-
Notifications
You must be signed in to change notification settings - Fork 9
/
Basic_Computer_Music_Concepts.scd
643 lines (229 loc) · 9.82 KB
/
Basic_Computer_Music_Concepts.scd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
// keep moving.
// nothing to see here.
// this tutorial file is unfinished.
/////////////////////////////////////
// Basic Computer Music Concepts
// Sound Design class
// After reading Hosken's chapter 2
// Bruno Ruviaro, 2013-09-28
/////////////////////////////////////
// Control + B to boot the server.
// Control + M to open the meter window.
// Use Control + Period to stop all sounds at anytime.
// Just listen to a sine wave first.
{SinOsc.ar(freq: 440, mul: 0.1)}.play;
// A little more fun:
{SinOsc.ar(freq: MouseX.kr(440, 2000), mul: 0.1)}.play;
// Simplest example of a plot in SuperCollider:
[1, 2, 3, 6, -6, 9].plot;
// Customize it a bit:
[1, 2, 3, 6, -6, 9].plot(minval: -100, maxval: 100);
// Scroll down to begin...
// ******************************************
// FREQUENCY (physical), PITCH (perceptual)
// ******************************************
{ SinOsc.ar(freq: 440, mul: 0.1) }.play;
// "freq" specifies the frequency of this Sine Wave Oscillator (SinOsc).
// From the reading:
// f (frequency) is measured in Hz, or cycles per second (cps).
// T is the period of the waveform (measured in seconds)
// f = 1/T
// Suppose a very long period T of 1 second.
// Then frequency is also 1 second (one cycle per second).
// Here's a plot just for visualization (this won't play):
{SinOsc.ar(freq: 1)}.plot(duration: 1); // default plot duration is 0.01; here we request 1 second instead.
// Note that the horizontal axis (X) of the plot is the number of samples.
// The vertical axis (-1 to +1) represents amplitude range (more on this later).
// We can't hear 1 Hz; it's too low.
// Human hearing range is 20 to 20000 Hz approximately.
//
// The lowest note on the piano is 27.5 Hz (low A).
// The highest note on the piano is 4,186.01 Hz (high C).
// Middle C is 261.63 Hz (AKA as "C4", or midi note 60).
// Tuning fork A is 440 Hz (AKA as "A4", or midi note 69).
// Exercise: play these notes (type the whole line to practice)
// { SinOsc... etc.
// Let's plot one second of a 261.63 Hz sine wave (middle C).
{SinOsc.ar(freq: 261.63)}.plot(duration: 1);
// The plot above shows 261.63 cycles crammed into one second.
// How do we find out the period (T)?
// Remember, the period is the duration of a SINGLE cycle.
// Just use the formula f = 1/T.
// When you find the T value,
// plug it into the "duration" of the plot:
{SinOsc.ar(freq: 261.63)}.plot(duration: /*replace this by T*/ );
// Frequency relationships in a nutshell:
// Doubling or halving frequencies corresponds to OCTAVES in musical terms.
// A4
{ SinOsc.ar(freq: 440, mul: 0.1) }.play;
// A3
{ SinOsc.ar(freq: 220, mul: 0.1) }.play;
// A2
// ... type expression and play
// A5
// ... type expression and play
// Compare two plots: 100 Hz and 200 Hz
{ [SinOsc.ar(freq: 100), SinOsc.ar(freq: 200)] }.plot(duration: 1/100);
// ********************************************
// AMPLITUDE (physical), LOUDNESS (perceptual)
// ********************************************
// The text mentions "db SPL": starts from zero and goes up,
// 0 = threshold of hearing, 120 = threshold of pain, etc.
// For our purposes here and now, we will be just using a
// linear scale between 0 and 1 to mean min and max amplitude.
// In SC that's the "mul" input you will find in many places.
// Thus, a "mul" of 1 means full amplitude, and 0 means silence.
{SinOsc.ar(freq: 440, mul: 1)}.play // careful: LOUD!
// All plot examples so far had Y axis between -1 and +1 (minval, maxval).
// Sine waves shown above reached those two extremes (full amplitude).
// Here's a sine wave that is half of maximum amplitude:
{SinOsc.ar(freq: 440, mul: 0.5)}.plot(minval: -1, maxval: 1);
// Compare two plots. Both 100 Hz, but one full amplitude, the other half amplitude:
{ [SinOsc.ar(freq: 440, mul: 1), SinOsc.ar(freq: 440, mul: 0.5)] }.plot(minval: -1, maxval: 1);
// **********
// TIMBRE
// **********
// Here's a few artificial waveforms beyond the simple sine wave.
// ("a sort of rudimentary timbre vocabulary" -- Hosken p. 25)
// SINE WAVE
{ SinOsc.ar(100) }.plot; // see
{ SinOsc.ar(MouseY.kr(50, 1000), mul: 0.1) }.play; // listen
// TRIANGLE WAVE
{ LFTri.ar(100) }.plot; // see
{ LFTri.ar(MouseY.kr(50, 1000), mul: 0.1) }.play; // listen
// SAWTOOTH WAVE
{ LFSaw.ar(100) }.plot; // see
{ LFSaw.ar(MouseY.kr(50, 1000), mul: 0.05) }.play; // listen
// SQUARE WAVE
{ LFPulse.ar(100) }.plot; // see
{ LFPulse.ar(MouseY.kr(50, 1000), mul: 0.05) }.play; // listen
// PULSE WAVE
{ LFPulse.ar(100, width: 0.2) }.plot; // basically a square with different "width" value
{ LFPulse.ar(MouseY.kr(50, 1000), width: 0.2, mul: 0.05) }.play; // sounds a bit different
// WHITE NOISE
{ WhiteNoise.ar(mul: 1) }.plot; // see
{ WhiteNoise.ar(mul: 1) }.plot(duration: 0.001); // see (zoomed in)
{ WhiteNoise.ar(mul: MouseY.kr(0, 0.2)) }.play; // listen
// PINK NOISE
{ PinkNoise.ar(mul: 1) }.plot; // see
{ PinkNoise.ar(mul: MouseY.kr(0, 0.2)) }.play; // listen
// *************
// ARTICULATION
// *************
// Amplitude Envelope
// Plot 1 second of a sine wave at full amplitude (no change in amp):
{ SinOsc.ar(freq: 440, mul: 1) }.plot(duration: 1);
// Plot a sine wave starting at full amplitude (1)
// and decreasing to 0 amplitude over 2 seconds:
{ SinOsc.ar(freq: 440, mul: Line.kr(start: 1, end: 0, dur: 2)) }.plot(duration: 2);
// Listen:
{ SinOsc.ar(freq: 440, mul: Line.kr(start: 1, end: 0, dur: 2)) }.play;
//////////////////
// Envelope Types
//////////////////
// Plot a sine wave starting at full amplitude (1)
// and decreasing to 0 amplitude over 2 seconds:
{ SinOsc.ar(freq: 440, mul: Line.kr(start: 1, end: 0, dur: 2)) }.plot(duration: 2);
// Listen:
{ SinOsc.ar(freq: 440, mul: Line.kr(start: 1, end: 0, dur: 2)) }.play;
// Typical AR envelope ("struck or plucked" model)
// Attack and Release
// Meet Env, a handy tool to create envelopes
Env.perc.plot; // see
Env.perc.test; // listen
// Lines of an envelope can be straight or curved:
Env.perc(curve: 0).test.plot; // straight lines
Env.perc(curve: -4).test.plot; // curved lines (generally 'sound more natural')
// Customize it a bit:
Env.perc(attackTime: 0.5, releaseTime: 2).test.plot;
// Typical ADSR envelope ("bowed or blown" model)
// Attack, Decay, Sustain, Release
Env.adsr.plot;
Env.adsr.test;
// Straight or curved lines:
Env.adsr(curve: 0).plot;
Env.adsr(curve: -4).plot;
// Customize it a bit:
Env.adsr(attackTime: 0.1, decayTime: 1, sustainLevel: 0.1, releaseTime: 1, curve: 0).test.plot;
Env.adsr(attackTime: 0.01, decayTime: 0.2, sustainLevel: 0.2, releaseTime: 1, curve: 0).test.plot;
// BTW...
// You don't have to be verbose all the time. With time
// and practice, you can get rid of the keywords in green.
// SC knows the order of arguments.
Env.perc(0.01, 4).test.plot;
Env.adsr(0.1, 0.5, 0.4, 2).test.plot;
// Other envelopes:
Env.triangle.test.plot;
Env.linen.test.plot;
Env.pairs(pairs: [[0, 0], [0.1, 1], [0.2, 0.2], [1.5, 1], [2, 0]], curve: 0).test.plot;
// BTW...
// Feel free to format lines in other ways
// to make them more readable:
(
Env.pairs(
pairs: [
[0.0, 0.0], // time, level
[0.1, 1.0], // time, level
[0.2, 0.2], // etc...
[1.5, 1.0],
[2.0, 0.0]
],
curve: 0).test.plot;
)
// Finally.. how to use Env with a SinOsc, WhiteNoise, LFSaw, etc...
// Just put it inside an EnvGen.kr
// Note: do not try with adsr just yet. It will need a bit more to work.
// PERC
// See
{ SinOsc.ar(freq: 440, mul: EnvGen.kr(Env.perc)) }.plot(duration: 1);
// Listen
{ SinOsc.ar(freq: 440, mul: EnvGen.kr(Env.perc)) }.play;
// TRIANGLE
// See
{ SinOsc.ar(freq: 100, mul: EnvGen.kr(Env.triangle)) }.plot(duration: 1);
// Listen
{ SinOsc.ar(freq: 100, mul: EnvGen.kr(Env.triangle)) }.play;
// LINEN
// See
{ SinOsc.ar(freq: 440, mul: EnvGen.kr(Env.linen)) }.plot(duration: 2);
// Listen
{ SinOsc.ar(freq: 440, mul: EnvGen.kr(Env.linen)) }.play;
// Last:
// Simultaneous oscillators!
// Ouch! Why does the following comes out distorted?
(
{ SinOsc.ar(freq: 140, mul: EnvGen.kr(Env.perc(attackTime: 0.01, releaseTime: 1))) }.play;
{ SinOsc.ar(freq: 440, mul: EnvGen.kr(Env.perc(attackTime: 0.01, releaseTime: 1))) }.play;
{ SinOsc.ar(freq: 1449, mul: EnvGen.kr(Env.perc(attackTime: 0.01, releaseTime: 1))) }.play;
{ SinOsc.ar(freq: 2245, mul: EnvGen.kr(Env.perc(attackTime: 0.01, releaseTime: 1))) }.play;
)
// Solution:
(
{ SinOsc.ar(freq: 140, mul: EnvGen.kr(Env.perc(attackTime: 0.01, releaseTime: 1, level: 0.1))) }.play;
{ SinOsc.ar(freq: 440, mul: EnvGen.kr(Env.perc(attackTime: 0.01, releaseTime: 1, level: 0.1))) }.play;
{ SinOsc.ar(freq: 1449, mul: EnvGen.kr(Env.perc(attackTime: 0.01, releaseTime: 1, level: 0.1))) }.play;
{ SinOsc.ar(freq: 2245, mul: EnvGen.kr(Env.perc(attackTime: 0.01, releaseTime: 1, level: 0.1))) }.play;
)
// **********
// EXERCISES
// **********
// 1)
// Choose an oscillator (SinOsc, LFTri, etc).
// Use the horizontal motion of your mouse to control frequency (choose min and max).
// Use the vertical motion of your mouse to control amplitude (0-1).
// Play it.
// 2)
// Now create a few more lines of code like the above.
// Choose a different oscillator for each line.
// Choose different min and max frequency values for each line.
// TIP: keep amplitudes low, between 0 and 0.2 for example
// (remember: all oscillators will add up in amplitude)
// Evaluate all lines at the same time.
// Play and hear the results.
// 3)
// Write a chord of 4 or more sine waves, but:
// Use a different frequency for each sine wave (no mouse control);
// Use a percussive Amplitude Envelope for each sine wave;
// Use a different attackTime and releaseTime for each note of the chord.
// Make sure that all levels do not add up to more than 1.
// Hear the results.