-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun_gmphd.m
140 lines (127 loc) · 3.73 KB
/
run_gmphd.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
%% Clear and csstomize MATLAB
clc;
clear;
set(0,'defaultfigurecolor',[1 1 1])
set(0,'DefaultFigureWindowStyle','docked');
figure(101); clf(101); axis([-500 500 -500 500]);
figure(102); clf(102); axis([-500 500 -500 500]);
%% GMPHD modelling params
model.prune_T = .01;
model.merge_U = 1;
model.pD = .9;
model.pS = .95;
model.falseAlarms.mean = 30;
model.dT = 1;
model.noise_process = .3;
nSigma = 3;
model.noise_sensor = nSigma^2 * 10;
model.F = [1 model.dT;...
0 1];
model.F = [model.F zeros(size(model.F));...
zeros(size(model.F)) model.F];
model.Q = model.noise_process * eye(4);
model.H = [1 0 0 0;...
0 0 1 0];
model.R = [10^2 0;
0 10^2];
model.oSpaceVolume = 1000*1000;
% model.xRes = sqrt(model.R(1,1));
% model.yRes = sqrt(model.R(2,2));
% model.nCell = model.oSpace/(model.xRes*model.yRes)
model.falseAlarms.density = model.falseAlarms.mean/model.oSpaceVolume;
disp(model)
%% Generate simulated data
try
load('measurements.mat');
catch
generate_data();
load('measurements.mat');
end
%% Plot simulated measurements
figure(101); box on; grid on; hold on;
title('Measurements');
for j = 1:numel(sensorMeasurements)
plot(sensorMeasurements{1,j}.xMeas,sensorMeasurements{1,j}.yMeas,'.r');
end
set(gca, ...
'Box' , 'on' , ...
'TickDir' , 'out' , ...
'TickLength' , [.02 .02] , ...
'XMinorTick' , 'on' , ...
'YMinorTick' , 'on' , ...
'YGrid' , 'on' , ...
'XColor' , [.3 .3 .3], ...
'YColor' , [.3 .3 .3], ...
'XTick' , -500:20:500, ...
'YTick' , -500:20:500, ...
'LineWidth' , 1 );
set(gca,'position',[0 0 1 1],'units','normalized')
%% plot groundtruth
figure(102); box on; grid on; hold on;
title('Tracks');
for j = 1:numel(groundTruth)
h_102(1) = plot(groundTruth(j).track.x, groundTruth(j).track.y,'-b');
end
h_102(2) = plot(-500,500,'.k');
legend(h_102,'Groundtruth','GMPHD');
set(gca, ...
'Box' , 'on' , ...
'TickDir' , 'out' , ...
'TickLength' , [.02 .02] , ...
'XMinorTick' , 'on' , ...
'YMinorTick' , 'on' , ...
'YGrid' , 'on' , ...
'XColor' , [.3 .3 .3], ...
'YColor' , [.3 .3 .3], ...
'XTick' , -500:100:500, ...
'YTick' , -500:100:500, ...
'LineWidth' , 1 );
set(gca,'position',[0 0 1 1],'units','normalized')
%% structure for hypotheses and tracks
duration = 100;
structHyp = struct(...
'wk',-1,... % Probability for the hypothesis to exist, keep -1 to lets functions know first iteration
'mk',zeros(4,1),... % Mean of the hypothesis
'Pk',zeros(4),... % Covariance of the hypothesis
'Sk', zeros(4),...
'Kk', 0,...
'neta', 0);
HypP = structHyp;
% values for test
% HypP.wk = 1;
% HypP.mk = [-100, 0, -400, 7]';
% Hyp.Pk = eye(4);
%% Filter
for k = 1:numel(sensorMeasurements)
% Prediction
HypP = gmphd_predict(HypP, model, sensorMeasurements{1,k},k);
% Update
HypP = gmphd_update( HypP, model, sensorMeasurements{1,k});
% Prune and Merge
HypP = gmphd_merge( HypP, model.prune_T, model.merge_U );
wk = extractfield(HypP,'wk');
disp(['sum of wk:' num2str(sum(wk))])
figure(102);hold on; box on; grid on;
for i = 1:round(sum(wk))
if(i>numel(wk))
break;
end
plot(HypP(i).mk(1),HypP(i).mk(3),'.k');
end
% State extraction
% Xk = [];
% for i = 1:numel(HypP)
% if(HypP(i).wk > .5)
% for j = 1:round(HypP(i).wk)
% Xk = [Xk, HypP(i).mk];
% end
% end
% end
%
% if(~isempty(Xk))
% figure(102); hold on;
% plot(Xk(1,:),Xk(3,:),'.k');
% end
pause(.01);
disp(['Iteration:' num2str(k)]);
end