-
Notifications
You must be signed in to change notification settings - Fork 5
/
main.py
79 lines (58 loc) · 1.94 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import streamlit as st
from datetime import date
import yfinance as yf
from fbprophet import Prophet
from fbprophet.plot import plot_plotly
from plotly import graph_objs as go
import pandas as pd
@st.cache
def get_data():
path = 'stock.csv'
return pd.read_csv(path, low_memory=False)
df = get_data()
df = df.drop_duplicates(subset="Name", keep="first")
START = "2015-01-01"
TODAY = date.today().strftime("%Y-%m-%d")
st.title("Stock Prediction")
st.write("###")
stocks = df['Name']
# stocks = ("AAPL", "NFLX", "GOOG", "MSFT", "INFY", "RPOWER.NS", "BAJFINANCE.NS", "YESBANK.NS", "RCOM.NS", "EXIDEIND.NS", "TATACHEM.NS", "TATAMOTORS.NS", "RUCHI.NS")
selected_stock = st.selectbox("Select dataset and years for prediction", stocks)
index = df[df["Name"]==selected_stock].index.values[0]
symbol = df["Symbol"][index]
n_years = st.slider("", 1, 5)
period = n_years * 365
@st.cache
def load_data(ticker):
data = yf.download(ticker, START, TODAY)
data.reset_index(inplace=True)
return data
data_load_state = st.text("Load data ...")
data = load_data(symbol)
data_load_state.text("Loading data ... Done!")
st.write("###")
st.subheader("Raw data")
st.write(data.tail())
def plot_raw_data():
fig = go.Figure()
fig.add_trace(go.Scatter(x=data['Date'], y=data['Open'], name='stock_open'))
fig.add_trace(go.Scatter(x=data['Date'], y=data['Close'], name='stock_close'))
fig.layout.update(title_text = "Time Series Data", xaxis_rangeslider_visible = True)
st.plotly_chart(fig)
plot_raw_data()
#Forecasting
df_train = data[['Date', 'Close']]
df_train = df_train.rename(columns={"Date": "ds", "Close": "y"})
m = Prophet()
m.fit(df_train)
future = m.make_future_dataframe(periods=period)
forecast = m.predict(future)
st.write("***")
st.write("###")
st.subheader("Forecast data")
st.write(forecast.tail())
fig1 = plot_plotly(m, forecast)
st.plotly_chart(fig1)
st.subheader("Forecast Components")
fig2 = m.plot_components(forecast)
st.write(fig2)