-
Notifications
You must be signed in to change notification settings - Fork 1
/
slides_lecture03_optional.tex
652 lines (528 loc) · 18.6 KB
/
slides_lecture03_optional.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
%
% Optional reading
%
\begin{frame}[plain,c]
\begin{center}
{\Huge \bf Optional reading for Lecture \thislecture}
\end{center}
\end{frame}
%
%
%
\begin{frame}{The electrostatic potential energy is stored in the field}
We can now prove a statement I made earlier: That {\bf the electrostatic potential energy is stored in the electric field}.\\
\vspace{0.1cm}
The potential energy stored in a system of N charges can be written as:
\begin{equation*}
U = \frac{1}{2} \sum_{i,j=1;i{\ne}j}^{N} \frac{q_i q_j}{4\pi\epsilon_0|\vec{r}_{ij}|}
= \frac{1}{2} \sum_{i}^{N} q_i {\color{red}\sum_{j=1;j{\ne}i}^{N} \frac{q_j}{4\pi\epsilon_0|\vec{r}_{ij}|}}
= \frac{1}{2} \sum_{i}^{N} q_i {\color{red}V(\vec{r}_{i})}
\end{equation*}
where
\begin{equation*}
V(\vec{r}_{i}) = \sum_{j=1;j{\ne}i}^{N} \frac{q_j}{4\pi\epsilon_0|\vec{r}_{ij}|}
\end{equation*}
is the potential at $\vec{r}_{i}$ due to all charges other than $q_i$.\\
\vspace{0.2cm}
The above result can be adapted for the continuous case too, using the (by now) familiar substitutions:
\begin{equation*}
U = \frac{1}{2} \sum_{i}^{N} q_i V(\vec{r}_{i}) \rightarrow \frac{1}{2} \int_{V} \rho(\vec{r}) V(\vec{r}) d\tau
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{The electrostatic potential energy is stored in the field}
The expression we have for the potential energy U of a continuous charge
distribution described by charge density $\rho$ is:
\begin{equation*}
U = \frac{1}{2} \int_{V} \rho(\vec{r}) V(\vec{r}) d\tau
\end{equation*}
We will show that U is related to a volume integral of $|\vec{E}|^2$.\\
\vspace{0.3cm}
Using Gauss's law, the charge density $\rho$ can be written as:
\begin{equation*}
\vec{\nabla} \vec{E}(\vec{r}) = \frac{\rho(\vec{r})}{\epsilon_0} \Rightarrow \rho(\vec{r}) = \epsilon_0 \vec{\nabla} \vec{E}(\vec{r})
\end{equation*}
Substituting $\rho$ into the expression for U, we have:
\begin{equation*}
U = \frac{\epsilon_0}{2} \int_{V} \Big(\vec{\nabla} \vec{E}(\vec{r})\Big) V(\vec{r}) d\tau
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{The electrostatic potential energy is stored in the field}
I would like to express U in terms of $\vec{E}$ only.\\
\vspace{0.2cm}
Since $\vec{\nabla} V = - \vec{E}$, I will try to move the $\vec{\nabla}$ in the previous
expression so that it operates on V instead on $\vec{E}$.\\
\vspace{0.2cm}
The trick is to operate with $\vec{\nabla}$ on the product $\vec{E} V$:
\begin{equation*}
\vec{\nabla} \Big(\vec{E}(\vec{r}) V(\vec{r}) \Big) =
\Big(\vec{\nabla} \vec{E}(\vec{r}) \Big) V(\vec{r}) + \vec{E}(\vec{r}) \Big(\vec{\nabla} V(\vec{r}) \Big) \Rightarrow
\end{equation*}
\begin{equation*}
\Big(\vec{\nabla} \vec{E}(\vec{r}) \Big) V(\vec{r}) =
\vec{\nabla} \Big(\vec{E}(\vec{r})) V(\vec{r}) \Big) - \vec{E}(\vec{r}) \Big(\vec{\nabla} V(\vec{r}) \Big)
\end{equation*}
Substituting the above in the last equation of the previous page we have:
\begin{equation*}
U = \frac{\epsilon_0}{2} \int_{V} \vec{\nabla} \Big(\vec{E}(\vec{r})) V(\vec{r}) \Big) d\tau -
\frac{\epsilon_0}{2} \int_{V} \vec{E}(\vec{r}) \Big(\vec{\nabla} V(\vec{r}) \Big) d\tau
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{The electrostatic potential energy is stored in the field}
Using Gauss' theorem, the 1$^{st}$ term of the previous expression for U becomes:
\begin{equation*}
\int_{V} \vec{\nabla} \Big(\vec{E}(\vec{r})) V(\vec{r}) \Big) d\tau =
\oint_{S} \Big(\vec{E}(\vec{r})) V(\vec{r}) \Big) d\vec{S}
\end{equation*}
Using $\vec{\nabla} V = - \vec{E}$, the 2$^{nd}$ term of the previous expression for U becomes:
\begin{equation*}
\int_{V} \vec{E}(\vec{r}) \Big(\vec{\nabla} V(\vec{r}) \Big) d\tau =
-\int_{V} \vec{E}(\vec{r}) \vec{E}(\vec{r}) d\tau =
-\int_{V} |\vec{E}(\vec{r})|^{2} d\tau
\end{equation*}
The equation for the electric potential U can be rewritten as:
\begin{equation*}
U = \frac{\epsilon_0}{2} \oint_{S} \Big(\vec{E}(\vec{r})) V(\vec{r}) \Big) d\vec{S} +
\frac{\epsilon_0}{2} \int_{V} |\vec{E}(\vec{r})|^2 d\tau
\end{equation*}
As r $\rightarrow\infty$, the surface term $\oint_{S} \Big(...\Big) d\vec{S}$ $\rightarrow$ 0.
Therefore:
\begin{equation*}
U = \frac{\epsilon_0}{2} \int_{all\;space} |\vec{E}(\vec{r})|^2 d\tau
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{The Dirichlet boundary condition yields unique solutions}
This can be understood as follows:\\
\begin{itemize}
{\small
\item Imagine a volume with a charge density $\rho$ which is known at all points.
\item Also assume that the potential is known everywhere on the boundaries (i.e. on the surface surrounding the volume)
\item Assume that there are two distinct solutions, $V_{1}(\vec{r})$ and $V_{2}(\vec{r})$.
\begin{itemize}
{\small
\item $\vec{\nabla}^{2}V_1(\vec{r}) = -\rho(\vec{r})/\epsilon_0$
\item $\vec{\nabla}^{2}V_2(\vec{r}) = -\rho(\vec{r})/\epsilon_0$
}
\end{itemize}
\item Now, consider the function $V_{3}(\vec{r}) = V_{1}(\vec{r}) - V_{2}(\vec{r})$
\begin{itemize}
{\small
\item At the boundary, $V_{3}(\vec{r}) = 0$ (since both $V_1$, $V_2$ satisfy the same boundary condition)
\item Also, $V_{3}(\vec{r})$ satisfies the equation $\vec{\nabla}^{2}V_{3} = 0$ and, as such, changes monotonically inside the volume and has no minima/maxima.
}
\end{itemize}
\item $V_3$ ranges between 0 and ...0, so $V_3$ is 0 everywhere in the given volume.
\item This contradicts the assumption that two distinct solutions $V_1$, $V_2$ can exist.
$V_1 = V_2$ everywhere in the volume, so a unique solution exists.
\begin{equation*}
\vec{\nabla}^{2}V_{3} = \vec{\nabla}^{2}(V_1-V_2) = \vec{\nabla}^{2}V_1 - \vec{\nabla}^{2}V_2 = - \frac{\rho}{\epsilon_0} + \frac{\rho}{\epsilon_0} = 0
\end{equation*}
}
\end{itemize}
\end{frame}
% ------------------------------------------------------------------------------
%
% Worked example :
%
{
\problemslide
%
%
%
\begin{frame}{Worked example: Hypothetical form of electric force}
\begin{blockexmplque}{Question}
Suppose that instead of the Coulomb force law, one found experimentally
that the force between two charges $q_1$ and $q_2$ was
\begin{equation*}
\vec{F}_{12} = \frac{q_1 q_2}{4\pi \epsilon_0}
\frac{1 - \sqrt{C|\vec{r}_1-\vec{r}_2|}}{|\vec{r}_1-\vec{r}_2|^3}
(\vec{r}_1-\vec{r}_2)
\end{equation*}
where $C$ is a constant.
\begin{itemize}
\item
Find an expression for the electric field $\vec{E}$
surrounding a point charge $q$ at the origin of the coordinate system.
\item
Choose an arbitrary closed path around a point charge $q$ and calculate
the line integral $\oint \vec{E} \cdot d\vec{\ell}$.
Compare with the Coulomb result.
\item
Find $\oint \vec{E} \cdot d\vec{S}$ over a spherical surface of radius
$R$ with a point charge $q$ at its centre.
Compare with the Coulomb result.
\item
Calculate $\vec{\nabla} \cdot \vec{E}$ and compare with the Coulomb result.
\end{itemize}
\end{blockexmplque}
\end{frame}
%
%
%
\begin{frame}{Worked example: Hypothetical form of electric force}
Assuming, without loss of generality, that the
point charge $q$ is at the origin of the coordinate system
and that a positive test charge $Q$
is brought at distance $\vec{r}$ from $q$,
the electric field at $\vec{r}$ is given by:
\begin{equation*}
\vec{E}(\vec{r}) = \frac{\vec{F}_{Qq}}{Q}
\end{equation*}
where $\vec{F}_{Qq}$ is the force exerted on $Q$ because of $q$.
Using the given expression of the electric force,
and using $r=|\vec{r}|$,
$\vec{F}_{Qq}$ can be written as:
\begin{equation*}
\displaystyle
\vec{F}_{Qq} =
\frac{Qq}{4\pi \epsilon_0}
\frac{1-\sqrt{Cr}}{r^3} \vec{r}
\xRightarrow{\;\; \vec{r} = r \hat{r} \;\;}
\vec{F}_{Qq} =
\frac{Qq}{4\pi \epsilon_0}
\frac{1-\sqrt{Cr}}{r^2} \hat{r}
\end{equation*}
Therefore, the electric field at point $\vec{r}$ can be written as:
\begin{equation*}
\displaystyle
\vec{E}(\vec{r}) =
\frac{q}{4\pi \epsilon_0}
\frac{1-\sqrt{Cr}}{r^2} \hat{r}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Hypothetical form of electric force}
The path integral of the electric field along a closed path L
can be written as:
\begin{equation*}
\oint_{L} \vec{E} \cdot d\vec{\ell} =
\frac{q}{4\pi \epsilon_0}
\oint_{L} \frac{1-\sqrt{Cr}}{r^2} \hat{r} \cdot d\vec{\ell}
\end{equation*}
Using:
\begin{equation*}
\hat{r} \cdot d\vec{\ell} = d\ell cos\theta = dr
\end{equation*}
we find:
\begin{equation*}
\oint_{L} \vec{E} \cdot d\vec{\ell} =
\frac{q}{4\pi \epsilon_0}
\oint_{L} \frac{1-\sqrt{Cr}}{r^2} dr =
\frac{q}{4\pi \epsilon_0}
\oint_{L} \Big(r^{-2} - \sqrt{C} r^{-3/2}\Big) dr
\end{equation*}
\begin{equation*}
= \frac{q}{4\pi \epsilon_0}
\Big(-\frac{1}{r^\prime}+2\sqrt{C}\frac{1}{\sqrt{r^\prime}}\Big)
\Bigg\rvert_{r}^{r} = 0
\end{equation*}
This is the same as the corresponding Coulomb result.
\end{frame}
%
%
%
\begin{frame}{Worked example: Hypothetical form of electric force}
The flux of the electric field through the
closed surface $S$ or a sphere with radius $R$ can be written as:
\begin{equation*}
\oint_{S(R)} \vec{E} \cdot d\vec{S} =
\frac{q}{4\pi \epsilon_0}
\oint_{S(R)} \frac{1-\sqrt{Cr}}{r^2} \hat{r} \cdot d\vec{S}
\end{equation*}
Since the integration surface is a sphere centred at the origin
of the coordinate system, $d\vec{S}$ is a radial vector:
\begin{equation*}
d\vec{S} = dS \hat{r}
\end{equation*}
and, therefore, the surface integral can be written as:
\begin{equation*}
\oint_{S(R)} \vec{E} \cdot d\vec{S} =
\frac{q}{4\pi \epsilon_0}
\oint_{S(R)} \frac{1-\sqrt{Cr}}{r^2} dS
\end{equation*}
Over the integration surface, at $r=R$ the integrand has a
constant value of:
$\displaystyle \frac{q}{4\pi \epsilon_0} \frac{1-\sqrt{CR}}{R^2}$.
\end{frame}
%
%
%
\begin{frame}{Worked example: Hypothetical form of electric force}
Therefore, the expression for electric flux through $S$ becomes:
\begin{equation*}
\oint_{S(R)} \vec{E} \cdot d\vec{S} =
\frac{q}{4\pi \epsilon_0}
\frac{1-\sqrt{CR}}{R^2}
\oint_{S(R)} dS =
\frac{q}{4\pi \epsilon_0}
\frac{1-\sqrt{CR}}{\cancel{R^2}} 4\pi\cancel{R^2} \Rightarrow
\end{equation*}
\begin{equation*}
\oint_{S(R)} \vec{E} \cdot d\vec{S} =
\frac{q}{\epsilon_0} \Big(1-\sqrt{CR}\Big)
\end{equation*}
This differs by corresponding Coulomb result:
Therefore, the expression for electric flux through $S$ becomes:
\begin{equation*}
\oint_{S(R)} \vec{E} \cdot d\vec{S} = \frac{q}{\epsilon_0}
\end{equation*}
by a term equal to
$\displaystyle -\sqrt{CR} \frac{q}{\epsilon_0}$.
\end{frame}
%
%
%
\begin{frame}{Worked example: Hypothetical form of electric force}
The given electric field is a radial one and,
therefore, it is easier to compute its divergence by expressing
the divergence operator in spherical coordinates:
\begin{equation*}
\vec{\nabla} \cdot \vec{E} =
\frac{1}{r^2} \frac{\partial}{\partial r}
\Bigg( r^2
\Big(
\frac{q}{4\pi \epsilon_0}
\frac{1-\sqrt{Cr}}{r^2}
\Big)
\Bigg)
\end{equation*}
Therefore:
\begin{equation*}
\vec{\nabla} \cdot \vec{E} =
\frac{q}{4\pi \epsilon_0}
\frac{1}{r^2}
\frac{\partial}{\partial r}
\Big( 1-\sqrt{Cr} \Big) =
\frac{q}{4\pi \epsilon_0}
\frac{1}{r^2}
\Big(-\frac{1}{2}\sqrt{\frac{C}{r}} \Big) =
- \frac{q \sqrt{C}}{8\pi \epsilon_0 r^{5/2}}
\end{equation*}
This differs from the Coulomb result:
\begin{equation*}
\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0}
\end{equation*}
which, for a point charge q at the origin, can be written as
\begin{equation*}
\vec{\nabla} \cdot \vec{E} = \frac{q}{\epsilon_0} \delta(r)
\end{equation*}
\end{frame}
} %\problemslide
% ------------------------------------------------------------------------------
% ------------------------------------------------------------------------------
%
% Worked example :
%
{
\problemslide
\begin{frame}{Worked example: Potential $V$ and field $\vec{E}$ of charged disc}
\begin{blockexmplque}{Question}
\begin{columns}
\begin{column}{0.60\textwidth}
The figure on the right shows a plastic disc of radius $R$,
charged on its top surface to a uniform surface charge density $\sigma$.
\begin{itemize}
\item
Find the electrostatic potential $V$ at point $P$ on the
central axis of the disc.
\item
Using the expression for $V$, calculate
the electric field $\vec{E}$ at point $P$.
\end{itemize}
\end{column}
\begin{column}{0.40\textwidth}
\begin{center}
\includegraphics[width=0.92\textwidth]{./images/problems/lect03_charged_disk_3}\\
\end{center}
\end{column}
\end{columns}
\end{blockexmplque}
\end{frame}
%
%
%
\begin{frame}{Worked example: Potential $V$ and field $\vec{E}$ of charged disc}
The electric field $V$ at the point $\vec{r}$, due to a continuous
distribution of charge is given by:
\begin{equation*}
V(\vec{r}) = \frac{1}{4\pi\epsilon_0}
\int \frac{dq(\pvec{r}')}{|\vec{r}-\pvec{r}'|}
\end{equation*}
Taking the point $P$ to be at the origin of the coordinate system,
we have $\vec{r}=\vec{0}$ and, therefore, the above expression simplifies to:
\begin{equation*}
V = \frac{1}{4\pi\epsilon_0}
\int \frac{dq(\pvec{r}')}{|\pvec{r}'|}
\end{equation*}
Integrating $dq(\pvec{r}')$ over a ring with radius $R'$ and width $dR'$,
concentric with the plastic disk, we obtain:
\begin{equation*}
dq(R') = \int_{R'}^{R'+dR'} dq(\pvec{r}') = \sigma 2\pi R' dR'
\end{equation*}
where:
\begin{equation*}
|\pvec{r}'| = \sqrt{R'^2+z^2}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Potential $V$ and field $\vec{E}$ of charged disc}
Therefore, the potential $V$ can be written as:
\begin{equation*}
V =
\frac{1}{4\pi\epsilon_0}
\int_{0}^{R} \frac{\sigma 2\pi R' dR'}{\sqrt{R'^2+z^2}} =
\frac{\sigma}{2\epsilon_0}
\int_{0}^{R} \frac{R' dR'}{\sqrt{R'^2+z^2}}
\end{equation*}
Carrying out the integration, we find:
\begin{equation*}
V =
\frac{\sigma}{2\epsilon_0}
\frac{1}{2} \int_{0}^{R} \frac{d(R'^2+z^2)}{\sqrt{R'^2+z^2}}
\end{equation*}
\begin{equation*}
V =
\frac{\sigma}{2\epsilon_0}
\frac{1}{2} 2 \sqrt{R'^2+z^2}\Big\rvert_{0}^{R} \Rightarrow
\end{equation*}
\begin{equation*}
V =
\frac{\sigma}{2\epsilon_0}
\Big( \sqrt{R^2+z^2} - z \Big)
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Potential $V$ and field $\vec{E}$ of charged disc}
The electric field $\vec{E}$ is computed from the electric potential $V$ as:
\begin{equation*}
\vec{E} = -\vec{\nabla} V
\end{equation*}
The $x$ and $y$ components of $\vec{E}$ vanish at $P$
by symmetry and, therefore:
\begin{equation*}
\vec{E} = - \frac{\partial V}{\partial z} \hat{z}
\end{equation*}
\begin{equation*}
\frac{\partial V}{\partial z} =
\frac{\partial}{\partial z}
\Big\{ \frac{\sigma}{2\epsilon_0} \Big( \sqrt{R^2+z^2} - z \Big) \Big\} =
\frac{\sigma}{2\epsilon_0} \Big\{ \frac{z}{\sqrt{R^2+z^2}} - 1 \Big\}
\end{equation*}
\begin{equation*}
\vec{E} = \frac{\sigma}{2\epsilon_0}
\Big\{ 1 - \frac{z}{\sqrt{R^2+z^2}} \Big\} \hat{z}
\end{equation*}
\end{frame}
} %\problemslide
% ------------------------------------------------------------------------------
% ------------------------------------------------------------------------------
%
%
%
{
\programmingslide
%
%
%
\begin{frame}{PHYS201 scientific programming task for Lecture \thislecture}
{\small
We will attempt to {\bf solve numerically the Laplace equation in 2-D},
for some given boundary conditions, and determine the potential V!\\
\vspace{0.2cm}
The Laplace equation in 2-D takes the form
\begin{equation*}
\frac{\partial^2 V(x,y)}{\partial x^2} +
\frac{\partial^2 V(x,y)}{\partial y^2} = 0
\end{equation*}
\vspace{0.2cm}
We will solve this equation for all x, y in the square area defined by:
\begin{equation*}
0 < x < L \;\;\; \text{and} \;\;\; 0 < y < L
\end{equation*}
\vspace{0.2cm}
Our boundary conditions are:
\begin{equation*}
V(x,0) = V_0, \;\;\; V(x,L) = 0, \;\;\; V(0,y) = 0, \;\;\; V(L,y) = 0
\end{equation*}
Take L = 1 m and V$_0$ = 1 V.
}
\end{frame}
%
%
%
\begin{frame}{PHYS201 scientific programming task for Lecture \thislecture}
{\small
{\bf \color{red}Hint:} Solve the Laplace equation numerically,
using the {\em finite difference method}.
Consider the Taylor expansions of a function f(x) around x:
\begin{equation*}
f(x+h) = f(x) + h f^{\prime}(x) + \frac{h^2}{2} f^{\prime \prime}(x) + O(h^3)
\end{equation*}
\begin{equation*}
f(x-h) = f(x) - h f^{\prime}(x) + \frac{h^2}{2} f^{\prime \prime}(x) - O(h^3)
\end{equation*}
where h is a small distance.\\
\vspace{0.2cm}
Adding the two equations, we obtain the
{\em first central difference approximation} for the second derivative of f(x):
\begin{equation*}
f(x+h) + f(x-h) = 2f(x) + h^2 f^{\prime \prime}(x) + O(h^4) \Rightarrow
\end{equation*}
\begin{equation*}
f^{\prime \prime}(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} + O(h^2)
\end{equation*}
}
\end{frame}
%
%
%
\begin{frame}{PHYS201 scientific programming task for Lecture \thislecture}
{\small
\begin{columns}
\begin{column}{0.25\textwidth}
\begin{center}
\includegraphics[width=0.90\textwidth]{./images/problems/lect03_computing_grid2d.png}
\end{center}
\end{column}
\begin{column}{0.75\textwidth}
Now, consider a uniform mesh (grid), as shown on the left,
where the spacing between neighbouring points along x is h$_x$
and the spacing between neighbouring points along y is h$_y$.\\
\vspace{0.2cm}
Using the {\em first central difference approximation},
the Laplace equation for any point on the 2-D grid can be written as:
\end{column}
\end{columns}
\begin{equation*}
\frac{V(x+h_x,y) - 2V(x,y) + V(x-h_x, y)}{h_x^2} +
\frac{V(x,y+h_y) - 2V(x,y) + V(x, y-h_y)}{h_y^2} = 0
\end{equation*}
If the grid is uniform (h$_x$ = h$_y$ = h), then the above equation becomes:
\begin{equation*}
V(x+h,y) + V(x-h, y) +
V(x,y+h) + V(x, y-h) - 4V(x,y) = 0
\end{equation*}
You have a set of such equations, one for each grid point, which you need
to {\bf solve simultaneously} in order to determine V(x,y) for each grid point.
}
\end{frame}
} % programming
% ------------------------------------------------------------------------------
% ------------------------------------------------------------------------------