d8uUTxtXuLLzdlaNsYFQvWVbX3lCIiGa+rv305JNX1Tct9/HOmrF6Srlm/rZbfPPFu6/LXPzCJAb2LO9hDRLpbFL97GZEshVeI7gMagQsiDmePTY5Jlt5RsiQiIpLxrnv4HarrmwCYNKQ3nzp8TMQRiUgmKIg6ADMrJeiDNB441t1XxWzeTNvVo1jxZ+I2A4l+1VrKbYopV2FmFne2L77cLpLpezR5aFv75gXrtnV5PxGRTNPRb1+OXsFIdX3TUo/1IxhVr71yu1Cf2NR5dflm/v3a6tblq06fRqEmoBXJOFHUSZH+EphZIXA3wazrp7r723FF5tLWnjvWVGCFu2+PKTfOzMoSlKunrc34XIIZ3yckKAcwL+k3kcAUXVkSEclWqa5vWvomxdd1Ka2XpH1Nzc7V989tXT552lCOmjgwwohEJJNEliyFcyndDpwAfNjdZycodj8wwsyOjdmvHDg93NbiAYL5lz4aU64A+BjwqLvXhasfJhjF6JNxr/MpYI67L92jNxWaNKQtWVq8YTv1jV0ZYElERHqAVNc3swgmdU9UbhPwfEqjl13848XlvL16KwBFBXlc+aG9I45IRDJJlM3wfkdQ2fwEqDazw2O2rQqb491PUJHMMLPLCJorXA4Y8LOWwu7+upndBdwYXq1aSjDB7ThiKiB3X29mNwCXm1kV8BpBBXcCwXCwKdG3tJBR/UtZuWkHDU3OgnVV7Duyb6qeXkRE0sTMzg4fHhTen2JmG4AN7j4z1fWNuzeY2fcJJqFdDTwelrkQuMTd69P5fnPdhqo6fvbIgtblLx83kVH94y8aikguizJZOiW8vzK8xfohcLW7N5vZacD1wE1ACUHydLy7r4zb5wKCxOsaoAJ4EzjZ3V+LK3clsB34GjAUWACc4+4PpuJNtdhvZAUrN+0A4I1VW5QsiYj0DP+KW74pvJ8JHBc+Tml94+5/CCea/SZwGbAC+Iq734Sk1bUPzaeqthGAsQPK+MKx4yOOSEQyjamDaMd2d6b0Pz2zhJ/8L5gu6qMHjeTnH90v9cGJiEQoXbOlS8d2t16Snc1espGP/7GtB8DfLjyUYycNijAiEdkT6aqTNNRLmuw3qqL18ZurtkQWh4iIiOysoamZH9zXNg/wqfsOVaIkIgkpWUqTfUaUkxfmte+u3872usZoAxIREREAbn1uKQvfCwbULSvK5/unTe1kDxHJVUqW0qSsqKB1VDx3eEtXl0RERCK3anMNv3r83dblS0/ci2F9SyOMSEQymZKlNDpgdNt8ui8tbXdeQREREekmP3xgHjsamoBgXsQLjhoXcUQiksmULKXR4eP7tz5+cYmSJRERkSg9Nu89Hpv3XuvyNR/eh8J8/SskIu3TL0QaHTZuQOvj11Zspq6xKcJoREREcldNfSNX3z+3dfljB4/i4LH9O9hDRETJUloN7VvCmAHB5HZ1jc28tWprxBGJiIjkpl89/i6rtwTzH/YrK+S7p0yJOCIR6QmULKXZYePazlrNWrwxwkhERERy05zVW/nTs0taly8/dW/69SqKMCIR6SmULKXZkRMGtj5+esH6CCMRERHJPY1NzXznnrdoDufwPWL8AD560MhogxKRHkPJUpodO2kQ4YTCvL5yC5uq66MNSEREJIf8+fmlzF2zDYCigjz+7yP7Yi0Vs4hIJ5QspVm/XkUcMKoCCOZbembhhmgDEhERyRErNtZww2MLW5e/9v69GDewV4QRiUhPo2SpG5wwZXDr4yffUVM8ERGRdHN3rrj3bWobmoFgTqXPHzM+4qhEpKdRstQNjo9JlmYu3EBjU3OE0YiIiGS/O15ayXOLKgEwg+vOmq45lUQkafrV6AZTh5UzpLwYgK07GnhpqSaoFRERSZdVm2v4yX/ntS5f9L7x7B82iRcRSYaSpW5gZpw0bWjr8gNvrYkwGhERkezl7nz3nreprg8mgh8/qBff+MCkiKMSkZ5KyVI3OWO/4a2PH5qzjvpGNcUTERFJtdjmd3kGPz97P0oK8yOOSkR6KiVL3eTA0f0YUVEKwJaaBp5bpFHxREREUmn5xuqdmt997n3jOWhMvwgjEpGeTslSN8nLM06bPqx1+f431BRPREQkVRqamvnqnW+0Nb8bqOZ3IrLnlCx1o9NjmuI9PHcdW3c0RBiNiIhI9vjlYwt5c+UWAArzjRs/vr+a34nIHlOy1I2mDS9n72HlANQ2NHPfG6sjjkhERKTne2FxJb+fubh1+VsfnMz0kRXRBSQiWUPJUjcyMz5x6KjW5X+8uAJ3jzAiERGRnm1zdT3fuOtNWqrToyYO4KL3afJZEUkNJUvd7MwDRlBSGBz2d9ZV8XrYZEBERESS4+58+563WLetFoB+ZYXccM7+5OVZxJGJSLZQstTNyksKOX16W9+lv7+wLLpgREREerAZL67gsXnvtS7//Oz9GFJeEmFEIpJtlCxF4DNHjG19/OBba1mzZUd0wYiIiPRAC9ZVcc2DbcOEn3fEGE6cOiTCiEQkGylZisC+I/ty2Lj+ADQ2O3/V1SUREZEuq21o4qt3vE5dOMH7lKF9uPzUvSOOSkSykZKliMR2Pr3jxRVU1WoYcRERka645r/zWPBeFQAlhXn85twDNEy4iKSFkqWInDBlMOMH9QKgqq6RO19aGXFEIiIime/Bt9YwY/aK1uUfnDaNvYb0iTAiEclmSpYikpdnfO7otqtLNz+zhB3hrOMiIiKyq2WV1Xz3nrdblz+07zDOjZmSQ0Qk1ZQsReisg0YwrG8wak/l9jpmzF4ecUQiIiKZqbahiS//4zW21zUCMGZAGdeetS9mGiZcRNJHyVKEigvy+dLxE1uX/zBzMTX1jRFGJCIikpmu+e885q7ZBkBRfh6/+8SBlJcURhyViGQ7JUsRO+fgkQwPry5trK7nby/o6pKIiEisu15esVM/pe+ftjf7jOgbYUQikiuULEWsuCCfL5/QdnXppqcXsam6PsKIREREMscryzbxvf/MaV3+0PRhfOrwMRFGJCK5JNJkycxGmtlvzGyWmdWYmZvZ2ATlSszs52a21sx2hOWPSVAuz8wuN7NlZlZrZm+a2VntvPZFZvaOmdWZ2QIz+2Ia3mKXnHPwKMYPDEfGq23kxscXRhWKiIh0wsyOC+ur+NuWuHL9zOwWM6s0s2oze9zM9k3wfF2q43LRmi07+OKM12hocgD2HlbOz8+ern5KItJtor6yNBE4B9gMPNtBuVuBi4AfAKcBa4FHzGz/uHI/Bq4GfgucAswG/mVmp8YWMrOLgJuBe4CTgX8BN5nZxXv2dnZPYX7eTpPp3f7iChatr4oiFBER6bqvAkfE3E5s2WDBf/MPENQxlwBnAYXAU2Y2Mu55ulrH5ZTK7XV8/rZXqNxeB0D/XkX86TMHUVZUEHFkIpJLzN2je3GzPHdvDh9/DvgTMM7dl8WU2Q94A7jQ3f8SrisA5gIL3P2McN1gYCVwnbtfFbP/E8Agd58es+8a4CF3Py+m3J+BM4Bh7t4Qs94B0n2c3J1P3vIiLyzeCMDREwdy22cP1dkzEclYLb9P7p5TP1RmdhzwFPABd3+8nTJnAv8BTnD3p8J1fYGlwAx3/2q4rkt1XNxzd0u9FKWnFqznsn+9SeX2oFl6QZ4x43OHcfj4ARFHJiKZKl11UqRXlloSpU6cATQAd8Xs1wjcCZxkZsXh6pOAImBG3P4zgH3NbFy4fAQwKEG524ABwNHJvIdUMTOu/NDe5IV/3ucWVXL3q6uiCEVERPbcGcCalkQJwN23ElxtOjOuXFfquJxQ19jEVffN4YK/vNyaKAH86Mx9lCiJSCSibobXFdOApe5eE7d+LkFyNDGmXB2wKEE5gKkx5QDmdFKu200b3pcLjhrXuvzjB+exvqo2qnBERKRjt5tZk5ltNLN/mNnomG3T2LWegaCuGW1mvWPKdaWOywnf/88c/jarbVTYQX2K+fuFh/KJw0Z3sJeISPr0hGSpP0GfpnibYra33G/xXdslJCpHgueML7cTM2v3lkrf/OAkRvUvBWBbbSNX/PvtrG5qISKZrbt++3qYrcAvgM8BJxD0lz0RmBU2CYfO665+XSyXsE6C7PvbzFy4gX++0tai4gNTh/DIpcdwzKRBEUYlIpkkit+9npAs5ZSyogKu+8j01uXH56/nlmeXRhiRiIjEcvfX3f1b7v6Au8909xsJBnIYQjDogyRpe11wcrDFqfsO5Y+fPoj+vYoijEpEpGckS5tpOwMXq+Vs26aYchW2a2qZqBwJnjO+3E7cvd1bqh01cSDnHzm2dfm6h99hVjjwg4hId+rO376ezN1fAxYCh4SrOqu7NnexXMI6KXzNrPnb/Pzhd1i9ZQcAFWWF/PCMfXrsFTIRSZ8ofvd6QrI0FxhnZmVx66cC9bT1UZoLFAMTEpQDmBdTDtr6LrVXLlJXnLo3+4+qAKCp2fn8319h/tpt0QYlIiKdaamx57JrPQNBXbPC3bfHlOtKHZe1Xl62aad+SledPpVBfXJqXAsRyWA9IVl6gGBuio+2rAiHVf0Y8Ki714WrHyYYUeiTcft/Cpjj7i1t2WYBle2U2wQ8n9Lod1NRQR6/++SBrRVGVV0jn/nzS0qYREQykJkdDEwGXgpX3Q+MMLNjY8qUA6eH21p0tY7LSis31XDpnW+0Lh8/eRAf3n9EdAGJiMSJfGY3Mzs7fHhQeH+KmW0ANoRtwV83s7uAG82skGCOiouBccQkPO6+3sxuAC43syrgNYLK5gSCoVlbyjWY2fcJJqFdDTwelrkQuMTd28YqjdiIilL+esEhfPzm2VTVNbKhqo5zbp7FzZ8+iCMnDIw6PBGRnGRmtxPURa8BW4ADgMuB1cCvw2L3E5ycm2FmlxE0t7scMOBnLc/V1TouG63YWMO5f5rd2vyud3EBP/l/+6r5nYhklEgnpYW2yfUSmOnux4VlSoGfAJ8AKoA3ge+4+9Nxz5VPUBldBAwFFgA/cve7E7zuF4BvAmOAFcAv3f2m9uKL8ji9tHQTn/3ry1TVNQKQZ/C190/iy8dPoCC/J1wcFJFslMOT0l4OnEtQf5QB64CHgKvcfW1Muf7A9cCHgRKC5Okb7v5m3PN1qY6LKR95vbSnVmys4eN/nMWarcH0GEUFefzpMwdzrEa+E5HdlK46KfJkKdNlSqU0d81Wzv/Ly2yoamuRsfewcq758D4cNCZR32ARkfTK1WQpaplSL+2uZZXVfOJPs1sTpeIwUdIQ4SKyJ5QsRSSTKqV1W2v56p2v89LSnQdHOuvAkXz75MkMKS+JKDIRyUVKlqKRSfVSshat384nb5nNe9uCE3/FBXncct7BvG8vJUoismeULEUk0yqlxqZm/vTsUn71xEJqG5pb15cV5fPl4yfy2aPHUVKYH2GEIpIrlCxFI9Pqpa5asK6KT97yIpXbg0SppDCPWz5zCEfvpT64IrLnlCxFJFMrpVWba/jRA/N4dN57O60f1b+UK0/dm5OmDVUnWRFJKyVL0cjUeqkj775XxTk3z2JzTQMQnOD78/mHcPj4ARFHJiLZQslSRDK9Unp+USU/emAeC96r2mn94eP786Mz92HSkD4RRSYi2U7JUjQyvV6KV1PfyOm/eY7FG6qBYNS7v15wCAeP7d/JniIiXadkKSI9oVJqbGrmjpdW8IvHFrIlPGsHUJhvfPn4iXzpuIkUFWjUPBFJLSVL0egJ9VKsb/3rTe5+dRUApYX5/OOiwzhgtAYmEpHUUrIUkZ5UKW2pqefGx9/lttnLaWpui3fykD787Ozp7DeqIrrgRCTrKFmKRk+ql/792iq+8c+2kdJ/fvZ0PnrwqAgjEpFspWQpIj2pUmqxYF0V37nnLd5YuaV1XZ7BZ48exzc+MJnSIg0AISJ7TslSNHpKvbRgXRX/76bnqalvAuAjB4zgF+fsp/60IpIWSpYi0lMqpXhNzc5fX1jG9Y8sYEdDU+v6MQPKuO4j0zligjrVisieUbIUjUyulxqamnli/nruenkFMxduoKWRw/iBvXjgkqPpVVwQbYAikrWULEUkkyulrlixsYbL732L5xdt3Gn9xw4exVdOmMio/mURRSYiPZ2SpWhkar00f+02vnz7ayyprN5pfVFBHv/50lFMHV4eUWQikguULEUkUyulZLg7/3xlJdf8dz5VtY2t6/MMTpo2lNP3G85xkwdRVqQzfiLSdUqWopGJ9dK/X1vFFfe+vdP8fwBHTRzANz4wiYPGaOQ7EUkvJUsRycRKaXe9t62W7/1nDo/Fzc0EUJBn7D2snGnDyxnVv4yR/UoZUVHKsIpShvQppiBfo+mJyM6ULEUjk+qlusYmrnlwPrfNXt66rqwonwuPGsc5B49i9AC1XhCR7qFkKSKZVCmlgrvz3KJKbp65hOcWVXZpnzyDIeUlDK8oZUz/MqaP7Mt+oyqYOryc4gINFiGSq5QsRSNT6qVF66u45I43mL92W+u6CYN6cfOnD2LiYM3xJyLdS8lSRDKlUkqHhe9V8eBba3lkzrpdJrXtipLCPI6cMJDjJw/iuMmD1f9JJMcoWYpG1PWSu3PHSyv50YNzd2p296F9h/HTs6fTW4M4iEgElCxFJOpKqbtsrWngzVVbWLxhO6s372DV5h2s2bqDNVtqqdxe16Xn2HdEX07fbxgfmj6cERWlaY5YRKKmZCkaUdZL67bWcuW9b/PEO+tb1xUV5HHFKVM478ixGhZcRCKjZCkiuZIsdaSusYl1W2tZvXkHC96r4s2VW3h95RaWb6xpd5+Dx/Tj9P2Gc+q+wxjUp7gboxWR7qJkKRpR1Evuzl0vr+Qn/51PVV3bQEGThvTm1+cewJShGulORKKlZCkiSpbat2JjDU8tWM+T76znhcWVNDTteowK8oz37z2Yjx8ymmMmDSI/T/9TiWQLJUvR6O56afGG7Xz/P3N4YfHOU1Ccf+RYvnvKFEoK1XdVRKKnZCkiSpa6ZmtNA4/MW8cDb67hhcUbaWre9XgNLS/hnINH8qkjxjC4T0kEUYpIKilZikZ31Us76pv43VOLuPmZxTudDBs7oIyfnjWdw8ZrcnMRyRxKliKiZCl5ldvreGjOOu57fTWvLN+8y/ai/DzO2H84nz16HHsPU9MNkZ5KyVI00l0vuTsPvrWWnz78Dqs272hdn59nfPbocXz9xEmUFulqkohkFiVLEVGytGcWrd/OP19ZyT2vrmJjdf0u24+eOJDPvm8cx+41iDw10RPpUZQsRSOd9dIryzZxzX/n88bKLTutP3B0Bdd8eF+mDtcJLhHJTEqWIqJkKTXqG5t5bN573PrcEl5bsWWX7aP7l/GxQ0bx0YNGMrhcTfREegIlS9FIR700Z/VWbnx8IY/PX7/T+n5lhXz3lCl89KBROqElIhlNyVJElCyl3qvLN/Pn55by0Jy1xHdtys8zDhrdj2MnD+KA0RVMG9aXvmWF0QQqIh1SshSNVNZL89Zs49dPvMvDc9fttL4oP48LjhrLl46fSN9S/QaLSOZTshQRJUvps3JTDX95fhl3v7qSbbWN7ZYb1reE8YN6MW5gL8YP7M34Qb2YMKg3wytKNbqeSISULEVjT+sld2f2kk38YeZiZi7cEPfccNr04Xz7pMmaaFxEehQlSxFRspR+tQ1NPDRnLXe8tJKXl22iq4e6qCCP8QN7ccjY/hw1cSBHTBigM6Ai3UjJUjR2t16qbWjiv2+t5e+zlvHmqq27bD952lAu/cBemjNJRHokJUsRUbLUvSq31/H0gg28tHQj89ZuY+G67dQ3NXdp3zyDfUdWcMT4ARw+vj8Hj+1P7+KCNEcskruULEUj2XppWWU1d768kn++spJNcQPtmMEp+wzlS8dNZJ8RfVMfrIhIN1GyFBElS9FqaGpm5aYalmyoZknl9uA+fFy5fdfR9WLl5xnjBvZi8tA+TBnSh72HlTN1eDnD+pa0fqFEZPcpWYpGV+qlmvpGHnp7Hf98ZSUvLt20y/aigjzOPmgkn3/feMYO7JW+YEVEuomSpYgoWcpcW3c0MGf1Vp5fVMlziyp5e/XWLjXhqygr5OAx/fng1CGcOHUI/XsVpT9YkSykZCka7dVL9Y3NPLNwA/e/uYbH5r3HjoamXfYdUVHKpw4fwzkHj2RA7+LuCVhEpBsoWYqIkqWeY0tNPS8u3cTsJRuZvWQT89du63SfooI8Prz/cL5w7AQmDOrdDVGKZA8lS9GIrZeq6xqZuXADj8xdx5PvrKcqwWA5+XnG8ZMH8fFDRnP8lMEaGEdEspKSpYgoWeq5qusaWfheFQvfq+KddVXMX7uNeWu2JRx5Lz/P+MSho/naiXsxUGdb08LdWbu1lrVbd7C9romaukYK8vPoVZTPoD7FjOpfRklhftRhShKULEWjpV761C2zeXHpJuobE/frnDi4Nx85cARnH6j560Qk+ylZioiSpezi7iytrOaJ+et54K01vBU3IlSf4gK+duJefOaIsRQV5EUU5e6pb2ymqraB2sZmdtQ3UdvQRGOz09TcTFMzNDU7ze40NTtN7jQ3O43NwX1TuL6sqID+vQqpKCuif1kRfUsLk56IcntdI8sqq1laWc3iDUE/s8UbtrO0spqa+l2bBbUwg7EDenHQmH4cPKYfh48fwJgBZepflsGULEWjpV4a850Hd9k2sl8pp00fzhn7DWfvYX30/RGRnKFkKSJKlrKXu/Pais1c/8hCZi3ZuNO28YN68f3TpnL85MERRde+rTsaeGvVFuas3sacNVtZsbGGtVtrqdxel/LXyjOoKCuiX1kh/XsVtSZRJYVBIukEydHWmgY21dSzctOOlMYxoqKUIyYM4MgJAzhiwgCG9S3t8r71jc1s3dFAVW0DDuSZkW+GGeTlGRauMwMDMHCnNaFsedwc3rs7BXl59C4poHdxAcUFeTn/j6iSpWjEJ0tThvbhg9OGctK0IUwdVp7zn0sRyU1KliKiZCkQ8wGMOJLUc3eefGc9P/nvfJZUVu+07YQpg/nuKVOYNKRPZMegtqGJ15Zv5rlFlTwfDmTR3EP/DH1LCxkzoIzykkJKi/Jpbna21zWyZusOVm/e0en7GlpewpgBZQwuL6GsMB8zqK4PmvRV1TaydUdD6y1R5/ZUam6oY6/h/RkzoBdThvbhkLH9OWhsP8pLUjPXV31jM6s217Cpuh4zY0CvIkb2K6UgP3OueCpZikZLvfSPF5dz7KRBDK/o+kmEbJHNdVIydBx0DFroOChZioySpUAufAnrG5v5+6xl/Orxd6mq27lf01ETB/CfG77DjsWv0FxX3c4zpEZzszNv7bbW5OilpZuoa6dPQqw8C5KR0sJ8SgrzKS7MpzDfyM8Lrqjkhff5ecHjgjwLrrbkBX22zIyaukY21zSwuaaeTdvrdzkOXVGUn8eo/qWMHdCLCYN7M35g233/XkXtnvWubWhi7pqtvLxsMy8u2chLSzdR3UGzvUxUmG8cOWEgp+wzlA9MHZLUaGNNzc5bq7bwzMJKnnl3A2+s3EJTXPZYlJ/H/qMrOHbSIN6/92AmD4m2mZWSpWioXsqNOqkrdBx0DFroOChZSjkzGwX8EvgAQSucx4FL3X1FXLmcr5Qgt76EG6rq+MWjC7jrlZW7DEXuTQ0cNnEIB43px0Gj+3HgmH4pGXp8xcaa1uTohcWVbK5paLdsnsHU4eVMH1nBPsP7Mnlob4ZXlDKod3HKrzo0NDWzuaaeLTUNbKquZ3N1Ped8+kIsv4Bf//rXONCruIC+pYVUlBYyvKKU4RWlKRltq6GpmbdXb2XW4o28sLiSV5Zt7lLS2CI/z+hbWkh5SQF5ZkE/LXeam1ua1YETNLML/s5Onll4Cz7zeXm0rjMLYtpe28imqh1YfscTHucZHDi6H+/fewhHThjA5KF9dhrAorGpmWUba3h1+SaeeTf422/p4O+eyJgBZZw8bSgfnDaUA0ZVJN2/bE8pWUqdrtZJYdmcr5dyqU7qiI6DjkELHQclSyllZmXAm0Ad8D2CrhfXAGXAdHevjimb85US5OaXcM7qrfz2yUU8Om9dh83DxgwoY/rICvYb2TdIYEaUU1bU8T/Sa7bs4MWlG5m9eBMvLKlk5aYdHZYfP7AXR00cyFETB3LE+AH0LUtNU6/dEdVnoaGpmVWbd7B8YzVbahqoqW/CcXoXF1BWFPQj6ltaSN+yQvqWFtKrKD9tV13MDCsq460la1haWc3rK7bw4tKNzF3T/nD1+XnG4D7FlBXlU9vQzIbtde2OYtZieN8SBpWXQDiS4Pqq9vuDDe5TzAenBYn85CHlDC4vpk9JAU3NTm1DM9V1OzdTbLkFA3vk06uogMHlxYyoKGVYRSm9izv+DLccB1CytKeSqZPC8jlfL+VinZSIjoOOQQsdByVLKWVmXwNuACa7+6Jw3TjgXeDb7n5DTNmcr5Qgt7+EqzbXcM+rq7luxv8oHjqx0/J5BpOG9GHfEX0Z1reE3iUF1DUEgw0srazmnXVVrN7ScXI0sHdRa3J01MSBjMigPgm5/Flo0d4xWLW5hofnrOPhOet4dcXmLk2SHGtwn2Let9cgjpk0kPftNWiXq5Ybqup49t0NPPHOep5+Z31amymWlxQwrG8pQ/qWMLS8mH5lRRTkG4axrbaBzTUN/PYTBwJKlvZUMnVSuC1l9VKy3+fOyre3vavrO1pu73EqJPN8XSmbzHFI5hjEL6fyOOiz0HF8u1t2Tz4L8euy7bPQ3rYUfBaULO0pM3sCKHH3o+LWzwRw92Nj1ilZQv8gQ3AM8nv144FZc3l1+WZeXbGZOau30tC058ekrCifw8b156iJAzl6r4GR90XpiD4LXTsGldvreHrBBmYu3MDc1VtZurF6l+RpaHkJU4b14cgJAzhm0qCk/u61DU28sLiSh+es4/H569lUXb/b72d3Lf/paYCSpT2VTJ0UrleylMX/ICtZ0mdByZKSpciZ2TrgPnf/Qtz6m4CPuvugmHVKltA/yJD4GNQ1NvHO2ireWrWFN1dt5a1VW3h3/fZOryiUFOZx0Jh+HD5uAIeNH8D+oyp6zLxO+izs3jHYUd/Exuo6quuaKC3Mp6JXYcpGzmtsaublZZt5YXEl89dWsWTDdjbX1FNV20hBvlFSmE9ZYT7lpUETxdhbfr5RW99EVW1j66TBa7bUUt/Uef8wJUupkUydFK5XspTF/yArWdJnQclSZiVLnTdKz079gc0J1m8C+iXaIVPP8nc3HYfUHYMFwD9S8kzR0GdBx0BSJuk6CVL7+Uv2uTor3972rq7vaLm9x6mQzPN1pWwyxyGZYxC/rM9Cdn8W4tdl22ehvW1RfQfi9YxT2SIiIiIiIt0sV68sbSbx2bpdzu6peYmIiKRZl+skUL0kItKdcvXK0lxgWoL1U4F53RyLiIjkNtVJIiIZKleTpfuBw81sfMsKMxsLHBVuExER6S6qk0REMlSuJkt/ApYB95nZmWZ2BnAfsBK4GcDMRpnZ3Wa21cy2mdm/zWx0dCGnl5mNNLPfmNksM6sxMw8r6/hyJWb2czNba2Y7wvLHRBByypnZ2WZ2j5ktD9/bAjO71sz6xJXrZ2a3mFmlmVWb2eNmtm9UcaeamZ1kZk+a2TozqzOzVWb2TzObGlcu174jD4ffi2vi1mft58HMjgvfc/xtS1y5rD0G3aTTOklERKKRk8mSB7OhnwAsBG4DbgeWAie4+3YLZlN/EpgCnAd8GtgLeMrMekUTddpNBM4haB//bAflbgUuAn4AnAasBR4xs/3THWA3+BbQBFwBnAz8HrgYeMzM8gAsGG7lgXD7JcBZQCHBZ2NkFEGnQX/gVeArwAeBywmaCM02szEAufYdMbNzgf0SrM+FzwPAV4EjYm4ntmzIoWOQNp3VSXv6/GEy+6CZLTSzN83sUTPrfIbtLGNm3w+PQbOZfTjqeLqDmU0ws+fC9/26mR0cdUxRyMW/fSz9BrQxs7vM7K3w+/CSmb2/053cXbe4G/A1gn+aJ8asGwc0At+IOr40vee8mMefAxwYG1dmv3D9BTHrCghGwb4/6veQgmMwKMG6z4Tv+YRw+cxw+fiYMn0Jhvj9ddTvIY3HZnL4vr8ZLufMd4Sg4/064NzwGFwTsy2rPw/AceH7O7GDMll9DLLhBlTE/g0Jkt+no44rguNwODAeeBr4cNTxdNN7fgy4KHz8gbC+tqjj0t++29+/fgNijkXM4wPCuiqvo31y8spSF5wBzHb3RS0r3H0p8DzBPwZZx907n4EyOC4NwF0x+zUCdwInmVlxmsLrFu6+IcHql8P7EeH9GcAad38qZr+tBGfWs/KzEdoY3jeG97n0HfkpMMfd70iwLVc/D7F0DJLU1WbPYdk9bu7q7lvc/fGYVS8ACV+vu3T3MQBw99nuvmSPg0+jVB4XMxtEkCT8FcDdHwMMOCj972TPpPrz0RP+9vFSeQwy8Tegq9LwWdgSs9i3KzEoWUpsGjAnwfq5BKMT5appwFJ3r4lbPxcoImjKl22ODe/nh/cdfTZGm1nvbomqG5hZvpkVmdleBP0m1gEtCUNOfEfM7GiCq4tfbqdIrnwebjezJjPbaGb/iKt8cuUYpFKXmj1b+pq7XkrQJypKUR+DTJXK4zIaWOvuDTG7LgvXZzp9PtJ7DC4l+t+Arkr5cTCzX5rZEuAe4KzOLhjk6jxLndmt2dRzQEfHpWV71jCzEcCPgMfd/ZVwdX+CyiZeyzHoB+xxH4MM8SJtZyAXETRFXB8uZ/13xMyKCJLE6919QTvFsv3zsBX4BTAT2EbQZOEKYJaZHRB+HrL9GKTDM+4+BMDMPkfQNzCRiwiaDk1uuYprZm8B7wJfAG4I1z0O7N/Oc5zp7s+3LJjZVeFzfn7P38YeiewYZLiUHpceTMchTccgg34Duirlx8Hdvw583cxOBn5mZke5e317AejKkkgC4dnw+wianV0QcThR+TRBE45PEPyj/Fh7l76z1LeBUuAnUQcSFXd/3d2/5e4PuPtMd7+RYCCHIQRt3mU3dLHZM3Sxuau7n+juA9u5xSZK3wNOBU5J0EKgW0V1DDJdio/LCmCYmRXG7Dc2XJ/RUv356InScQwy6Tegq9L5WXD3hwlO6HU4equSpcSSmk09h3R0XKDtTHKPZmalBP0txgMnufuqmM2dHYOs+Xy4+3x3fzHsq/N+oDfw3XBzVn9HwmZmVwLfB4rNrMLMKsLNLcv55NDnoYW7v0Ywatsh4aqcOwbdKGXNXcOzyacDHwz7lPUUOdHkdzd0elzCfrgvAecDmNkHCPosvdo9IXYLfT66eAx68G9AV3V6HMys1MzGtWwwsyOAAUCH/dmULCWm2dQTmwuMC9uFxpoK1BM01erRwjNwdwMHA6e6+9txRTr6bKzwFAzzm4nCDpGLaOuXlu3fkfFACTCD4J/9lhsEQ8xvJjgTlZOfh5CH97l8DNItJc1dzWwacDXBPwUzzewNM3ul470yRsqa/JrZ1Wa2imD4+1ssmEOupw5v39Xj8kXgAjNbCPwc+KSHw4BliS4dhyz728fr9Bj08N+ArurKZ6EU+IeZzTGzN4DrCfosdXhST8lSYppNPbEHCOZP+WjLCjMrAD4GPOrudVEFlgoWzKV0O8F8Jx9299kJit0PjDCzY2P2Kyc4W5O1nw0zG0LQaXJxuCrbvyNvAMcnuEGQQB1PkDzm3OfBgnlaJhOcsYYcPAY9jbvPdXdz94nuvn94y7n5dtz9ancf6e7FYfO8kXEtB7KOu7/r7ke6+6Tw7/5S53tln1z828fSb0DA3Te5+xHuvk94DI5y9yc7208DPCT2J4IJOe8L23c68GOyfDZ1Mzs7fNjSqf8UM9sAbAj7K7xuZncBN4ZXYJYSTNo6Dvhk90eccr8jSAR/AlSb2eEx21aFP6z3A7OAGWZ2GcFZjMsJmjb8rJvjTQszuxd4DXiLoK/SJODrBP23fhEWy+rvSHgl7en49WYGsNzdnw6Xs/rzYGYtk6O+BmwhGODhcmA18OuwWFYfg4hldXPXLtIxSEzHJaDjoGPQIm3HQclSAu5ebWYnAL8kmE3dgCeAS7O8Scm/4pZvCu9nEkxOCcFgBz8BriGY5OxN4OSwH0NPd0p4f2V4i/VD4Gp3bzaz0wgu3d5E0FRrFsGEnCu7LdL0mk0wTOc3CYaEX0mQOFzr7ssgp78jO8mBz8Mcgsl4LwHKCIaP/zdwlbtXQk4cgyhle3PXrtAxSEzHJaDjoGPQIm3HQclSO9x9BXBW1HF0J3e3LpTZAXwjvGUVdx/bxXKbgAvDW9Zx958STMTaWTl9R8juz4O7Xwtc24VyWXsMInY/cL2ZjfdwQs2Y5q7f7WjHLKJjkJiOS0DHQcegRdqOg2VXPz8REZHMF9Ps+f0EnfC/BLQ2ew7L9CK4er8DiG3u2geY3tOv4uoYJKbjEtBx0DFoEfVxULIkIiLSzcysvcp3prsfF1NuNEFz15Zhn1uauy5Ld4zppmOQmI5LQMdBx6BF1MdByZKIiIiIiEgCGjpcREREREQkASVLIiIiIiIiCShZEhERERERSUDJkoiIiIiISAJKlkRERERERBJQsiSSAczs12b2YPjYu3BbFpY9P1yemOA5C8JtVycRx6Vm9raZ6bdBREREcl5B1AGI5Dozm0AwydqR4aoj4orcSzDR2tUx6+rSFM7NBDNdnwf8JU2vISIiItIjKFkSid6lwJvu/gqAu8+O3WhmdUBl/Pp0cPcdZvZ34FsoWRIREZEcp6Y2IilgZj8Km7yVxaz7oplVm1m/DvYrBj4F/KMbYjyug2Z9f40peicw1cyObOepRERERHKCkiWR1Fgd3o+MWfdPoAx4fwf7HQ5UAM/u4evnh32UWm9AflyZ1wia+MXergy3zY8p9wZQBZy8hzGJiEjEOurb2sX9W/vUdif1oZVMoQ+gSGqsCu9bkyV33wTUA2M62O9wwIG39vD13wEa4m61sQXcfZu7z265AZsImtvdA/wsplwzQR+pw/cwJhER6cFi+tReHcHL3wwMIuhDKxIZ9VkSSY1driyFlUxRzLZEhgPb3L1+D1///9GWsLXIBxL2cwqbBj4ALAI+7e4eV2QDMGkPYxIRkZ7tUmL61HYn9aGVTKErSyKpscuVJeAyYCvwvw72KyE1I9vNcfdXYm/Aq4kKmlkhcHf42me4+44ExXYApSmIS0REeqD2+tSaWZ6ZVZnZVXHr+4XN/c4Ll68Ol6eY2SNhH94VZnZBuP3TZvaOmW03s6fCE4zx1IdWIqdkSSQF3L2SIOkZCWBmpwGfB77p7ts62HUjQZ+l7vQ74BDgNHdf106Z/kBl94UkIiIZpr0+tZOA3gT9YGMdEN6/Hrf+X8B/gQ8TnMT7s5n9H3AxwVQVFwCTSTzQ0RuoD61ETM3wRFJnNTDSzA4i+NH/qbvf2sk+7wBFZjbS3eOb0aWcmX0duJDgitLbHRQdB7yU7nhERCRjtden9sDwPlGyVAfMi1v/c3f/O4CZvQKcDnwBGNdyMtHMhgG/MrMx7r68ZUd3bzYz9aGVSOnKkkjqrAYOAh4H/uTul3dhn2fC+0PTFlUobMZwPXAbsMnMDo+5TYgpV0Fw5vCZxM8kIiI5oL0+tQcC6909vj/ugcBcd2+MW/9QywN33wysB2bHtbp4J7wflSCODWEsIpFQsiSSOqsIftB/6e7f7MoO7r6M4ArO6WmMq8Ukgu/8+cCsuNv3Y8p9iGAUv3u7ISYREclM7fWpPYhdrypBcGUpvgkewOa45fp21rW8Zjz1oZVIKVkSSRF3/4S7m7v/KMldfw98JHZC27jnHevun2pn21/D11yUYFtjuO3quLKJbufH7Pop4F/uvjHJ9yEiItmjvT61+xOXFJnZYIJ+R4mSpT2lPrQSKSVLItGbAawBvhR1IGa2P3AC8MOIQxERkWi19qltWRE22a4AmuLKXkLwP+UbaYhjHLAgDc8r0iUa4EEkYu7eGA6lemCnhdNvKHB+oitVIiLSo51sZvEjoG5198faKR/bp7ZlAKKDwvvPmdlKgv5HH6Rt4tiDzey1dqakSFpMH9rrU/F8IrtDyZJIBnD32bQzgWw3x/Fw1DGIiEha/CbBurnAPokKu/syM2vpU/vvcPWBwCaCIb+vIxhC/D/AR4E7gI+5+69SGLP60ErkzN2jjkFEREREMoyZnQ/8Chjm7jVm9ijB/44f6KbXfwiodPdPd8friSSiPksiIiIikkh8n9oDCSaWTTv1oZVMoWRJRERERHYRzpl0AVBjZmOAAXRTsoT60EqGUDM8ERERERGRBHRlSUREREREJAElSyIiIiIiIgkoWRIREREREUlAyZKIiIiIiEgCSpZEREREREQSULIkIiIiIiKSgJIlERERERGRBP4/7GH04o7lgjIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "figure(figsize=(12,10))\n", + "subplot(2,2,1)\n", + "set_fig_properties([gca()])\n", + "plot(shc['t'], shc['K']/Ly, linewidth=3)\n", + "xlim([-0.5, 0.5])\n", + "gca().set_xticks([-0.5, 0, 0.5])\n", + "ylim([-1, 5])\n", + "gca().set_yticks(range(-1,6,1))\n", + "ylabel('K (eV/ps)')\n", + "xlabel('Correlation time (ps)')\n", + "title('(a)')\n", + "\n", + "subplot(2,2,2)\n", + "set_fig_properties([gca()])\n", + "plot(shc['nu'], shc['kw'],linewidth=3)\n", + "xlim([0, 50])\n", + "gca().set_xticks(range(0,51,10))\n", + "ylim([0, 200])\n", + "gca().set_yticks(range(0,201,50))\n", + "ylabel(r'$\\kappa$($\\omega$) (W/m/K/THz)')\n", + "xlabel(r'$\\nu$ (THz)')\n", + "title('(b)')\n", + "\n", + "subplot(2,2,3)\n", + "set_fig_properties([gca()])\n", + "plot(shc['nu'], lambda_i,linewidth=3)\n", + "xlim([0, 50])\n", + "gca().set_xticks(range(0,51,10))\n", + "ylim([0, 6000])\n", + "gca().set_yticks(range(0,6001,1000))\n", + "ylabel(r'$\\lambda$($\\omega$) (nm)')\n", + "xlabel(r'$\\nu$ (THz)')\n", + "title('(c)')\n", + "\n", + "subplot(2,2,4)\n", + "set_fig_properties([gca()])\n", + "semilogx(length/1000, k_L,linewidth=3)\n", + "xlim([1e-2, 1e3])\n", + "ylim([0, 3000])\n", + "gca().set_yticks(range(0,3001,500))\n", + "ylabel(r'$\\kappa$ (W/m/K)')\n", + "xlabel(r'L ($\\mu$m)')\n", + "title('(d)')\n", + "\n", + "tight_layout()\n", + "show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**(a)** Virial-velocity correlation function $K(t)$. **(b)** Spectral thermal conductivity $\\kappa(\\omega)$. **(c)** Spectral phonon mean free path $\\lambda(\\omega)$. **(d)** Length-dependent thermal conductivity $\\kappa(L)$." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "- The above figure shows the results from the HNEMD simulation [[Fan 2019]](https://doi.org/10.1103/PhysRevB.99.064308). \n", + " - (a) The virial-velocity correlation function $K(t)$. See [Theoretical background](https://gpumd.org/theory/heat_transport.html#hnemd-method) for the definition of this quantity.\n", + " - (b) The spectral thermal conductivity $\\kappa(\\omega)$. See [Theoretical background](https://gpumd.org/theory/heat_transport.html#hnemd-method) for the definition of this quantity.\n", + " - (c) The spectral phonon mean free path calculated as [[Fan 2019]](https://doi.org/10.1103/PhysRevB.99.064308) \n", + "$$\n", + "\\lambda(\\omega)=\\kappa(\\omega)/G(\\omega),\n", + "$$\n", + "where $G(\\omega)$ is the quasi-ballistic spectral thermal conductance from the above NEMD simulation.\n", + " - (d) The length-dependent thermal conductivity calculated as [[Fan 2019]](https://doi.org/10.1103/PhysRevB.99.064308)\n", + "$$\n", + "\\kappa(L) = \\int \\frac{d\\omega}{2\\pi} \\frac{\\kappa(\\omega)}{1 + \\lambda(\\omega)/L}.\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## References\n", + "- [Fan 2019] Zheyong Fan, Haikuan Dong, Ari Harju, and Tapio Ala-Nissila, [Homogeneous nonequilibrium molecular dynamics method for heat transport and spectral decomposition with many-body potentials](https://doi.org/10.1103/PhysRevB.99.064308), Phys. Rev. B **99**, 064308 (2019).\n", + "- [Lindsay 2010] L. Lindsay and D.A. Broido, [Optimized Tersoff and Brenner emperical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene](https://doi.org/10.1103/PhysRevB.39.5566), Phys. Rev. B, **81**, 205441 (2010).\n", + "- [Tersoff 1989] J. Tersoff, [Modeling solid-state chemistry: Interatomic potentials for multicomponent systems](https://doi.org/10.1103/PhysRevB.39.5566), Phys. Rev. B 39, 5566(R) (1989)." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/examples/04_Carbon_thermal_transport_nemd_and_hnemd/diffusive/tutorial.ipynb b/examples/04_Carbon_thermal_transport_nemd_and_hnemd/diffusive/tutorial.ipynb index 9be4b50d1..937c662a0 100644 --- a/examples/04_Carbon_thermal_transport_nemd_and_hnemd/diffusive/tutorial.ipynb +++ b/examples/04_Carbon_thermal_transport_nemd_and_hnemd/diffusive/tutorial.ipynb @@ -478,8 +478,8 @@ "metadata": {}, "source": [ "- The above figure shows the results from the HNEMD simulation [[Fan 2019]](https://doi.org/10.1103/PhysRevB.99.064308). \n", - " - (a) The virial-velocity correlation function $K(t)$. See [Theoretical formulations](https://gpumd.zheyongfan.org/index.php/Theoretical_formulations) for the definition of this quantity.\n", - " - (b) The spectral thermal conductivity $\\kappa(\\omega)$. See [Theoretical formulations](https://gpumd.zheyongfan.org/index.php/Theoretical_formulations) for the definition of this quantity.\n", + " - (a) The virial-velocity correlation function $K(t)$. See [Theoretical background](https://gpumd.org/theory/heat_transport.html#hnemd-method) for the definition of this quantity.\n", + " - (b) The spectral thermal conductivity $\\kappa(\\omega)$. See [Theoretical background](https://gpumd.org/theory/heat_transport.html#hnemd-method) for the definition of this quantity.\n", " - (c) The spectral phonon mean free path calculated as [[Fan 2019]](https://doi.org/10.1103/PhysRevB.99.064308) \n", "$$\n", "\\lambda(\\omega)=\\kappa(\\omega)/G(\\omega),\n", @@ -504,7 +504,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -518,7 +518,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.8" + "version": "3.12.3" } }, "nbformat": 4,