-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
107 lines (88 loc) · 3.68 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.optim as optim
from torchvision import datasets, transforms
import quantizek_util as Q
def main():
BATCH_SIZE = 100
TEST_BATCH_SIZE = 100
learning_rate = 1e-3
#momentum = args.momentum
weight_decay = 1e-5
###################################################################
## Load Train Dataset ##
###################################################################
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('./mnist_data', train=True, download=False,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=BATCH_SIZE, shuffle=True)
###################################################################
## Load Test Dataset ##
###################################################################
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('./mnist_data', train=False, download=False,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=TEST_BATCH_SIZE, shuffle=True)
model = Q.LeNet5_Q()
criterion = nn.CrossEntropyLoss()
#optimizer = optim.SGD(model.parameters(),lr=learning_rate,momentum=momentum)
optimizer = optim.Adam(model.parameters(),lr=learning_rate,weight_decay=weight_decay)
best_acc = 0.0
for epoch_index in range(1,100+1):
adjust_learning_rate(learning_rate,optimizer,epoch_index,20)
train(epoch_index,train_loader,model,optimizer,criterion)
acc = test(model,test_loader,criterion)
if acc > best_acc:
best_acc = acc
#save_model(model,best_acc)
def save_model(model,acc):
print('==>>>Saving model ...')
state = {
'acc':acc,
'state_dict':model.state_dict()
}
torch.save(state,'model_state.pkl')
print('*** DONE! ***')
def train(epoch_index,train_loader,model,optimizer,criterion):
model.train()
for batch_idx,(data,target) in enumerate(train_loader):
data,target = Variable(data),Variable(target)
optimizer.zero_grad()
output = model(data)
loss = criterion(output,target)
loss.backward()
optimizer.step()
if batch_idx % 100 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch_index, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.data[0]))
def test(model,test_loader,criterion):
model.eval()
test_loss = 0
correct = 0
for data,target in test_loader:
data,target = Variable(data),Variable(target)
output = model(data)
test_loss += criterion(output,target).item()
pred = output.data.max(1,keepdim=True)[1]
correct += pred.eq(target.data.view_as(pred)).cpu().sum()
acc = 100. * correct/len(test_loader.dataset)
test_loss /= len(test_loader)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
return acc
def adjust_learning_rate(learning_rate,optimizer,epoch_index,lr_epoch):
lr = learning_rate * (0.1 ** (epoch_index // lr_epoch))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
if __name__ == '__main__':
main()