DSP_protein_discovery_cohort.txt
- contains DSP protein counts used to generate Figures 1c-d, 2, 3, and 4.
bulk_RNA_data.txt
- contains the bulk RNA expression data used for model comparison in Figure 4.
DSP_protien_validation_cohort.txt
- contains the DSP protein counts for the 29 cases in the text cohort used to generate Figure 5 and corresponding Extended Data 9.
perimetric_complexity.txt
- contains the perimetric complexity values per region used for Extended Data 8.
cd45_R_data.txt
- contain the on-treatment CD45 IHC and DSP values using to compare single feature CD45 IHC and DSP in Figure 6.
cohort_features.xlsx
- contains raw data for each clinical covariate for each case, used to generate Figure 6d.
volcano_waterfall.R
is an R v3.6.0 cript with example functions used to run the linear mixed-effect models and generate the volcano plots and waterfall plots shown in Figures 2a, 2b, 2d, 2e as well as the Extended Data 1,3,4,5,7, and 9.
classifier.py
is a Python v3.7.4 script used for model comparisons and evaluation of performance via internal cross-validation in Figure 4.
classifier_test.py
is used for evaluation of model performance in an independent validation cohort as shown in Figure 5.
DSP_IHC_comparison.ipynb
is a Python v3.7.4 Jupyter Notebook used for evaluation of the single feature CD45 IHC and DSP models.
To run the code please first make sure that you have miniconda or conda installed.
Next step is to create a conda env bcsp
and install Python v3.7.4
, R v3.6.0
and required packages using the following command.
conda create --name bcsp -c conda-forge -c conda-forge -c r python=3.7.4 jupyter pandas=0.25.1 numpy=1.17.2 scipy=1.3.1 scikit-learn=0.21.3 pystan=2.19.1.1 seaborn=0.9.0 statsmodels=0.10.1 arviz=0.10.0 matplotlib=3.1.2 blackcellmagic r-base=3.6.0 r-vioplot=0.3.2 r-zoo=1.8-6 r-sm=2.2-5.6 r-ggrepel=0.8.1 r-ggplot2=3.3.0 r-reshape=0.8.8 r-tidyr=1.0.3 r-lmerTest=3.1-0 r-lme4=1.1-21 r-matrix=1.2-17 r-dplyr=0.8.5 r-ggeffects
conda activate bcsp
git clone https://github.com/cancersysbio/BreastCancerSpatialProteomics.git BCSP && cd BCSP
jupeter notebook
And locate the DSP_IHC_comparison.ipynb
Notebook in the Jupyter browser.
Rscript volcano_waterfall.R
python classifier.py
python classifier_test.py