-
Notifications
You must be signed in to change notification settings - Fork 1
/
slides_lecture04_summary.tex
265 lines (195 loc) · 7.58 KB
/
slides_lecture04_summary.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
\renewcommand{\summarizedlecture}{4 }
%
%
%
\begin{frame}{Lecture \summarizedlecture - \lecturesummarytitle}
\begin{itemize}
\item With regards to electrical properties, there are 2 types of materials
\begin{itemize}
\item materials that conduct electricity: {\bf conductors}
\item materials that do not conduct electricity: {\bf insulators (dielectrics)}
\end{itemize}
\vspace{0.2cm}
\item A conductor is an object or type of material
which {\bf contains electric charges that are relatively free to move}
\begin{itemize}
\item A {\em \bf perfect conductor} has an {\bf unlimited supply of free charges}.
\item There are no perfect conductors, but many substances come close!
\begin{itemize}
\item e.g. the free charge density in copper is 1.8 $\times$ 10$^{10}$ C/$m^3$.
\end{itemize}
\end{itemize}
\vspace{0.2cm}
\item If we place a {\bf conductor within an external electric field}:
\begin{itemize}
\item The electric field vanishes everywhere inside a conductor.
\item The potential is constant inside a conductor.
\item Charge accumulates in the surface.
\item The field on the surface of a conductor has no tangential component.
\end{itemize}
\end{itemize}
\end{frame}
%
%
%
\begin{frame}{Lecture \summarizedlecture - \lecturesummarytitle (cont'd)}
\begin{itemize}
\item Capacitance (C) denotes the ability of a body to store electric charge.
For a system of two conductors, one with charge +Q held at
potential $V_{+}$ and one with charge -Q held at potential $V_{-}$,
the capacitance is a positive
quantity defined as:
\begin{equation*}
C = \frac{Q}{V_{+} - V_{-}}
\end{equation*}
Its SI unit is the {\bf Farad (F)} defined as one Coulomb per Volt.
\vspace{0.1cm}
\item Calculating the capacitance for simple systems:
\begin{itemize}
{\small
\item Use Gauss' law to calculate the electric field $\vec{E}$
in terms of the charge Q stored in one of the conductors:
$\oint_{S} \vec{E} \cdot d\vec{S} = Q/\epsilon_0$
\item Once $\vec{E}$ is known, calculate the potential
difference V between the two conductors as:
$V := {\Delta}V = V_{+} - V_{-} = - \int_{-}^{+} \vec{E} \cdot d\vec{\ell}$
\item From the known charge Q in the positive conductor and
the potential difference V between the conductors,
calculate $C = Q/V$
}
\end{itemize}
\end{itemize}
\end{frame}
%
%
%
\begin{frame}{Lecture \summarizedlecture - \lecturesummarytitle (cont'd)}
\begin{itemize}
\item We studied a simple system: The {\bf parallel plate capacitor}
\item The electric field between the plates was found to be:
\begin{equation*}
E = \frac{\sigma}{\epsilon_0}
\end{equation*}
\item The parallel plate capacitor has capacitance:
\begin{equation*}
C = \epsilon_0 \frac{A}{d}
\end{equation*}
It depends only on the geometrical characteristics of the capacitor.
\item Energy stored in the parallel plate capacitor:
\begin{equation*}
U = \frac{Q^2}{2C} \;\;\;\; or \;\;\;\;
U = \frac{1}{2} C V^2 \;\;\;\; or \;\;\;\;
U = \frac{1}{2} Q V
\end{equation*}
and confirmed that:
\begin{equation*}
U = \frac{\epsilon_0}{2} \int_{all\;space} |\vec{E}(\vec{r})|^2 d\tau
\end{equation*}
\end{itemize}
\end{frame}
%
%
%
\begin{frame}{Lecture \summarizedlecture - \lecturesummarytitle (cont'd)}
\begin{itemize}
\item {\bf Electric dipole}:
Point charges +q and -q at a {\em small distance} d.\\
\vspace{0.1cm}
\item An electric dipole its described by its {\bf electric dipole moment} $\vec{p} = q \vec{d}$\\
\begin{itemize}
\item A vector pointing from the negative to the positive charge
\end{itemize}
\vspace{0.1cm}
\item An electric dipole creates a potential field V given by
\begin{equation*}
V \approx \frac{1}{4\pi\epsilon_0} \frac{\vec{p} \cdot \hat{r}}{r^2}
\end{equation*}
\item An electric field $\vec{E}$ exerts to an electric dipole with moment $\vec{p}$
a torque $\vec{T} = \vec{p} \times \vec{E}$
\vspace{0.1cm}
\item Electric fields induce dipole moments in the direction of the field (or align
towards the direction of the field polar molecules with permanent dipole moments)
and generate macroscopic polarisation.
\vspace{0.1cm}
\item The {\bf polarisation} $\vec{P}$ of a material is defined as the
{\bf amount of electric dipole moment per unit volume}.\\
\end{itemize}
\end{frame}
%
%
%
\begin{frame}{Lecture \summarizedlecture - \lecturesummarytitle (cont'd)}
\begin{itemize}
\item The polarisation induces surface and volume polarisation charges.
The corresponding densities are
$\sigma_P = \vec{P} \cdot \hat{n}$ and $\rho_P = - \vec{\nabla} \cdot \vec{P}$
\vspace{0.1cm}
\item In the presence of dielectrics, Gauss's law need to be generalised
to include both free charges we also have induced polarisation charges:
\begin{equation*}
\vec{\nabla} \cdot \Big( \epsilon_0 \vec{E} + \vec{P} \Big) = \rho_f
\;\;\;\; and \;\;\;\;
\oint \Big( \epsilon_0 \vec{E} + \vec{P} \Big) \cdot d\vec{S} = Q_f
\end{equation*}
where $\rho_f$ is the free charge density and $Q_f$ the amount of free charge.
\vspace{0.1cm}
\item The vector
$\vec{D} = \epsilon_0 \vec{E} + \vec{P}$ is the electric displacement vector
\begin{itemize}
\item In SI, the electric displacement unit is $C/m^2$.
\end{itemize}
\vspace{0.1cm}
\item For {\bf linear dielectrics},
$\vec{P} = \chi_{e} \epsilon_0 \vec{E}$ and, therefore,
$\vec{D} = \epsilon_r \epsilon_0 \vec{E}$,
where
$\chi_{e}$ is the electric susceptibility of the material and
$\epsilon_r = 1 + \chi_e$ is the relative permittivity (dielectric constant).
\item A dielectric with relative permittivity $\epsilon_r$ inserted
between the plates of a parallel plate capacitor, increases
its capacitance by a factor of $\epsilon_r$.
\end{itemize}
\end{frame}
%
%
%
\begin{frame}{Maxwell's equation we know so far}
In vacuum (static case):
\begin{center}
{
\begin{table}[H]
\begin{tabular}{|l|c|c|}
\hline
& {\it Integral form} & {\it Differential form} \\
\hline
{\bf Gauss's law} &
$\oint \vec{E} \cdot d\vec{S} = Q_{enclosed} / \epsilon_0$ &
$\vec{\nabla} \cdot \vec{E} = \rho / \epsilon_0$ \\
{\bf Circuital law} &
$\oint \vec{E} \cdot d\vec{\ell} = 0$ &
$\vec{\nabla} \times \vec{E} = 0$ \\
\hline
\end{tabular}
\end{table}
}
\end{center}
In the presence of materials (static case):
\begin{center}
{
\begin{table}[H]
\begin{tabular}{|l|c|c|}
\hline
& {\it Integral form} & {\it Differential form} \\
\hline
{\bf Gauss's law} &
$\oint \vec{D} d\vec{S} = Q_{enclosed; free}$ &
$\vec{\nabla} \cdot \vec{D} = \rho_{free}$ \\
{\bf Circuital law} &
$\oint \vec{E} d\vec{\ell} = 0$ &
$\vec{\nabla} \times \vec{E} = 0$ \\
\hline
\end{tabular}
\end{table}
}
\end{center}
\end{frame}