-
Notifications
You must be signed in to change notification settings - Fork 0
/
outline_10.3.tex
89 lines (59 loc) · 1.89 KB
/
outline_10.3.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
\documentclass[11pt]{article}
\usepackage[letterpaper, margin=1in]{geometry}
\usepackage{amsmath, amssymb, graphicx, epsfig, fleqn}
\setlength{\parindent}{0pt}
\newcommand{\ud}{\,\mathrm{d}}
\everymath{\displaystyle}
\def\FillInBlank{\rule{2.5in}{.01in} }
\pagestyle{empty}
\begin{document}
\begin{center}
\Large
\rm{Math 111}
\\
\rm{Chapter 10.3: Polar Coordinates }
\\
\end{center}
\vspace{0.2in}
\fboxsep0.5cm
{\bf Polar Coordinates} are another means by which we can describe points in a plane. Instead of giving a pair
of numbers $(x,y)$, we will give a pair of numbers $(r,\theta)$, where $r$ is the distance from the origin, and
$\theta$ is the angle between the line that connects the point with the origin and the positive $x$ axis.
\vspace{2in}
(EXAMPLES)
\vspace{2.in}
We can connect $x$ and $y$ to $r$ and $\theta$ using trigonometry.
\vspace{2in}
\pagebreak
{\bf Polar Curves} are the collection of points that satisfy an equation involving $r$ and $\theta$.
A common situation is $r = f(\theta)$, but we can also consider more general equations.\\
\vspace{.1in}
(EXAMPLES)
\begin{enumerate}
\item{$r = 3$}
\vspace{1.5in}
\item{$\theta = \pi/3$}
\vspace{1.5in}
\item{$r = 2\sin{\theta}$}
\vspace{2in}
\item{$r = 1 + \sin{\theta}$}
\vspace{2in}
\pagebreak
\item{$r = \sin{3\theta}$}
\vspace{2.5in}
\end{enumerate}
\vspace{1in}
(TANGENT LINES)
To find the slope of a line tangent to a polar curve, we will need $\frac{dy}{dx}$ as before.
\vspace{2in}
(EXAMPLES)
\begin{enumerate}
\item{Find the equation of the line tangent to $r =\sin{3\theta}$ at the point where $\theta=\pi/6$.}
\pagebreak
\item{$r = 1 + \sin{\theta}$ at the point where $\theta=\pi/3$.}
\vspace{2.5in}
\item{$r = \theta$ at the point where $\theta=\pi$, $\theta=3\pi$, and $\theta=5\pi$.}
\vspace{3.5in}
\item{$r = \cos{2\theta}$ at the point where $\theta=\pi/4$.}
\end{enumerate}
\end{document}