-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprova.py
72 lines (56 loc) · 2.08 KB
/
prova.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from keras.layers import Dropout, Dense, GRU, Embedding
from keras.models import Sequential
from sklearn.feature_extraction.text import TfidfVectorizer
import numpy as np
from sklearn import metrics
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from sklearn.datasets import fetch_20newsgroups
def loadData_Tokenizer(X_train, X_test,MAX_NB_WORDS=75000,MAX_SEQUENCE_LENGTH=500):
np.random.seed(7)
text = np.concatenate((X_train, X_test), axis=0)
text = np.array(text)
tokenizer = Tokenizer(num_words=MAX_NB_WORDS)
tokenizer.fit_on_texts(text)
sequences = tokenizer.texts_to_sequences(text)
word_index = tokenizer.word_index
text = pad_sequences(sequences, maxlen=MAX_SEQUENCE_LENGTH)
print('Found %s unique tokens.' % len(word_index))
indices = np.arange(text.shape[0])
# np.random.shuffle(indices)
text = text[indices]
print(text.shape)
X_train = text[0:len(X_train), ]
X_test = text[len(X_train):, ]
embeddings_index = {}
f = open("glove-6B-50d/glove.6B.50d.txt", encoding="utf8")
for line in f:
values = line.split()
word = values[0]
try:
coefs = np.asarray(values[1:], dtype='float32')
except:
pass
embeddings_index[word] = coefs
f.close()
print('Total %s word vectors.' % len(embeddings_index))
return (X_train, X_test, word_index,embeddings_index)
newsgroups_train = fetch_20newsgroups(subset='train')
newsgroups_test = fetch_20newsgroups(subset='test')
X_train = newsgroups_train.data #Lista di token
X_test = newsgroups_test.data
y_train = newsgroups_train.target #np.ndarray di target
y_test = newsgroups_test.target
print(type(X_train[0]))
print(X_train[0])
print(type(X_train))
print(type(y_train))
X_train_Glove,X_test_Glove, word_index,embeddings_index = loadData_Tokenizer(X_train[:10],X_test[:10])
print(X_train_Glove[0].shape)
print(type(X_train_Glove))
#print(word_index)
#print(set(y_train))
#print(embeddings_index)
print(y_train.shape)
print(X_train_Glove.shape)
#print(X_train_Glove.shape)