-
Notifications
You must be signed in to change notification settings - Fork 0
/
outline_1.4.tex
95 lines (63 loc) · 1.61 KB
/
outline_1.4.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
\documentclass[11pt]{article}
\usepackage[letterpaper, margin=1in]{geometry}
\usepackage{amsmath, amssymb, graphicx, epsfig, fleqn}
\setlength{\parindent}{0pt}
\newcommand{\ud}{\,\mathrm{d}}
\everymath{\displaystyle}
\def\FillInBlank{\rule{2.5in}{.01in} }
\pagestyle{empty}
\begin{document}
\begin{center}
\Large
\rm{Math 111}
\\
\rm{Exponential functions}
\\
\end{center}
\vspace{0.2in}
\fboxsep0.5cm
(DEFINITION) A function $f$ is {\bf exponential} if it can be written as:
\vspace{0.5in}
(EXAMPLE) \\
$f(x) = 2^x$
\vspace{3.5in}
(NOTES) about $f(x) = a^x$
\vspace{2.0in}
(DEFINITION) The {\bf natural exponential function} has base:
\pagebreak
\begin{center}
\Large
\rm{Logarithmic functions}
\end{center}
(DEFINITION) The {\bf logarithmic function} of base $a$ is the \emph{inverse} of the exponential function with base $a$.
\vspace{2.5in}
(EXAMPLES) \\
\begin{enumerate}
\item{$f(x) = \log_2{x}$
}
\vspace{3.0in}
\item{$f(x) = \ln{x}$ \quad\quad ({\bf natural logarithmic function})
}
\vspace{3.5in}
\item{g(x) = $\ln{(2x-1)}$
\vspace{2.5in}
}
\end{enumerate}
(APPLICATIONS) \\
Suppose that $S(t) = 100e^{0.1t}$ represents the population of a growing colony of bacteria, with $t$ measured in hours.
\begin{enumerate}
\item{At what time is $S$ twice its starting value?}
\item{At what time is $S$ four times its starting value?}
\end{enumerate}
\pagebreak
\begin{center}
\Large
\rm{Trigonometric functions}
\end{center}
(DEFINITIONS)\\
Two basic {\bf trigonometric functions}, $\sin{x}$ and $\cos{x}$, are defined by:
\vspace{3.5in}
(NOTES)
\vspace{2.5in}
(OTHER EXAMPLES)
\end{document}