-
Notifications
You must be signed in to change notification settings - Fork 1
/
slides_lecture02_optional.tex
796 lines (619 loc) · 21.7 KB
/
slides_lecture02_optional.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
%
% Optional reading
%
\begin{frame}[plain,c]
\begin{center}
{\Huge \bf Optional reading for Lecture \thislecture}
\end{center}
\end{frame}
% ------------------------------------------------------------------------------
%
% Worked example :
%
{
\problemslide
\begin{frame}{Worked example: Exploiting the superposition principle}
\begin{blockexmplque}{Question}
A nonconductive solid sphere has a uniform volume charge density $\rho$.\\
\vspace{0.1cm}
Let $\vec{r}$ be the vector from the centre of the sphere to a general point
$P$ within the sphere. As you should be able to easily confirm,
the electric field $\vec{E}$ at a point $\vec{r}$ within the sphere is
given by $\vec{E}(\vec{r}) = \rho \vec{r}/(3\epsilon_0)$.\\
\vspace{0.1cm}
If a spherical cavity is hollowed out of the sphere, as shown below,
using superposition concepts, show that the electric field at all points
within the cavity is uniform and equal to
$\vec{E}(\vec{r})=\rho \vec{a}/(3\epsilon_0)$
where $\vec{a}$ is the position vector
from the centre of the sphere to the centre of the cavity.\\
\begin{center}
\includegraphics[width=0.20\textwidth]{./images/problems/lect02_spherical_charge_distribution_with_hole}
\end{center}
\end{blockexmplque}
\end{frame}
%
%
%
\begin{frame}{Worked example: Exploiting the superposition principle}
The charge distribution in case of a uniformly charged solid sphere
with a cavity is equivalent to that of
a whole uniformly charged solid sphere of charge density $\rho$
plus a smaller uniformly charged solid sphere
of charge density -$\rho$ that fills the void.\\
\vspace{0.2cm}
\begin{columns}
\begin{column}{0.38\textwidth}
\begin{center}
\includegraphics[width=0.95\textwidth]{./images/problems/lect02_sphere_with_cavity_distances_2}
\end{center}
\end{column}
\begin{column}{0.62\textwidth}
The field produced by each uniformly charged sphere is given.\\
By superposition, the field at a point $P$ within the cavity
(at distance $\vec{r}$ from the centre of the larger sphere)
is given by
\begin{equation*}
\vec{E}(\vec{r}) =
\frac{\rho \vec{r}}{3 \epsilon_0} +
\frac{(-\rho) \vec{r}^\prime}{3 \epsilon_0} =
\frac{\rho \vec{r}}{3 \epsilon_0} +
\frac{(-\rho) (\vec{r} - \vec{a})}{3 \epsilon_0} \Rightarrow
\end{equation*}
\begin{equation*}
\vec{E}(\vec{r}) =
\frac{\rho \vec{a}}{3 \epsilon_0}
\end{equation*}
\end{column}
\end{columns}
\end{frame}
} %\problemslide
% ------------------------------------------------------------------------------
%
% Worked example :
%
{
\problemslide
\begin{frame}{Worked example: Spherical shell with non-uniform density}
\begin{blockexmplque}{Question}
A spherical shell of inner radius $a$ and outer radius $b$ has volume charge
density $\rho = kr^2$ ($a \le r \le b$), where $k$ is a constant and $r$ is
the radial distance from the centre of the shell.\\
Find the magnitude of the electric field $\vec{E}$
produced by this charge distribution
at radial distances i) $r<a$, ii) $a \le r < b$, and iii) $b \le r$.
\end{blockexmplque}
\vspace{0.2cm}
Due to the obvious spherical symmetry, the electric field $\vec{E}$
is a radial vector, and it is
is going to be a function of only the radial distance $r$.\\
\vspace{0.2cm}
We have 3 distinct regions:
i) $r<a$, ii) $a \le r < b$, and iii) $b \le r$.
\vspace{0.2cm}
For the calculation of $\vec{E}$ we will be applying Gauss's theorem:
\begin{equation*}
\int_{S} \vec{E} \cdot d\vec{S} =
\frac{Q_{encl}}{\epsilon_0} =
\frac{1}{\epsilon_0} \int_{\tau(S)} \rho d\tau
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Spherical shell with non-uniform density}
For $r<a$, for {\em any possible} closed surface $S$
that stays within that region of no charge, Gauss's theorem gives
\begin{equation*}
\int_{S} \vec{E} \cdot d\vec{S} = 0
\end{equation*}
Since this happens for all surfaces, it can not be the result of an
accidental cancellation and it has to be that the integrand itself is 0.
Therefore:
\begin{equation}
E (r<a) = 0
\end{equation}
\vspace{0.2cm}
For $a \le r < b$, exploiting the spherical symmetry,
we will be applying Gauss's theorem
for a concentric spherical surface $S(r)$ of radius $r$.\\
\vspace{0.2cm}
Because both $\vec{E}$ and the surface vector $d\vec{S}$ are collinear,
and the norm of $\vec{E}$ is constant, everywhere on $S(r)$,
the flux calculation is simplified:
\begin{equation*}
\int_{S(r)} \vec{E} \cdot d\vec{S} =
\int_{S(r)} E dS =
E \int_{S(r)} dS =
E 4\pi r^2
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Spherical shell with non-uniform density}
The charge $Q_{enc}$, in the volume $\tau(S)$,
enclosed by a spherical surface $S(r)$ of radius $r$
is given by:
\begin{equation*}
Q_{enc} =
\int_{\tau(S)} \rho d\tau =
\int_{a}^{r} \Big( k u^2 \Big) 4\pi u^2 du =
4\pi k \int_{a}^{r} u^4 du =
\frac{4\pi k}{5} u^5 \Big\rvert_{a}^{r} \Rightarrow
\end{equation*}
\begin{equation*}
Q_{enc} =
\frac{4\pi k}{5} \Big(r^5 - a^5\Big)
\end{equation*}
Therefore, Gauss's law can be expressed as:
\begin{equation*}
E \cancel{4\pi} r^2 =
\frac{\cancel{4\pi} k}{5 \epsilon_0} \Big(r^5 - a^5\Big)
\end{equation*}
This yields:
\begin{equation*}
E (a \le r < b)= \frac{k}{5 \epsilon_0} \Big(r^3 - \frac{a^5}{r^2}\Big)
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Spherical shell with non-uniform density}
For $b \le r$, one can apply a similar analysis. In this case,
$Q_{enc}$ is no longer a function of $r$
since all spherical surfaces $S(r)$ include all charge.
From the previous expression for $Q_{enc}$,
setting $r$ equal to $b$, we have:
\begin{equation*}
Q_{enc} =
\frac{4\pi k}{5} \Big(b^5 - a^5\Big)
\end{equation*}
Gauss's law can be expressed as:
\begin{equation*}
E \cancel{4\pi} r^2 =
\frac{\cancel{4\pi} k}{5 \epsilon_0} \Big(b^5 - a^5\Big)
\end{equation*}
This yields:
\begin{equation*}
E (b \le r)= \frac{k}{5 \epsilon_0} \Big(\frac{b^5 - a^5}{r^2}\Big)
\end{equation*}
Summarizing, we found that:
\begin{equation*}
\displaystyle
E =
\begin{cases}
0 & \text{ for } r < a\\
\frac{k}{5 \epsilon_0} \Big(r^3 - \frac{a^5}{r^2}\Big) & \text{ for } a \le r < b\\
\frac{k}{5 \epsilon_0} \Big(\frac{b^5 - a^5}{r^2}\Big) & \text{ for } b \le r
\end{cases}
\end{equation*}
\end{frame}
} %\problemslide
% ------------------------------------------------------------------------------
%
% Worked example :
% H/R Sec 23-9, problem 51 (page 626)
%
{
\problemslide
%
%
%
\begin{frame}{Worked example: Spherical shell and point charge}
\begin{blockexmplque}{Question}
The figure below shows
a nonconducting spherical shell of
inner radius $a$ and outer radius $b$.
The shell has (within its thickness) a positive volume charge density
$\rho(r)$ = $A/r$,
where $A$ is a constant and $r$ is the distance from the center of the shell.
In addition, a small ball of charge $q$ is located at that center.
What value should A have if the electric field in the shell
($a < r < b$) is to be uniform?
\begin{center}
\includegraphics[width=0.30\textwidth]{./images/problems/lect02_thick_spherical_shell_and_central_charge}
\end{center}
\end{blockexmplque}
\end{frame}
%
%
%
\begin{frame}{Worked example: Spherical shell and point charge}
Gauss's law in integral form is:
\begin{equation*}
\Phi = \frac{Q_{enc}}{\epsilon_0}
\end{equation*}
The electric flux $\Phi$ over a closed surface $S$ is defined as:
\begin{equation*}
\Phi = \oint_{S} \vec{E} \cdot d\vec{S}
\end{equation*}
Consider a spherical Gaussian surface with radius $r$, where $a < r < b$.
Exploiting the spherical symmetry of the problem, we can write:
\begin{equation*}
\Phi = \oint_{S} E dS = E \oint_{S} dS = E 4\pi r^2
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Spherical shell and point charge}
The charge in the volume $\tau(S)$,
enclosed by the spherical Gaussian surface $S$ with radius $r$,
is the charge $q$ at the origin and the fraction of the charge of the shell
that is distributed at radial distances between $a$ and $r$.
Therefore:
\begin{equation*}
Q_{enc} = q + \int_{\tau(S)}{\rho d\tau} \Rightarrow
\end{equation*}
\begin{equation*}
Q_{enc} = q + \int_{a}^{r} \frac{A}{r^{\prime}} 4\pi {r^{\prime}}^{2} dr^{\prime} \Rightarrow
Q_{enc} = q + 4\pi A \int_{a}^{r} r^{\prime} dr^{\prime} \Rightarrow
\end{equation*}
\begin{equation*}
Q_{enc} = q + 4\pi A \frac{{r^{\prime}}^2}{2}\Big\rvert_{a}^{r} \Rightarrow
Q_{enc} = q + 2\pi A (r^2 - a^2)
\end{equation*}
Combining the above exressions for $\Phi$ and $Q_{enc}$, we have:
\begin{equation*}
E 4\pi r^2 = \frac{1}{\epsilon_0} \Big( q + 2\pi A (r^2 - a^2) \Big)
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Spherical shell and point charge}
Solving for $E$, we find:
\begin{equation*}
E = \frac{q + 2\pi A (r^2 - a^2)}{4\pi \epsilon_0 r^2} \Rightarrow
E = \frac{1}{4\pi \epsilon_0 }
\Big( \frac{q}{r^2} + 2\pi A - \frac{2\pi A a^2}{r^2} \Big)
\end{equation*}
The requirement that $E$ is uniform in the shell, implies that:
\begin{equation*}
\frac{q}{r^2} - \frac{2\pi A a^2}{r^2} = 0
\end{equation*}
Therefore:
\begin{equation*}
A = \frac{q}{2\pi a^2}
\end{equation*}
\end{frame}
} %\problemslide
% ------------------------------------------------------------------------------
%
% Worked example :
% H/R, ch. 23, page 626, question 54
%
{
\problemslide
%
%
%
\begin{frame}{Worked example: Two uniformly charged spheres}
\begin{blockexmplque}{Question}
The figure below shows, in cross section, two solid spheres with uniformly
distributed charge throughout their volumes. Each has radius R.
Point P lies on a line connecting the centres of the spheres, at radial distance
R/2.00 from the centre of sphere 1.
If the net electric field at point P is zero, what is the ratio $q_2$/$q_1$
of the total charges?
\begin{center}
\includegraphics[width=0.60\textwidth]{./images/problems/lect02_2_charged_spheres}
\end{center}
\end{blockexmplque}
\end{frame}
%
%
%
\begin{frame}{Worked example: Two uniformly charged spheres}
The electric field inside and outside a uniformly charged, nonconductive,
solid sphere of radius $R$ was calculated earlier in this Lecture.\\
\vspace{0.1cm}
The results are summarised below:
{\bf For $r < R$:}
\begin{equation*}
E(r) = \frac{Q \frac{r^3}{R^3}}{4 \pi \epsilon_0 r^2} =
\frac{Q}{4 \pi \epsilon_0 R^3} r
\end{equation*}
{\bf For $r \ge R$:}
\begin{equation*}
E(r) = \frac{Q}{4 \pi \epsilon_0 r^2}
\end{equation*}
\vspace{0.1cm}
The electric field $\vec{E}$ at point P is the superposition of 2 fields:
the field $\vec{E}_1$ because of the presence of sphere 1 and
the field $\vec{E}_2$ because of the presense of sphere 2:
\begin{equation*}
\vec{E}(P) = \vec{E}_1(P) + \vec{E}_2(P)
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Two uniformly charged spheres}
Applying our previous result for the electric field:
\begin{equation*}
\vec{E}_1(P) = \Big\{ \frac{Q}{4 \pi \epsilon_0 R^3} r \Big\} \hat{x} \xRightarrow{Q=q_1, \; r = R/2}
\vec{E}_1(P) = \Big\{ \frac{q_1/2}{4 \pi \epsilon_0 R^2} \Big\} \hat{x}
\end{equation*}
% \begin{equation*}
% \vec{E}_1(P) = \Big\{ \frac{Q}{4 \pi \epsilon_0 R^3} r \Big\} \hat{x} \xRightarrow{Q=q_1, \; r = R/2}
% \vec{E}_1(P) = \Big\{ \frac{q_1}{4 \pi \epsilon_0 R^3} \frac{R}{2} \Big\} \hat{x} \Rightarrow
% \end{equation*}
% \begin{equation*}
% \vec{E}_1(P) = \Big\{ \frac{q_1/2}{4 \pi \epsilon_0 R^2} \Big\} \hat{x}
% \end{equation*}
and:
\begin{equation*}
\vec{E}_2(P) = \Big\{ \frac{Q}{4 \pi \epsilon_0 r^2} \Big\} (-\hat{x}) \xRightarrow{Q=q_2, \; r = R+R/2 = 3R/2}
\vec{E}_2(P) = - \Big\{ \frac{4q_2/9}{4 \pi \epsilon_0 R^2} \Big\} \hat{x}
\end{equation*}
% \begin{equation*}
% \vec{E}_2(P) = \Big\{ \frac{Q}{4 \pi \epsilon_0 r^2} \Big\} (-\hat{x}) \xRightarrow{Q=q_2, \; r = R+R/2 = 3R/2}
% \vec{E}_2(P) = - \Big\{ \frac{q_2}{4 \pi \epsilon_0 (3R/2)^2} \Big\} \hat{x} \Rightarrow
% \end{equation*}
% \begin{equation*}
% \vec{E}_2(P) = - \Big\{ \frac{4q_2/9}{4 \pi \epsilon_0 R^2} \Big\} \hat{x}
% \end{equation*}
Therefore, the total field is:
\begin{equation*}
\vec{E}(P) = \frac{1}{4 \pi \epsilon_0 R^2} (\frac{q_1}{2} - \frac{4q_2}{9}) \hat{x}
\end{equation*}
If E(P)=0, then:
\begin{equation*}
\frac{q_1}{2} - \frac{4q_2}{9} = 0 \Rightarrow
\frac{q_2}{q_1} = \frac{9}{8} \Rightarrow
\frac{q_2}{q_1} = 1.125
\end{equation*}
\end{frame}
} %\problemslide
% ------------------------------------------------------------------------------
%
% Worked example :
% H/R Sec 23-9, problem 50 (page 625)
%
{
\problemslide
%
%
%
\begin{frame}{Worked example: Two spherical shells}
\begin{blockexmplque}{Question}
The figure on the left shows
two nonconducting spherical shells fixed in place on an x axis.
Shell 1 has uniform surface charge density +4.0 $\mu$C/m$^{2}$
on its outer surface and radius 0.50 cm, and
shell 2 has uniform surface charge density -2.0 $\mu$C/m$^{2}$
on its outer surface and radius 2.0 cm. The shell centres are separated
by a distance $L$ = 6.0 cm.
Other than at $x = \infty$,
where on the x axis is the net electric field equal to zero?
\begin{center}
\includegraphics[width=0.40\textwidth]{./images/problems/lect02_2_charged_spherical_shells}
\end{center}
\end{blockexmplque}
\end{frame}
%
%
%
\begin{frame}{Worked example: Two spherical shells}
Consider Gauss's law in its integral form:
\begin{equation*}
\oint_{S} \vec{E} \cdot d\vec{S} = \frac{Q_{enc}}{\epsilon_0}
\end{equation*}
Exploiting the symmetry of a system with charge $Q$ distributed
uniformly on a spherical, nonconducting shell or radius $R$
centred at the origin of the coordinate system,
we can easily calculate the electric field:
\begin{itemize}
\item
For $r < R$, the enclosed charge is 0 and from the symmetry of the problem we
deduce that $\vec{E}(r) = 0$.
\item
For $r \ge R$, all charge Q is enclosed, and the electric field can
be written (as if we had a point charge at the origin)
as $\vec{E}(r) = \frac{Q}{4\pi\epsilon_0 r^2} \hat{r}$.\\
\end{itemize}
\vspace{0.2cm}
The electric field $\vec{E}$ produced by the two spherical shells 1 and 2
is given superposition principle:
\begin{equation*}
\vec{E} = \vec{E}_1 + \vec{E}_2
\end{equation*}
where $\vec{E}_1$ ($\vec{E}_2$) is the field of sphere 1 (2).\\
\end{frame}
%
%
%
\begin{frame}{Worked example: Two spherical shells}
The field produced by each shell is pointing radially in (as in the case of
the negatively charged shell 2) or out (as in the case of the positively
charged shell 1). Therefore, for all points on the x axis,
$\vec{E}_1$ and $\vec{E}_2$ point along $\pm \hat{x}$.\\
\vspace{0.3cm}
Within shell 1, $\vec{E}_1 = 0$, and within shell 2, $\vec{E}_2 = 0$.
Therefore, within the shells, the net electric field $\vec{E}_1 + \vec{E}_2$
cannot be zero there.\\
\vspace{0.3cm}
For all x values between the shells ($R_1 < x < L-R_2$),
the fields $\vec{E}_1$ and $\vec{E}_2$ point in the same direction
and, therefore, the net electric field $\vec{E}_1 + \vec{E}_2$
cannot be zero there.\\
\vspace{0.3cm}
The charge contained by shells 1 and 2 can be calculated as follows:
\begin{equation*}
Q_1 = 4\pi R_{1}^{2} \sigma_{1}
= 4\pi (5\times 10^{-3} \; m)^{2} (4 \times 10^{-6} \; C/m^2)
= 4\pi \times 10^{-10} \; C
\end{equation*}
\begin{equation*}
|Q_2| = 4\pi R_{2}^{2} |\sigma_{2}|
= 4\pi (2\times 10^{-2} \; m)^{2} (2 \times 10^{-6} \; C/m^2)
= 8 \times 4\pi \times 10^{-10} \; C
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Two spherical shells}
Since $|Q_2| > Q_1$,
$|\vec{E}_2|>|\vec{E}_1|$ for all values of $x > L + R_2$
(closer to shell 2 than to shell 1). Therefore,
the net field $\vec{E}_1 + \vec{E}_2$ cannot be zero there.\\
\vspace{0.3cm}
Following from the above, the only range of x values where
the net field $\vec{E}_1 + \vec{E}_2$ can be zero, is $x < -R_1$.
In that range, $\vec{E}_1$ and $\vec{E}_2$ have opposite directions,
and magnitudes given by:
\begin{equation*}
E_1 = \frac{1}{4\pi \epsilon_0} \frac{Q_1}{|x|^2} \xRightarrow{4\pi R_{1}^{2} \sigma_{1}}
E_1 = \frac{R_{1}^{2} \sigma_{1}}{\epsilon_0} \frac{1}{|x|^2}
\end{equation*}
\begin{equation*}
E_2 = \frac{1}{4\pi \epsilon_0} \frac{|Q_2|}{(L+|x|)^2} \xRightarrow{|Q_2|=4\pi R_{2}^{2} |\sigma_{2}|}
E_2 = \frac{R_{2}^{2} |\sigma_{2}|}{\epsilon_0} \frac{1}{(L+|x|)^2}
\end{equation*}
The requirement that the net electric field is zero, implies that:
\begin{equation*}
E_1 = E_2
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Two spherical shells}
Therefore:
\begin{equation*}
\frac{R_{1}^{2} \sigma_{1}}{\epsilon_0} \frac{1}{|x|^2} =
\frac{R_{2}^{2} |\sigma_{2}|}{\epsilon_0} \frac{1}{(L+|x|)^2} \Rightarrow
\end{equation*}
\begin{equation*}
\Big( \frac{L+|x|}{|x|} \Big)^2 = \frac{R_{2}^{2} |\sigma_{2}|}{R_{1}^{2} \sigma_{1}} \Rightarrow
\frac{L}{|x|} + 1 = \frac{R_{2}}{R_{1}} \sqrt{\frac{|\sigma_{2}|}{\sigma_{1}}} \Rightarrow
\end{equation*}
\begin{equation*}
|x| = \frac{L}{ \frac{R_{2}}{R_{1}} \sqrt{\frac{|\sigma_{2}|}{\sigma_{1}}} - 1} \Rightarrow
\end{equation*}
\begin{equation*}
|x| = \frac{6\; cm}{ \frac{2.0}{0.5} \sqrt{\frac{2}{4}} - 1}
= \frac{6\; cm}{ \frac{4}{\sqrt{2}} - 1} \approx 3.28 \; cm
\Rightarrow
x \approx -3.28 \; cm
\end{equation*}
\end{frame}
} %\problemslide
% ------------------------------------------------------------------------------
%
% Worked example :
%
{
\problemslide
\begin{frame}{Worked example: Electric field of two charged sheets}
\begin{blockexmplque}{Question}
Two uniform infinite sheets of electric charge densities
$+\sigma$ and $-\sigma$ intersect at a right angle.
Find the magnitude and direction of the electric field everywhere
and sketch the electric field lines.
\end{blockexmplque}
The magnitude of the electric field caused by a single, infinite sheet
of uniform charge density $\sigma$ is given by:
\begin{equation*}
E = \frac{\sigma}{2\epsilon_0}
\end{equation*}
The direction of the field is perpendicular to the sheet and it is pointing
towards (away from) the sheet, if it is negatively (positively) charged.
The field in the problem of two uniform infinite sheets
can be obtained by invoking the superposition principle
and superimposing undisturbed
\begin{itemize}
\item
the field $\vec{E_(+)}$
of an infinite sheet of uniform charge density $+\sigma$, and
\item
the field $\vec{E_(-)}$
of an infinite sheet of uniform charge density $-\sigma$.
\end{itemize}
\end{frame}
%
%
%
\begin{frame}{Worked example: Electric field of two charged sheets}
The magnitude of the combined field ($\vec{E}$) is:
\begin{equation*}
E = \sqrt{E_(+)^2 + E_(-)^2}
= \sqrt{\Big( \frac{+\sigma}{2\epsilon_0} \Big)^2 +
\Big( \frac{-\sigma}{2\epsilon_0} \Big)^2} \Rightarrow
E = \frac{\sqrt{2}\sigma}{2\epsilon_0}
\end{equation*}
The field lines are sketched below:
\begin{figure}[htb]
\includegraphics[width=0.8\linewidth]{./images/problems/lect02_field_lines_of_2_charged_sheets}
\end{figure}
\end{frame}
} %\problemslide
% ------------------------------------------------------------------------------
{
\programmingslide
%
%
%
\begin{frame}{PHYS201 scientific programming task for Lecture \thislecture}
{\small
If you did the previous task, you already have a program to calculate the
electric field (in 2-D) for an arbitrary distribution of discrete charges.\\
\vspace{0.2cm}
Generalize your previous program:
\begin{itemize}
{
\item Move from a 2-D to a {\bf 3-D calculation}.
\item Add an option to {\bf specify a continuous distribution of charge}
(i.e. work with a user-defined charge density function $\rho(\vec{r})$)
}
\end{itemize}
\vspace{0.2cm}
What you will be doing, is to perform the following numerical integration:
\begin{equation*}
\vec{E}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \int_{\tau}
d\tau^{\prime} \frac{\rho({\pvec{r}'})}{|\vec{r}-\pvec{r}'|^{3}} (\vec{r}-\pvec{r}')
\end{equation*}
\vspace{0.3cm}
Can you test Gauss' law numerically?
}
\end{frame}
%
%
%
\begin{frame}{PHYS201 scientific programming task for Lecture \thislecture}
{\small
As an example, use the following charge density in spherical coordinates:
\begin{equation*}
\rho =
\begin{cases}
\frac{\rho_0}{(r/r_0)^2} e^{-r/r_0} cos^2\phi, & \text{if $r < 5 r_0$} \\
& \\
0, \text{otherwise}
\end{cases}
\end{equation*}
where $\rho_0$ = 0.16 C/m$^{3}$ and r$_0$ = 10 cm.\\
%
% at r = 5 *r0, the charge contained is 6.24 * \rho_0 * ro^3
% 0.16 is 1/6.24
%
\vspace{0.2cm}
Calculate numerically the amount of charge Q enclosed in a sphere of radius r, as a function or r:\\
\begin{equation*}
Q(r) = \int_{0}^{r} \int_{4\pi} d\tau \rho(\vec{r^\prime})
\end{equation*}
\vspace{0.2cm}
Confirm that your distribution plateaus to a value of $Q_{tot}$ for
r $>5r_0$, as the sphere encloses all regions of non-zero charge density.
What is the value of $Q_{tot}$?\\
\vspace{0.2cm}
Calculate the electric flux through the surface of a sphere with radius r = 5$r_0$
and confirm that:
\begin{equation*}
\epsilon_0 \oint \vec{E} \cdot d\vec{S} = Q_{tot}
\end{equation*}
}
\end{frame}
} % programming