-
Notifications
You must be signed in to change notification settings - Fork 1
/
formula_sheet.tex
1177 lines (982 loc) · 41.5 KB
/
formula_sheet.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[english,11pt]{article}
\usepackage{abstract}
\renewcommand{\abstractname}{} % clear the title
\renewcommand{\absnamepos}{empty} % originally center
\usepackage[affil-it]{authblk}
\usepackage{amsmath}
\usepackage{graphicx}
\usepackage{color}
\usepackage{mathtools} % \xRightarrow{text} etc
\usepackage{cancel} % \cancel, \cancelto{}
\usepackage{float} % option H in tables etc
\usepackage{dcolumn} % line up tabular columns on the decimal place with D{.}{.}{-1}
\usepackage{rotating}
\usepackage{multirow} % \multirow
\usepackage{hhline} % \hhline{~--~}
\usepackage{extarrows} % \xlongequal{}
\usepackage[T1]{fontenc}
\usepackage[latin1]{inputenc}
% primed vector with more space between the prime and the arrow
\newcommand{\pvec}[1]{\vec{#1}\mkern2mu\vphantom{#1}}
\setlength{\oddsidemargin}{-6mm}
\setlength{\evensidemargin}{-6mm}
\setlength{\textwidth}{6.5in}
\setlength{\textheight}{9.0in}
\setlength{\voffset}{-0.75in}
\begin{document}
\title{
{\bf PHYS201 (Electromagnetism)}\\
Formula Sheet
}
\author{
Professor Costas Andreopoulos
\thanks {
Electronic address: \texttt{constantinos.andreopoulos@cern.ch}
}
}
\affil
{
University of Liverpool \& U.K. Research and Innovation, \\
Science and Technology Facilities Council, Rutherford Appleton Laboratory
}
\date{}
\maketitle
\begin{abstract}
% Solve the following problems during the workshop ({\bf Thursday 4 October 2018}). \\
% \input{instructions.tex}
\end{abstract}
\subsubsection*{\bf Coulomb's law - Force between two discrete charges $q_1$, $q_2$}
\begin{itemize}
{\small
\item The force $\vec{F}_{12}$ exerted on test charge $q_1$
(placed in $\vec{r}_{1}$) by charge $q_2$ (placed in $\vec{r}_{2}$) is:
\begin{equation*}
\vec{F}_{12} = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{|\vec{r}_{1}-\vec{r}_{2}|^{2}} \hat{r}_{12}
\;\;\;
or
\;\;\;
\vec{F}_{12} = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{|\vec{r}_{1}-\vec{r}_{2}|^{3}} (\vec{r}_{1}-\vec{r}_{2})
\end{equation*}
In the above expression, $\hat{r}_{12}$ is a unit vector in the direction of $\vec{r}_{1}-\vec{r}_{2}$:
\begin{equation*}
\hat{r}_{12} = \frac{\vec{r}_{1}-\vec{r}_{2}}{|\vec{r}_{1}-\vec{r}_{2}|}
\end{equation*}
\item Note that the force $\vec{F}_{21}$ exerted on test charge $q_2$ by charge $q_1$ is:
\begin{equation*}
\vec{F}_{21} =
\frac{1}{4\pi\epsilon_0} \frac{q_2 q_1}{|\vec{r}_{2}-\vec{r}_{1}|^{3}} (\vec{r}_{2}-\vec{r}_{1}) =
\frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{|\vec{r}_{1}-\vec{r}_{2}|^{3}} (-\vec{r}_{1}+\vec{r}_{2}) =
- \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{|\vec{r}_{1}-\vec{r}_{2}|^{3}} (\vec{r}_{1}-\vec{r}_{2}) =
- \vec{F}_{12}
\end{equation*}
}
\end{itemize}
\subsubsection*{\bf Superposition principle - Force on charge Q due to an array of discrete charges}
\begin{itemize}
{\small
\item Allows the calculation of the total force on a charge $Q$
from an array of other charges $q_1$, $q_2$, ..., $q_n$
\begin{equation*}
\vec{F}_{Q} = \sum_{i=1}^{n} \frac{1}{4\pi\epsilon_0}
\frac{Q q_i}{|\vec{r}_{Q}-\vec{r}_{q_{i}}|^{3}} (\vec{r}_{Q}-\vec{r}_{q_{i}})
\end{equation*}
\item Total force is the vector sum of forces.
}
\end{itemize}
\subsubsection*{\bf Generalization of Coulomb's law - Force on Q due to a continuous distribution of charge}
In general,the force on a charge $Q$, placed at position $\vec{r}$,
due to a continuous distribution of charge, is given by:
{\small
\begin{equation*}
\vec{F}_{Q} = \frac{Q}{4\pi\epsilon_0} \int_{\tau}
\frac{dq({\pvec{r}'})}{|\vec{r}-\pvec{r}'|^{3}} (\vec{r}-\pvec{r}')
\end{equation*}
}
where $dq$ is the infinitesimal amount of charge in the viscinity of point $\pvec{r}'$.
The continuous distribution of charge can be described by a volume charge density $\rho(\pvec{r}')$
(charge per unit volume), in which case the above expression becomes:
{\small
\begin{equation*}
\vec{F}_{Q} = \frac{Q}{4\pi\epsilon_0} \int_{\tau}
d\tau^{\prime} \frac{\rho({\pvec{r}'})}{|\vec{r}-\pvec{r}'|^{3}} (\vec{r}-\pvec{r}')
\end{equation*}
}
If one or two spatial dimensions of a problem can be ignored, the distribution of charge
can be described with a surface charge density $\sigma(\pvec{r}')$ (charge per unit area)
or a linear charge density $\lambda(\pvec{r}')$ (charge per unit length) respectively.
In these cases, $\vec{F}_{Q}$ is determined from the following integral over the
corresponding surface $S$ or line $L$:
{\small
\begin{equation*}
\vec{F}_{Q} = \frac{Q}{4\pi\epsilon_0} \int_{S}
dS^{\prime} \frac{\sigma({\pvec{r}'})}{|\vec{r}-\pvec{r}'|^{3}} (\vec{r}-\pvec{r}')
\;\;\;\;\; or \;\;\;\;\;
\vec{F}_{Q} = \frac{Q}{4\pi\epsilon_0} \int_{L}
d\ell^{\prime} \frac{\lambda({\pvec{r}'})}{|\vec{r}-\pvec{r}'|^{3}} (\vec{r}-\pvec{r}')
\end{equation*}
}
\subsubsection*{\bf Electric field}
\begin{itemize}
{\small
\item A more fundamental way to think about electric forces in terms of a field that permeates space.
\item Defined the electric field $\vec{E}$
as the force exerted on a test charge Q, placed in position $\vec{r}$, per unit charge.
\begin{equation*}
\vec{E}(\vec{r}) = \frac{\vec{F}_Q(\vec{r})}{Q}
\end{equation*}
}
\end{itemize}
\subsubsection*{\bf Electric flux}
\begin{itemize}
{\small
\item The electric flux $\Phi_E$ is the number of field lines of the electric field $\vec{E}$
flowing through a surface S
\begin{equation*}
\Phi_E = \int_{S} \vec{E} \cdot d\vec{S}
\end{equation*}
\item On many occassions in this lecture series, we study the flux through a closed surface S
\begin{equation*}
\Phi_E = \oint_{S} \vec{E} \cdot d\vec{S}
\end{equation*}
\item The distinction is always clear from context. When I want to empasize the difference
(see section on Maxwell's equations below) I will denote the former as $\Phi^{open}_{E}$
}
\end{itemize}
\subsubsection*{\bf Work}
\begin{itemize}
{\small
\item
A force is said to {\bf do work} (denoted with W) if, when it is acting on a body,
there is a {\bf displacement of the point of application in the direction of the force}.
\item
The work dW done by a force $\vec{F}$ displacing the point of application by $d\vec{\ell}$,
is given by the dot product:
\begin{equation*}
dW = \vec{F} \cdot d\vec{\ell}
\end{equation*}
\item
Notice that work is a {\bf scalar}.
\item
Note that {\bf a force perpendicular to the direction of motion does no work}.
\item
The {\bf work can be positive or negative}.
By convention, we take work to be negative if it opposes the motion, i.e. $\theta > 90^{o}$.
\item
The total work along a trajectory is given by integrating (summing up) the work done for
each infinitesimal displacement $d\vec{\ell}$:
\begin{equation*}
W = \int dW = \int \vec{F} \cdot d\vec{\ell}
\end{equation*}
}
\end{itemize}
\subsubsection*{\bf Electrostatic potential energy}
The work $W$ done to assemble a system of charges becomes
electrostatic potential energy $U$ ($U=W$)
and it is stored in the field produced by the charges.
The formulas below show how to calculate $U$ for a:
\begin{itemize}
\item system of 2 charges:
\begin{equation*}
U = \frac{q_1 q_2}{4\pi\epsilon_0} \frac{1}{|\vec{r}_{12}|}
\end{equation*}
\item system of 3 charges:
\begin{equation*}
U = \frac{q_1 q_2}{4\pi\epsilon_0} \frac{1}{|\vec{r}_{12}|} +
\frac{q_1 q_3}{4\pi\epsilon_0} \frac{1}{|\vec{r}_{13}|} +
\frac{q_2 q_3}{4\pi\epsilon_0} \frac{1}{|\vec{r}_{23}|}
\end{equation*}
\item system of N charges:
\begin{equation*}
U = \frac{1}{2} \sum_{i,j=1;i{\ne}j}^{N} \frac{q_i q_j}{4\pi\epsilon_0|\vec{r}_{ij}|}
\end{equation*}
\item continuous charge distribution (with density $\rho$ over a volume $\tau$):
\begin{equation*}
U = \frac{1}{2} \int_{\tau} \int_{\tau^{\prime}}
\frac{dq(\vec{r}) dq^{\prime}(\vec{r^{\prime}})}{4\pi\epsilon_0|\vec{r} - \vec{r^{\prime}}|}
= \frac{1}{2} \int_{\tau} d\tau \int_{\tau^{\prime}} d\tau^{\prime}
\frac{\rho(\vec{r}) \rho(\vec{r^{\prime}})}{4\pi\epsilon_0|\vec{r} - \vec{r^{\prime}}|}
\end{equation*}
\end{itemize}
\subsubsection*{\bf Electrostatic potential}
The electrostatic potential $V(\vec{r})$ is a scalar field,
and it represents the amount of work $W$ required to bring a charge $Q$
in position $\vec{r}$, divided by the charge $Q$:
\begin{equation*}
V = \frac{W}{Q}
\end{equation*}
The expresions below show how to compute $V(\vec{r})$ due to:
\begin{itemize}
\item a point charge $q$ placed at $\vec{r^{\prime}}$:
\begin{equation*}
V(\vec{r}) = \frac{q}{4\pi\epsilon_0} \frac{1}{|\vec{r}-\vec{r^{\prime}}|}
\end{equation*}
\item charges $q_1$, $q_2$,..., $q_N$ placed at positions
$\vec{r}_1$, $\vec{r}_2$,..., $\vec{r}_N$:
\begin{equation*}
V(\vec{r}) = \frac{1}{4\pi\epsilon_0}
\sum_{i=1}^{N} \frac{q_i}{|\vec{r}-\vec{r}_{i}|}
\end{equation*}
\item a continuous charge distribution represented by $\rho(r^{\prime})$ :
\begin{equation*}
V(\vec{r}) = \frac{1}{4\pi\epsilon_0}
\int_{\tau^\prime} \frac{dq(\vec{r}^{\;\prime})}{|\vec{r}-\vec{r}^{\;\prime}|}
= \frac{1}{4\pi\epsilon_0}
\int_{\tau^\prime} \frac{\rho(\vec{r}^{\;\prime})d\tau^\prime}{|\vec{r}-\vec{r}^{\;\prime}|}
\end{equation*}
\end{itemize}
\subsubsection*{\bf Definition of electric current}
An {\bf electric current is a flow of electric charge.}
It is represented by the amount of charge passing though per unit time.
\begin{equation*}
I = \frac{dQ}{dt}
\end{equation*}
\subsubsection*{\bf Current density $\vec{j}$}
$\vec{j}$ represents the amount of current per unit area {\bf perpendicular} to the direction of the current.
\begin{equation*}
I = \int_{S} \vec{j} \cdot d\vec{S}
\end{equation*}
\subsubsection*{\bf Microscopic view of electric current}
The current density $\vec{j}$ is given by
\begin{equation*}
\vec{j} = n q \vec{u}_{d}
\end{equation*}
where n is the density of the carriers of charge q, and $\vec{u}_{d}$ their average (drift) velocity.
In general:
\begin{equation*}
\vec{j} = \sigma \vec{E}
\end{equation*}
where $\sigma$ is the {\bf conductivity} of the material (SI unit: $1/(\Omega \cdot m)$).
The inverse quantity $\rho = 1/\sigma$ is called {\bf resistivity}.
\subsubsection*{\bf Continuity equation}
Expresses local conservation of charge:
\begin{equation*}
\vec{\nabla} \cdot \vec{j} +\frac{d\rho}{dt} = 0
\end{equation*}
\subsubsection*{\bf Electric force on a charge}
\begin{equation*}
\vec{F}_{E} = q \vec{E}
\end{equation*}
\subsubsection*{\bf Magnetic force on a (moving) charge}
\begin{equation*}
\vec{F}_{M} = q \vec{u} \times \vec{B}
\end{equation*}
\subsubsection*{\bf Lorentz force on a charge}
The total force felt by a charged body in the presence of
both electric and magnetic fields is called the {\bf Lorentz force}.
\begin{equation*}
\vec{F} = q \Big( \vec{E} + \vec{u} \times \vec{B} \Big)
\end{equation*}
\subsubsection*{\bf Magnetic force on a steady current}
\begin{equation*}
\vec{F}_{M} = I \int_{L} d\vec{\ell} \times \vec{B}
\end{equation*}
\subsubsection*{\bf Generalization of magnetic force on a current}
\begin{equation*}
\vec{F}_{M} = \int_{\tau} \vec{j} \times \vec{B} d\tau
\end{equation*}
\subsubsection*{\bf Magnetic force between two steady currents}
At distance $\rho$, the force between two parallel straight
conductors of length L carrying current $I_1$ and $I_2$,
respectively, is:
\begin{equation*}
F = \frac{\mu_0 I_{1} I_{2} L}{2\pi \rho}
\end{equation*}
The force is attractive if both currents flow in the same direction, and
repulsive if the two currents flow in opposite directions.
\subsubsection*{\bf Cyclotron motion}
The equation
\begin{equation*}
m u = q B r \Rightarrow
{\bf p = qBr}
\end{equation*}
where p is the particle momentum
is known as the {\bf cyclotron formula} and describes the motion of a particle with charge q
perpendicularly to a uniform magnetic field B.
The particle moves in a circle of radius r.\\
The period of rotation is given by:
\begin{equation*}
T = \frac{2\pi r}{u} \xRightarrow{m u = q B r}
T = \frac{2\pi m}{q B}
\end{equation*}
\subsubsection*{\bf Biot-Savart law}
Expresses $\vec{B}$ in terms of a steady current I:
\begin{equation*}
\vec{B} = \int_{L} d\vec{B}
= \frac{\mu_0I}{4\pi} \int_{L} \frac{d\vec{\ell} \times \vec{r}}{r^3}
\end{equation*}
where the integral is over the elements $d\vec{\ell}$ along the conductor, and $\vec{r}$
is the distance from $d\vec{\ell}$ to the point where we want to know the field.
\subsubsection*{\bf Generalization of Biot-Savart law}
\begin{equation*}
\vec{B} =
\frac{\mu_0}{4\pi} \int_{\tau^{\prime}}
\frac{\vec{j}(\pvec{r}') \times \vec{r}}{r^{3}} d\tau^{\prime}
\end{equation*}
\subsubsection*{\bf Magnetic field around an infinitely-long straight wire with current I}
\begin{equation*}
|\vec{B}| = \frac{\mu_0I}{2\pi \rho}
\end{equation*}
where $\rho$ is the distance from the wire.
The field is azimuthal.
\subsubsection*{\bf Magnetic field inside a solenoid with n windings per unit length, each carrying current I}
\begin{equation*}
|\vec{B}| = \mu_0 n I
\end{equation*}
The field is in the direction of the axis of the solenoid.
\subsubsection*{\bf Magnetic field of a toroidal coil with N windings, each carrying current I}
\begin{equation*}
|\vec{B}| = \left\{ \begin{array}{l}
0, \text{for $r < a$,} \\
\frac{\mu_0 N I}{2\pi r}, \text{for $a < r < b$, and} \\
0, \text{for $r > b$} \\
\end{array} \right.
\end{equation*}
where a (b) is the inner (outer) radius.
\subsubsection*{\bf Wave equation}
A {\bf wave equation} describes how a {\em disturbance} propagates in time.\\
Let $\phi(\vec{r}, t)$ be a function that describes that disturbance as a function of position in space and time.
Then it satisfies the following equation:
\begin{equation*}
\vec{\nabla}^{2} \phi(\vec{r}, t) = \frac{1}{u^2} \frac{\partial^{2} \phi(\vec{r}, t)} {\partial t^{2}}
\end{equation*}
where {\bf u is the wave velocity}.\\
\subsubsection*{\bf The electric and magnetic fields (in vacuum) satisfy a wave equation}
\begin{equation*}
\vec{\nabla}^{2} \vec{E} = \mu_0 \epsilon_0 \frac{\partial^{2} \vec{E}}{\partial t^{2}}
\end{equation*}
\begin{equation*}
\vec{\nabla}^{2} \vec{B} = \mu_0 \epsilon_0 \frac{\partial^{2} \vec{B}}{\partial t^{2}}
\end{equation*}
\subsubsection*{\bf Speed of electromagnetic waves in vacuum}
\begin{equation*}
c = \frac{1}{\sqrt{\mu_0 \epsilon_0}}
\end{equation*}
\subsubsection*{\bf The electric and magnetic fields (in matter) satisfy a wave equation}
\begin{equation*}
\vec{\nabla}^{2} \vec{E} = \mu \epsilon \frac{\partial^{2} \vec{E}}{\partial t^{2}}
\end{equation*}
\begin{equation*}
\vec{\nabla}^{2} \vec{B} = \mu \epsilon \frac{\partial^{2} \vec{B}}{\partial t^{2}}
\end{equation*}
\subsubsection*{\bf Speed of electromagnetic waves in matter}
\begin{equation*}
u = \frac{1}{\sqrt{\mu \epsilon}} < c
\end{equation*}
\subsubsection*{\bf Index of refraction of a material}
\begin{equation*}
n = \frac{c}{u} =
\frac{\sqrt{\mu \epsilon}}{\sqrt{\mu_{0} \epsilon_{0}}} =
\frac{\sqrt{\epsilon_r \epsilon_0 \mu_r
\mu_0}}{\sqrt{\epsilon_0 \mu_0}} = \sqrt{\epsilon_r \mu_r}
\end{equation*}
\subsubsection*{\bf Energy stored in the electric field}
\begin{equation*}
U_{E} = \frac{\epsilon_0}{2} \int_{all\;space} |\vec{E}(\vec{r})|^2 d\tau
\end{equation*}
The energy density (energy per unit volume) is:
\begin{equation*}
u_{E} = \frac{\epsilon_0}{2} |\vec{E}(\vec{r})|^2
\end{equation*}
\subsubsection*{\bf Energy stored in the magnetic field}
\begin{equation*}
U_{M} = \frac{1}{2\mu_{0}} \int_{all\;space} |\vec{B}(\vec{r})|^2 d\tau
\end{equation*}
The energy density (energy per unit volume) is:
\begin{equation*}
u_{M} = \frac{1}{2\mu_{0}} |\vec{B}(\vec{r})|^2
\end{equation*}
\subsubsection*{\bf Energy stored in the electromagnetic field}
\begin{equation*}
U_{EM} = U_{E} + U_{M} = \int_{all\;space} \Big(
\frac{\epsilon_0}{2} |\vec{E}(\vec{r})|^2 + \frac{1}{2\mu_{0}} |\vec{B}(\vec{r})|^2
\Big) d\tau
\end{equation*}
\subsubsection*{\bf Poynting theorem}
\begin{equation*}
\frac{dW}{dt} =
- \oint_{S} d\vec{S} \cdot \frac{1}{\mu_0} \Big(\vec{E} \times \vec{B} \Big)
- \frac{\partial}{\partial t} \int_{\tau} d\tau \Big( \frac{\epsilon_0}{2} |\vec{E}|^2 + \frac{1}{2\mu_0} |\vec{B}|^2 \Big)
\end{equation*}
\subsubsection*{\bf Poynting vector $\vec{N}$}
\begin{equation*}
\vec{N} = \frac{1}{\mu_0} \Big( \vec{E} \times \vec{B} \Big)
\end{equation*}
It represents the {\bf energy flux density (rate energy transfer per unit area)} and it has units of $W(att)/m^2$.\\
The average power transmitted by an electromagnetic wave, is given by
the {\bf average of $\vec{N}$ over a period T}:
\begin{equation*}
<\vec{N}> = \frac{1}{T} \int_{0}^{T} \vec{N} dt
\end{equation*}
The magnitude of the averaged Poynting vector
can be written in terms of the amplitudes of the electric field,
$E_0$, and magnetic field, $B_0$, as
\begin{equation*}
<N> = \frac{E_0 B_0}{2 \mu_0}
\end{equation*}
Considering that $B_0 = E_0/c$, and introducing the root mean square
amplitudes $E_{rms}=E_0/\sqrt{2}$ and $B_{rms}=B_0/\sqrt{2}$,
the above can be rewritten as
\begin{equation*}
<N> =
\frac{c B_0}{2 \mu_0} =
\frac{c B_{rms}^2}{\mu_0} =
\frac{c E_0}{2 \mu_0 c} =
\frac{c E_{rms}^2}{\mu_0 c}
\end{equation*}
\subsubsection*{\bf Radiation pressure}
If an object is illuminated by radiation for a time interval ${\Delta}t$,
during which it absorbs energy
\begin{equation*}
{\Delta}U = IA{\Delta}t
\end{equation*}
where I is the intensity I (power per area, or energy per time
per area) of the radiation, and A is the area of the object.
\begin{itemize}
\item
The momentum change ${\Delta}p$ of the object is given by:
\begin{equation*}
{\Delta}p = \frac{{\Delta}U}{c}
\;\;\; {\color{red} \small (total \; absorption)}
\;\;\;
{\Delta}p = \frac{2{\Delta}U}{c}
\;\;\; {\color{red} \small (total \; reflection)}
\end{equation*}
\item
The radiation pressure $P_r$ exterted on the object is given by:
\begin{equation*}
P_r = \frac{I}{c}
\;\;\; {\color{red} \small (total \; absorption)}
\;\;\;
P_r = \frac{2I}{c}
\;\;\; {\color{red} \small (total \; reflection)}
\end{equation*}
\end{itemize}
\subsubsection*{\bf Boundary conditions for the electric field}
\begin{equation*}
\epsilon_1 E_1^{\perp} = \epsilon_2 E_2^{\perp} \Rightarrow
D_1^{\perp} = D_2^{\perp}
\end{equation*}
\begin{equation*}
E_1^{\parallel} = E_2^{\parallel}
\end{equation*}
\subsubsection*{\bf Boundary conditions for the magnetic field}
\begin{equation*}
B_1^{\perp} = B_2^{\perp}
\end{equation*}
\begin{equation*}
\frac{1}{\mu_1} B_1^{\parallel} = \frac{1}{\mu_2} B_2^{\parallel} \Rightarrow
H_1^{\parallel} = H_2^{\parallel}
\end{equation*}
\subsubsection*{\bf Intensity of unpolarized light passing through a polarizing sheet}
If $I_0$ is the intensity of the unpolarized light,
the intensity $I$ of the transmitted light is:
\begin{equation*}
I = \frac{1}{2}I_0
\end{equation*}
\subsubsection*{\bf Intensity of polarized light passing through a polarizing sheet}
If the light reaching the filter is already polarized,
the intensity $I$ of the transmitted light is:
\begin{equation*}
I = I_0 cos^2\theta
\end{equation*}
where $\theta$ is the angle between the electric field $\vec{E}$
and the polarizing direction of the sheet.
\subsubsection*{\bf Laws of geometrical optics}
\begin{itemize}
\item {\bf 1$^{st}$ Law}:\\
The incident, reflected, and transmitted wave vectors form a plane (plane of incidence),
which also includes the normal to the surface.
\begin{equation*}
k_I sin\theta_I = k_R sin\theta_R = k_T sin\theta_T
\end{equation*}
\item {\bf 2$^{nd}$ Law} ({\bf Law of reflection}):\\
The angle of incidence is equal to the angle of reflection.
\begin{equation*}
\theta_I = \theta_R
\end{equation*}
\item {\bf 3$^{rd}$ Law} ({\bf Law of refraction} or {\bf Snell's law}):\\
\begin{equation*}
\frac{sin\theta_T}{sin\theta_I} = \frac{n_1}{n_2}
\end{equation*}
\end{itemize}
\subsubsection*{\bf Total internal reflection}
As the angle of incidence increases, the angle of refraction increases.
For some critical value $\theta_c$, the angle of refraction becomes 90$^o$.\\
\vspace{0.1cm}
For angles of incidence larger than $\theta_c$, such as for rays f and
g below, there is no refracted ray and all the light is reflected;
this effect is called {\bf total internal reflection}.\\
\begin{equation*}
n_1 sin\theta_c = n_2 sin90^o \Rightarrow
\theta_c = sin^{-1} \frac{n_2}{n_1} \;\;\;\;\;(n_2 < n_1)
\end{equation*}
\subsubsection*{\bf Polarization by reflection / Brewster angle}
When the light is incident at a particular incident angle, called {\bf Brewster angle}
given by:
\begin{equation*}
tan\theta_B \approx \frac{n_2}{n_1}
\end{equation*}
the reflected light has only perpendicular components: It is
{\bf fully polarized} perpendicular to the plane of incidence.
For light incident at that angle, the reflected and refracted rays are perpendicular to each other.
\subsubsection*{\bf Maxwell's equations - Static case (time-independent fields) in vacuum}
{\small
\begin{center}
{
\begin{table}[H]
\begin{tabular}{|l|c|c|}
\hline
% \multicolumn{3}{|l|} {
% {\color{magenta}
% {\bf Static case (time-independent fields) in vacuum}
% }
% }\\
% \hline
{\bf Gauss's law} &
$\Phi_{E} = \displaystyle \oint_{S} \vec{E} \cdot d\vec{S} = \frac{1}{\epsilon_0} \int_{\tau(S)} \rho d\tau = \frac{Q}{\epsilon_0}$ &
$\displaystyle \vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0}$ \\
{\bf Circuital law} &
$\displaystyle \oint_{L} \vec{E} \cdot d\vec{\ell} = 0$ &
$\displaystyle \vec{\nabla} \times \vec{E} = 0$ \\
{\bf Gauss's law} (magn) &
$\Phi_{B} = \displaystyle \oint_{S} \vec{B} \cdot d\vec{S} = 0$ &
$\displaystyle \vec{\nabla} \cdot \vec{B} = 0$ \\
{\bf Ampere's law} &
$\displaystyle \oint_{L} \vec{B} \cdot d\vec{\ell} = \mu_{0} \int_{S(L)} \vec{j} \cdot d\vec{S} = \mu_{0} I$ &
$\displaystyle \vec{\nabla} \times \vec{B} = \mu_{0} \vec{j}$ \\
\hline
\end{tabular}
\end{table}
}
\end{center}
}%small
\subsubsection*{\bf Static fields in matter -
Polarization (magnetization) and induced charges (currents)}
In materials, macroscopic polarization induces surface and volume charges that
contribute to the total electic field and need to be taken into account.
Similarly, macroscopic magnetization induces surface and volume currents that
contribute to the total magnetic field and need to be taken into account.
The relevant expressions for the induced charges and currents are given below.
{
% \setlength{\extrarowheight}{8pt}
% \setlength{\arraycolsep}{5pt}
\begin{center}
\begin{table}[H]
\begin{tabular}{c|c||c|c}
\hline
\multicolumn{2}{c||}{\bf Electrostatics} &
\multicolumn{2}{c} {\bf Magnetostatics} \\
\hline
{\scriptsize electric dipole moment} &
$\vec{p} = q \vec{d}$ &
$\vec{m} = I \vec{S}$ &
{\scriptsize magnetic dipole moment} \\
\hline
{\scriptsize torque within $\vec{E}$ field} &
$\vec{T} = \vec{p} \times \vec{E}$ &
$\vec{T} = \vec{m} \times \vec{B}$ &
{\scriptsize torque within a $\vec{B}$ field} \\
\hline
{\scriptsize polarization} &
$\vec{P} = \frac{(e.d.m)}{volume}$ &
$\vec{M} = \frac{(m.d.m)}{volume}$ &
{\scriptsize magnetization} \\
\hline
{\scriptsize surface charge density} &
$\sigma_{P} = \vec{P} \cdot \hat{n}$ &
$j_{m}^{surf} = \vec{M} \times \hat{n}$ &
{\scriptsize surface current density} \\
\hline
{\scriptsize volume charge density} &
$\rho_{P} = - \vec{\nabla} \cdot \vec{P}$ &
$j_{m}^{vol} = \vec{\nabla} \times \vec{M}$ &
{\scriptsize volume current density} \\
% \hline
% {\scriptsize electric displacement} &
% $\vec{D} = \epsilon_0 \vec{E} + \vec{P}$ &
% $\vec{H} = \frac{\vec{B}}{\mu_0} - \vec{M}$ &
% {\scriptsize magnetizing field} \\
% \hline
% \multirow{2}{*}{\scriptsize Gauss' law in materials} &
% $\vec{\nabla} \cdot \vec{D} = \rho_{f}$ &
% $\vec{\nabla} \times \vec{H} = \vec{j}_{f}$ &
% \multirow{2}{*}{\scriptsize Ampere's law in materials} \\
% \hhline{~--~}
% &
% $\oint_{S} \vec{D} \cdot d\vec{S} = Q_{f}$ &
% $\oint_{L} \vec{H} \cdot d\vec{\ell} = I_{f}$ &
% \\
\hline
\end{tabular}
\end{table}
\end{center}
}
\subsubsection*{\bf Auxiliary fields $\vec{D}$ and $\vec{H}$}
The introduction of auxiliary fields $\vec{D}$ (electric displacement)
and $\vec{H}$ (H field, or magnetizing field), given below, simplifies then
description of electric and magnetic phenomena in materials, since they allow
one to write Maxwell's equation only in terms of free charges and currents.
Electric displacement $\vec{D}$:
\begin{equation*}
\vec{D} = \epsilon_0 \vec{E} + \vec{P}
\end{equation*}
Magnetizing field $\vec{H}$:
\begin{equation*}
\vec{H} = \frac{\vec{B}}{\mu_0} - \vec{M}
\end{equation*}
\subsubsection*{\bf Relationship between polarization (magnetization)
and the electric (magnetic) field}
The polarisation vector $\vec{P}$ can be expressed in terms of $\vec{E}$:
\begin{equation*}
\vec{P} = \chi_e \epsilon_0 \vec{E}
\end{equation*}
where $\chi_e$ is the so-called {\bf electric susceptibility} (dimensionless).\\
If the analogy between electrostatics and magnetostatics was exact,
we would write $\vec{M}$ in terms of $\vec{B}$.
However, this is where the analogy breaks.
Instead we express $\vec{M}$ in terms of $\vec{H}$:
\begin{equation*}
\vec{M} = \chi_{m} \vec{H}
\end{equation*}
where $\chi_m$ is the {\bf magnetic susceptibility}.
\subsubsection*{\bf Polarization and magnetization for linear materials}
For linear dielectrics (and low intensity fields) $\chi_e$ is a
constant that does not depend on $\vec{E}$.
Therefore, the displacement vector $\vec{D}$ can be written as:
\begin{equation*}
\vec{D} = \epsilon_0 \vec{E} + \vec{P} =
\epsilon_0 \vec{E} + \chi_e \epsilon_0 \vec{E} =
(1+\chi_e) \epsilon_0 \vec{E} = \rho_{f} =
\epsilon_r \epsilon_0 \vec{E} = \rho_{f} =
\epsilon \vec{E}
\end{equation*}
where the factor $\epsilon_r = 1+\chi_e$
is the {\bf relative permittivity} or {\bf dielectric constant} (dimensionless) and
$\epsilon = \epsilon_r \epsilon_0$ is the {\bf permittivity} of the dielectric\\
Similarly, for linear materials,
$\chi_m$ is a constant independent of the value of $\vec{H}$.
Expressing $\vec{B}$ in terms of $\vec{H}$:
\begin{equation*}
\vec{H} = \frac{\vec{B}}{\mu_0} - \vec{M} \Rightarrow
\vec{B} = \mu_0 \Big( \vec{H} + \vec{M} \Big) \xRightarrow{\vec{M} = \chi_{m} \vec{H}}
\vec{B} = \Big(1 + \chi_{m} \Big) \mu_0 \vec{H} \Rightarrow
\end{equation*}
\begin{equation*}
\vec{B} = \mu_r \mu_0 \vec{H} \Rightarrow
\vec{B} = \mu \vec{H}
\end{equation*}
where $\mu_r = 1+\chi_{\mu}$
is the {\bf relative permeability} (dimensionless) and
$\mu = \mu_r \mu_0$ is the {\bf permeability} of the material
\subsubsection*{\bf Maxwell's equations - Static case (time-independent fields) in matter}
{\small
\begin{center}
\begin{table}[H]
\begin{tabular}{|l|c|c|}
% \hline
% \multicolumn{3}{|l|} {
% {\color{magenta}
% {\bf Static case (time-independent fields) in matter}
% }
% }\\
\hline
{\bf Gauss's law} &
$\Phi_{D} = \displaystyle \oint_{S} \vec{D} \cdot d\vec{S} = \int_{\tau(S)} \rho_{free} d\tau = Q_{free}$ &
$\displaystyle \vec{\nabla} \cdot \vec{D} = \rho_{free}$ \\
{\bf Circuital law} &
$\displaystyle \oint_{L} \vec{E} \cdot d\vec{\ell} = 0$ &
$\displaystyle \vec{\nabla} \times \vec{E} = 0$ \\
{\bf Gauss's law} (magn.) &
$\Phi_{B} = \displaystyle \oint_{S} \vec{B} \cdot d\vec{S} = 0$ &
$\displaystyle \vec{\nabla} \cdot \vec{B} = 0$ \\
{\bf Ampere's law} &
$\displaystyle \oint_{L} \vec{H} \cdot d\vec{\ell} = \int_{S(L)} \vec{j}_{free} \cdot d\vec{S} = I_{free}$ &
$\displaystyle \vec{\nabla} \times \vec{H} = \vec{j}_{free}$ \\
\hline
\end{tabular}
\end{table}
\end{center}
}
\subsubsection*{\bf Maxwell's equations - Dynamic case (time-dependent fields) in vacuum}
{\small
\begin{center}
{
\begin{table}[H]
\begin{tabular}{|l|c|c|}
% \hline
% \multicolumn{3}{|l|} {
% {\color{magenta}
% {\bf Dynamic case (time-dependent fields) in vacuum}
% }
% }\\
\hline
{\bf Gauss's law} &
$\Phi_{E} = \displaystyle \oint_{S} \vec{E} \cdot d\vec{S} = \frac{1}{\epsilon_0} \int_{\tau(S)} \rho d\tau = \frac{Q}{\epsilon_0}$ &
$\displaystyle \vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0}$ \\
{\bf Faraday's law} &
$\displaystyle \oint_{L} \vec{E} \cdot d\vec{\ell} =
-\frac{\partial}{\partial t} \int_{S(L)} \vec{B} \cdot d\vec{S} = -\frac{\partial\Phi^{open}_{B}}{\partial t}$ &
$\displaystyle \vec{\nabla} \times \vec{E} = - \frac{\partial \vec{B}}{\partial t}$ \\
{\bf Gauss's law} (magn) &
$\Phi_{B} = \displaystyle \oint_{S} \vec{B} \cdot d\vec{S} = 0$ &
$\displaystyle \vec{\nabla} \cdot \vec{B} = 0$ \\
{\bf Ampere's law} &
$\displaystyle \oint_{L} \vec{B} \cdot d\vec{\ell} =
\mu_{0} \int_{S(L)} \Big( \vec{j} + \epsilon_0 \frac{\partial \vec{E}}{\partial t}\Big) \cdot d\vec{S}$ &
$\displaystyle \vec{\nabla} \times \vec{B} =
\mu_{0} \Big( \vec{j} + \epsilon_0 \frac{\partial \vec{E}}{\partial t}\Big)$ \\
\hline
\end{tabular}
\end{table}
}
\end{center}
} %small
\subsubsection*{\bf Maxwell's equations - Dynamic case (time-dependent fields) in matter}
{\small
\begin{center}
{
\begin{table}[H]
\begin{tabular}{|l|c|c|}
% \hline
% \multicolumn{3}{|l|} {
% {\color{magenta}
% {\bf Dynamic case (time-dependent fields) in matter}
% }
% }\\
\hline
{\bf Gauss's law} &
$\Phi_{D} = \displaystyle \oint_{S} \vec{D} \cdot d\vec{S} =
\int_{\tau(S)} \rho_{free} d\tau = Q_{free}$ &
$\displaystyle \vec{\nabla} \cdot \vec{D} =
\rho_{free}$ \\
{\bf Faraday's law} &
$\displaystyle \oint_{L} \vec{E} \cdot d\vec{\ell} =
-\frac{\partial}{\partial t} \int_{S(L)} \vec{B} \cdot d\vec{S} = -\frac{d\Phi^{open}_{B}}{dt}$ &
$\displaystyle \vec{\nabla} \times \vec{E} =
- \frac{\partial \vec{B}}{\partial t}$ \\
{\bf Gauss's law} (magn.) &
$\displaystyle \Phi_{B} = \oint_{S} \vec{B} \cdot d\vec{S} = 0$ &
$\displaystyle \vec{\nabla} \cdot \vec{B} = 0$ \\
{\bf Ampere's law} &
$\displaystyle \oint_{L} \vec{H} \cdot d\vec{\ell} =
\int_{S(L)} \Big( \vec{j_{free}} + \frac{\partial \vec{D}}{\partial t}\Big) \cdot d\vec{S} = I_{free} + \frac{d\Phi^{open}_{D}}{dt}$ &
$\displaystyle \vec{\nabla} \times \vec{H} = \vec{j}_{free} + \frac{\partial \vec{D}}{\partial t}$ \\
\hline
\end{tabular}
\end{table}
}
\end{center}
} %small
\subsubsection*{\bf The scalar potential V - The Poisson and Laplace equations}
In electrostatics, the circuital law:
\begin{equation*}
\vec{\nabla} \times \vec{E} = 0
\end{equation*}
allowed us to write the electric field $\vec{E}$ as the gradient of a scalar field
(recall that $\vec{\nabla} \times \Big( \vec{\nabla} \phi \Big) =0$
for {\em any} scalar function $\phi$).
That scalar field was the potential V:
\begin{equation*}
\vec{E} = - \vec{\nabla} V
\end{equation*}
By substituting the above into Gauss's law,
we found that the scalar potential V satisfies the so-called {\em Poisson} equation:
\begin{equation*}
\vec{\nabla}^{2} V = - \frac{\rho}{\epsilon_0}
\end{equation*}
In absence of sources ($\rho$=0), the above equation is known as the {\em Laplace} equation:
\begin{equation*}
\vec{\nabla}^{2} V = 0
\end{equation*}
\subsubsection*{\bf The vector potential $\vec{A}$}
The relation
\begin{equation*}
\vec{\nabla} \cdot \vec{B} = 0
\end{equation*}
allows us to express the magnetic field $\vec{B}$ as the rotation of a
vector field (recall that $\vec{\nabla} \cdot \Big( \vec{\nabla} \times \vec{A} \Big) =0$
for {\em any} vector field $\vec{A}$):
\begin{equation*}
\vec{B} = \vec{\nabla} \times \vec{A}
\end{equation*}
We call $\vec{A}$ the {\bf vector potential}.
Substituting the above definition into Ampere's law:
\begin{equation*}
\vec{\nabla} \times \vec{B} = \mu_{0} \vec{j} \Rightarrow
\vec{\nabla} \times \Big( \vec{\nabla} \times \vec{A} \Big) = \mu_{0} \vec{j} \Rightarrow
\end{equation*}
\begin{equation*}
\vec{\nabla} \Big( \vec{\nabla} \cdot \vec{A} \Big) - \vec{\nabla}^2 \vec{A} = \mu_{0} \vec{j}
\end{equation*}
We can add to $\vec{A}$ {\em any function} $\vec{\Lambda}$
whose curl vanishes ($\vec{\nabla} \times \vec{\Lambda} = 0$):
\begin{equation*}
\vec{A} \rightarrow \pvec{A}' = \vec{A} + \vec{\Lambda}
\end{equation*}
and the physics would remain unchanged!
We can use this freedom to eliminate the divergence of
$\vec{A}$ ($\vec{\nabla} \vec{A} = 0$).
With this condition, $\vec{A}$ satisfies the following p.d.e.:
\begin{equation*}
\vec{\nabla}^2 \vec{A} = - \mu_{0} \vec{j}
\end{equation*}
This expression is very similar to our known {\em Poisson} equation.
\subsubsection*{\bf Capacitance}
Capacitance (C) denotes the ability of a body to store electric charge.
For a system of two conductors, one with charge +Q held at
potential $V_{+}$ and one with charge -Q held at potential $V_{-}$,
the capacitance is a positive quantity defined as:
\begin{equation*}
C = \frac{Q}{V_{+} - V_{-}}
\end{equation*}