-
-
Notifications
You must be signed in to change notification settings - Fork 266
/
reflect.go
522 lines (433 loc) · 14.5 KB
/
reflect.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
package main
import (
"fmt"
"go/types"
"maps"
"path/filepath"
"slices"
"golang.org/x/tools/go/ssa"
)
type reflectInspector struct {
pkg *types.Package
checkedAPIs map[string]bool
propagatedInstr map[ssa.Instruction]bool
result pkgCache
}
// Record all instances of reflection use, and don't obfuscate types which are used in reflection.
func (ri *reflectInspector) recordReflection(ssaPkg *ssa.Package) {
if reflectSkipPkg[ssaPkg.Pkg.Path()] {
return
}
prevDone := len(ri.result.ReflectAPIs) + len(ri.result.ReflectObjectNames)
// find all unchecked APIs to add them to checkedAPIs after the pass
notCheckedAPIs := make(map[string]bool)
for knownAPI := range maps.Keys(ri.result.ReflectAPIs) {
if !ri.checkedAPIs[knownAPI] {
notCheckedAPIs[knownAPI] = true
}
}
ri.ignoreReflectedTypes(ssaPkg)
// all previously unchecked APIs have now been checked add them to checkedAPIs,
// to avoid checking them twice
maps.Copy(ri.checkedAPIs, notCheckedAPIs)
// if a new reflectAPI is found we need to Re-evaluate all functions which might be using that API
newDone := len(ri.result.ReflectAPIs) + len(ri.result.ReflectObjectNames)
if newDone > prevDone {
ri.recordReflection(ssaPkg) // TODO: avoid recursing
}
}
// find all functions, methods and interface declarations of a package and record their
// reflection use
func (ri *reflectInspector) ignoreReflectedTypes(ssaPkg *ssa.Package) {
// Some packages reach into reflect internals, like go-spew.
// It's not particularly right of them to do that,
// and it's entirely unsupported, but try to accomodate for now.
// At least it's enough to leave the rtype and Value types intact.
if ri.pkg.Path() == "reflect" {
scope := ri.pkg.Scope()
ri.recursivelyRecordUsedForReflect(scope.Lookup("rtype").Type(), nil)
ri.recursivelyRecordUsedForReflect(scope.Lookup("Value").Type(), nil)
}
for _, memb := range ssaPkg.Members {
switch x := memb.(type) {
case *ssa.Type:
// methods aren't package members only their reciever types are
// so some logic is required to find the methods a type has
method := func(mset *types.MethodSet) {
for i := range mset.Len() {
at := mset.At(i)
if m := ssaPkg.Prog.MethodValue(at); m != nil {
ri.checkFunction(m)
} else {
m := at.Obj().(*types.Func)
// handle interface declarations
ri.checkInterfaceMethod(m)
}
}
}
// yes, finding all methods really only works with both calls
mset := ssaPkg.Prog.MethodSets.MethodSet(x.Type())
method(mset)
mset = ssaPkg.Prog.MethodSets.MethodSet(types.NewPointer(x.Type()))
method(mset)
case *ssa.Function:
// these not only include top level functions, but also synthetic
// functions like the initialization of global variables
ri.checkFunction(x)
}
}
}
// Exported methods with unnamed structs as paramters may be "used" in interface declarations
// elsewhere, these interfaces will break if any method uses reflection on the same parameter.
//
// Therefore never obfuscate unnamed structs which are used as a method parameter
// and treat them like a parameter which is actually used in reflection.
//
// See "UnnamedStructMethod" in the reflect.txtar test for an example.
func (ri *reflectInspector) checkMethodSignature(reflectParams map[int]bool, sig *types.Signature) {
if sig.Recv() == nil {
return
}
params := sig.Params()
for i := range params.Len() {
if reflectParams[i] {
continue
}
ignore := false
param := params.At(i)
switch x := param.Type().(type) {
case *types.Struct:
ignore = true
case *types.Array:
if _, ok := x.Elem().(*types.Struct); ok {
ignore = true
}
case *types.Slice:
if _, ok := x.Elem().(*types.Struct); ok {
ignore = true
}
}
if ignore {
reflectParams[i] = true
ri.recursivelyRecordUsedForReflect(param.Type(), nil)
}
}
}
// Checks the signature of an interface method for potential reflection use.
func (ri *reflectInspector) checkInterfaceMethod(m *types.Func) {
reflectParams := make(map[int]bool)
maps.Copy(reflectParams, ri.result.ReflectAPIs[m.FullName()])
sig := m.Type().(*types.Signature)
if m.Exported() {
ri.checkMethodSignature(reflectParams, sig)
}
if len(reflectParams) > 0 {
ri.result.ReflectAPIs[m.FullName()] = reflectParams
/* fmt.Printf("curPkgCache.ReflectAPIs: %v\n", curPkgCache.ReflectAPIs) */
}
}
// Checks all callsites in a function declaration for use of reflection.
func (ri *reflectInspector) checkFunction(fun *ssa.Function) {
// if fun != nil && fun.Synthetic != "loaded from gc object file" {
// // fun.WriteTo crashes otherwise
// fun.WriteTo(os.Stdout)
// }
f, _ := fun.Object().(*types.Func)
reflectParams := make(map[int]bool)
if f != nil {
maps.Copy(reflectParams, ri.result.ReflectAPIs[f.FullName()])
if f.Exported() {
ri.checkMethodSignature(reflectParams, fun.Signature)
}
}
// fmt.Printf("f: %v\n", f)
// fmt.Printf("fun: %v\n", fun)
for _, block := range fun.Blocks {
for _, inst := range block.Instrs {
if ri.propagatedInstr[inst] {
break // already done
}
// fmt.Printf("inst: %v, t: %T\n", inst, inst)
switch inst := inst.(type) {
case *ssa.Store:
obj := typeToObj(inst.Addr.Type())
if usedForReflect(ri.result, obj) {
ri.recordArgReflected(inst.Val, make(map[ssa.Value]bool))
ri.propagatedInstr[inst] = true
}
case *ssa.ChangeType:
obj := typeToObj(inst.X.Type())
if usedForReflect(ri.result, obj) {
ri.recursivelyRecordUsedForReflect(inst.Type(), nil)
ri.propagatedInstr[inst] = true
}
case *ssa.Call:
callName := inst.Call.Value.String()
if m := inst.Call.Method; m != nil {
callName = inst.Call.Method.FullName()
}
if ri.checkedAPIs[callName] {
// only check apis which were not already checked
continue
}
/* fmt.Printf("callName: %v\n", callName) */
// record each call argument passed to a function parameter which is used in reflection
knownParams := ri.result.ReflectAPIs[callName]
for knownParam := range knownParams {
if len(inst.Call.Args) <= knownParam {
continue
}
arg := inst.Call.Args[knownParam]
/* fmt.Printf("flagging arg: %v\n", arg) */
reflectedParam := ri.recordArgReflected(arg, make(map[ssa.Value]bool))
if reflectedParam == nil {
continue
}
pos := slices.Index(fun.Params, reflectedParam)
if pos < 0 {
continue
}
/* fmt.Printf("recorded param: %v func: %v\n", pos, fun) */
reflectParams[pos] = true
}
}
}
}
if len(reflectParams) > 0 {
ri.result.ReflectAPIs[f.FullName()] = reflectParams
/* fmt.Printf("curPkgCache.ReflectAPIs: %v\n", curPkgCache.ReflectAPIs) */
}
}
// recordArgReflected finds the type(s) of a function argument, which is being used in reflection
// and excludes these types from obfuscation
// It also checks if this argument has any relation to a function paramter and returns it if found.
func (ri *reflectInspector) recordArgReflected(val ssa.Value, visited map[ssa.Value]bool) *ssa.Parameter {
// make sure we visit every val only once, otherwise there will be infinite recursion
if visited[val] {
return nil
}
/* fmt.Printf("val: %v %T %v\n", val, val, val.Type()) */
visited[val] = true
switch val := val.(type) {
case *ssa.IndexAddr:
for _, ref := range *val.Referrers() {
if store, ok := ref.(*ssa.Store); ok {
ri.recordArgReflected(store.Val, visited)
}
}
return ri.recordArgReflected(val.X, visited)
case *ssa.Slice:
return ri.recordArgReflected(val.X, visited)
case *ssa.MakeInterface:
return ri.recordArgReflected(val.X, visited)
case *ssa.UnOp:
for _, ref := range *val.Referrers() {
if idx, ok := ref.(ssa.Value); ok {
ri.recordArgReflected(idx, visited)
}
}
return ri.recordArgReflected(val.X, visited)
case *ssa.FieldAddr:
return ri.recordArgReflected(val.X, visited)
case *ssa.Alloc:
/* fmt.Printf("recording val %v \n", *val.Referrers()) */
ri.recursivelyRecordUsedForReflect(val.Type(), nil)
for _, ref := range *val.Referrers() {
if idx, ok := ref.(ssa.Value); ok {
ri.recordArgReflected(idx, visited)
}
}
// relatedParam needs to revisit nodes so create an empty map
visited := make(map[ssa.Value]bool)
// check if the found alloc gets tainted by function parameters
return relatedParam(val, visited)
case *ssa.ChangeType:
ri.recursivelyRecordUsedForReflect(val.X.Type(), nil)
case *ssa.MakeSlice, *ssa.MakeMap, *ssa.MakeChan, *ssa.Const:
ri.recursivelyRecordUsedForReflect(val.Type(), nil)
case *ssa.Global:
ri.recursivelyRecordUsedForReflect(val.Type(), nil)
// TODO: this might need similar logic to *ssa.Alloc, however
// reassigning a function param to a global variable and then reflecting
// it is probably unlikely to occur
case *ssa.Parameter:
// this only finds the parameters who want to be found,
// otherwise relatedParam is used for more in depth analysis
ri.recursivelyRecordUsedForReflect(val.Type(), nil)
return val
}
return nil
}
// relatedParam checks if a route to a function paramter can be constructed
// from a ssa.Value, and returns the paramter if it found one.
func relatedParam(val ssa.Value, visited map[ssa.Value]bool) *ssa.Parameter {
// every val should only be visited once to prevent infinite recursion
if visited[val] {
return nil
}
/* fmt.Printf("related val: %v %T %v\n", val, val, val.Type()) */
visited[val] = true
switch x := val.(type) {
case *ssa.Parameter:
// a paramter has been found
return x
case *ssa.UnOp:
if param := relatedParam(x.X, visited); param != nil {
return param
}
case *ssa.FieldAddr:
/* fmt.Printf("addr: %v\n", x)
fmt.Printf("addr.X: %v %T\n", x.X, x.X) */
if param := relatedParam(x.X, visited); param != nil {
return param
}
}
refs := val.Referrers()
if refs == nil {
return nil
}
for _, ref := range *refs {
/* fmt.Printf("ref: %v %T\n", ref, ref) */
var param *ssa.Parameter
switch ref := ref.(type) {
case *ssa.FieldAddr:
param = relatedParam(ref, visited)
case *ssa.UnOp:
param = relatedParam(ref, visited)
case *ssa.Store:
if param := relatedParam(ref.Val, visited); param != nil {
return param
}
param = relatedParam(ref.Addr, visited)
}
if param != nil {
return param
}
}
return nil
}
// recursivelyRecordUsedForReflect calls recordUsedForReflect on any named
// types and fields under typ.
//
// Only the names declared in the current package are recorded. This is to ensure
// that reflection detection only happens within the package declaring a type.
// Detecting it in downstream packages could result in inconsistencies.
func (ri *reflectInspector) recursivelyRecordUsedForReflect(t types.Type, parent *types.Struct) {
switch t := t.(type) {
case *types.Named:
obj := t.Obj()
if obj.Pkg() == nil || obj.Pkg() != ri.pkg {
return // not from the specified package
}
if usedForReflect(ri.result, obj) {
return // prevent endless recursion
}
ri.recordUsedForReflect(obj, parent)
// Record the underlying type, too.
ri.recursivelyRecordUsedForReflect(t.Underlying(), nil)
case *types.Struct:
for i := range t.NumFields() {
field := t.Field(i)
// This check is similar to the one in *types.Named.
// It's necessary for unnamed struct types,
// as they aren't named but still have named fields.
if field.Pkg() == nil || field.Pkg() != ri.pkg {
return // not from the specified package
}
// Record the field itself, too.
ri.recordUsedForReflect(field, t)
ri.recursivelyRecordUsedForReflect(field.Type(), nil)
}
case interface{ Elem() types.Type }:
// Get past pointers, slices, etc.
ri.recursivelyRecordUsedForReflect(t.Elem(), nil)
}
}
// TODO: remove once alias tracking is properly implemented
func recordedObjectString(obj types.Object) objectString {
if obj == nil {
return ""
}
pkg := obj.Pkg()
if pkg == nil {
return ""
}
// Names which are not at the package level still need to avoid obfuscation in some cases:
//
// 1. Field names on global types, which can be reached via reflection.
// 2. Field names on anonymous types can also be reached via reflection.
// 3. Local named types can be embedded in a local struct, becoming a field name as well.
//
// For now, a hack: assume that packages don't declare the same field
// more than once in the same line. This works in practice, but one
// could craft Go code to break this assumption.
// Also note that the compiler's object files include filenames and line
// numbers, but not column numbers nor byte offsets.
if pkg.Scope() != obj.Parent() {
switch obj := obj.(type) {
case *types.Var: // struct fields; cases 1 and 2 above
if !obj.IsField() {
return "" // local variables don't need to be recorded
}
case *types.TypeName: // local named types; case 3 above
default:
return "" // other objects (labels, consts, etc) don't need to be recorded
}
pos := fset.Position(obj.Pos())
return fmt.Sprintf("%s.%s - %s:%d", pkg.Path(), obj.Name(),
filepath.Base(pos.Filename), pos.Line)
}
// For top-level names, "pkgpath.Name" is unique.
return pkg.Path() + "." + obj.Name()
}
// reflectedObjectString returns the obfucated name of a types.Object,
// parent is needed to correctly get the obfucated name of struct fields
func reflectedObjectString(obj types.Object, parent *types.Struct) string {
if obj == nil {
return ""
}
pkg := obj.Pkg()
if pkg == nil {
return ""
}
if v, ok := obj.(*types.Var); ok && parent != nil {
return hashWithStruct(parent, v)
}
lpkg := sharedCache.ListedPackages[obj.Pkg().Path()]
return hashWithPackage(lpkg, obj.Name())
}
// recordUsedForReflect records the objects whose names we cannot obfuscate due to reflection.
// We currently record named types and fields.
func (ri *reflectInspector) recordUsedForReflect(obj types.Object, parent *types.Struct) {
if obj.Pkg().Path() != ri.pkg.Path() {
panic("called recordUsedForReflect with a foreign object")
}
objStr := reflectedObjectString(obj, parent)
if objStr == "" {
return
}
ri.result.ReflectObjectNames[objStr] = obj.Name()
}
func usedForReflect(cache pkgCache, obj types.Object) bool {
objStr := reflectedObjectString(obj, nil)
if objStr == "" {
return false
}
_, ok := cache.ReflectObjectNames[objStr]
return ok
}
// We only mark named objects, so this function looks for a named object
// corresponding to a type.
func typeToObj(typ types.Type) types.Object {
switch t := typ.(type) {
case *types.Named:
return t.Obj()
case *types.Struct:
if t.NumFields() > 0 {
return t.Field(0)
}
case interface{ Elem() types.Type }:
return typeToObj(t.Elem())
}
return nil
}