-
Notifications
You must be signed in to change notification settings - Fork 1
/
slides_lecture06_main.tex
1948 lines (1590 loc) · 53.7 KB
/
slides_lecture06_main.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\renewcommand{\prevlecture}{5 }
\renewcommand{\thislecture}{6 }
\renewcommand{\nextlecture}{7 }
%
% Cover page
%
\title[PHYS 201 / Lecture \thislecture]
{
PHYS 201 / Lecture \thislecture\\
{\it Force between conductors; Magnetic dipole moment;
DC motors; Field of a toroidal coil;
Curl and divergence of the magnetic field; Vector potential}\\
}
\input{slides_author.tex}
\begin{frame}[plain]
\titlepage
\end{frame}
% ------------------------------------------------------------------------------
% ------------------------------------------------------------------------------
%
% Revision of previous lecture
%
\renewcommand{\lecturesummarytitle}{Revision }
\input{slides_lecture05_summary.tex}
%
% Plan for this lecture
%
\begin{frame}{Plan for Lecture \thislecture}
\begin{itemize}
\item {\it Expand on concepts studied in the previous lecture and study worked examples.}
\vspace{0.2cm}
\item Force between two parallel conductors
\begin{itemize}
\item Definition of the Ampere
\end{itemize}
\item Current loop
\item Torque on a current loop
\item Magnetic dipole moment
\item The (DC) electric motor
\item The curl and circulation of the magnetic field: Ampere's law
\item The divergence and the flux of the magnetic field
\item The vector potential
\end{itemize}
\end{frame}
% ------------------------------------------------------------------------------
% ------------------------------------------------------------------------------
%
% Worked example
%
{
\setbeamercolor {frametitle} {bg=eBG1}
\setbeamercolor {author in head/foot} {bg=eBG1}
\setbeamercolor {title in head/foot} {bg=eBG2}
\setbeamercolor {date in head/foot} {bg=eBG3}
\setbeamercolor {date in head/foot} {fg=eFG3}
%
%
%
\begin{frame}{Worked example}
\begin{blockexmplque}{Question}
\begin{columns}
\begin{column}{0.35\textwidth}
\begin{center}
\includegraphics[width=0.92\textwidth]{./images/problems/lect5_Bfield_2wires.png}\\
\end{center}
\end{column}
\begin{column}{0.65\textwidth}
{\small
The figure on the left shows two long parallel wires carrying
currents $I_1$ and $I_2$ in opposite directions.
What are the magnitude and direction of the net magnetic field
at point P? \\
Assume the following values: $I_1$ = 15 A, $I_2$
= 32 A, and d = 5.3 cm.\\
}
\end{column}
\end{columns}
\end{blockexmplque}
\vspace{0.2cm}
{\small
The net magnetic field $\vec{B}$ at point P is the vector sum of the
magnetic fields due to the currents in the two wires.\\
The magnetic field $\vec{B}_k$ around a wire k with current $I_k$:
\begin{equation*}
\vec{B}_k(\vec{r}) = \frac{\mu_0I_k}{2\pi \rho} \hat\phi
\end{equation*}
where $\rho$ is the distance from the wire and $\hat\phi$ the azimuthal unit vector.
}
\end{frame}
%
%
%
\begin{frame}{Worked example}
{\small
The point P is at a distance R from both currents $I_1$ and
$I_2$. Those currents produce magnetic fields $\vec{B}_1$
and $\vec{B}_2$ with magnitudes:\\
\begin{equation*}
B_1 = \frac{\mu_0I_1}{2\pi R} \;,\;\;
B_2 = \frac{\mu_0I_2}{2\pi R}
\end{equation*}
}
\begin{columns}
\begin{column}{0.32\textwidth}
\begin{center}
\includegraphics[width=0.98\textwidth]{./images/problems/lect5_Bfield_2wires_2.png}\\
\end{center}
\end{column}
\begin{column}{0.68\textwidth}
{\small
The fields $\vec{B}_1$ and $\vec{B}_2$ have the azimuthal
directions shown on the left (notice the current direction
and use the right-hand rule).\\
Note that the angles between sides R an d are 45$^o$.\\
The distance R is given in terms of the given distance d by:
\begin{equation*}
R = d cos\frac{\pi}{4}
\end{equation*}
Therefore:
\begin{equation*}
B_1 = \frac{\mu_0I_1}{2\pi d cos\frac{\pi}{4}} \;,\;\;
B_2 = \frac{\mu_0I_2}{2\pi d cos\frac{\pi}{4}}
\end{equation*}
}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Worked example}
\begin{columns}
\begin{column}{0.32\textwidth}
\begin{center}
\includegraphics[width=0.98\textwidth]{./images/problems/lect5_Bfield_2wires_2.png}\\
\end{center}
\end{column}
\begin{column}{0.68\textwidth}
{\small
The net magnetic field $\vec{B}$ is given by:
\begin{equation*}
\vec{B} = \vec{B}_1 + \vec{B}_2
\end{equation*}
The magnitude of $\vec{B}$ is:
\begin{equation*}
B = \sqrt{B_1^2 + B_2^2} =
\frac{\mu_0}{2\pi d cos\frac{\pi}{4}}
\sqrt {I_1^2 + I_2^2} \Rightarrow
\end{equation*}
\begin{equation*}
B = \frac{(4\pi \times 10^{-7} \; T \cdot m/A)}
{(2\pi) (5.3\times 10^{-2} \; m) (cos\frac{\pi}{4})}
\sqrt{(15\;A)^2 + (32\;A)^2} \Rightarrow
\end{equation*}
\begin{equation*}
B \approx 190 {\mu}T
\end{equation*}
}
\end{column}
\end{columns}
{\small
The angle $\phi$ between the directions of $\vec{B}$ and $\vec{B}_2$
is given by:
\begin{equation*}
\tan\phi = \frac{B_1}{B_2} \Rightarrow
\tan\phi = \frac{I_1}{I_2} \Rightarrow
\tan\phi = \frac{15\;A}{32\;A} \Rightarrow
\tan\phi = \frac{15\;A}{32\;A} \Rightarrow
\phi = 25^o
\end{equation*}
Therefore, the angle between $\vec{B}$ and the x-axis
is: $\phi + 45^0$ = $70^o$.
}
\end{frame}
} % Worked example
%
%
%
\begin{frame}{Force between two parallel conductors}
\begin{columns}
\begin{column}{0.60\textwidth}
\begin{center}
\includegraphics[width=0.98\textwidth]{./images/schematics/magnetic_force_between_wires_01.png}\\
\end{center}
\end{column}
\begin{column}{0.40\textwidth}
{\small
As we saw in the previous lecture, there is a magnetic force exerted between two wires.\\
This force is:
\begin{itemize}
{\small
\item attractive if both currents flow in the same direction, and
\item repulsive if the two currents flow in opposite directions.
}
\end{itemize}
}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Force between two parallel conductors}
\begin{columns}
\begin{column}{0.40\textwidth}
\includegraphics[width=0.85\textwidth]{./images/schematics/magnetic_field_around_wire_01.png}
\end{column}
\begin{column}{0.60\textwidth}
We know the the magnetic field
$\vec{B}$ produced by a constant current flowing across an infinite straight wire.
\begin{equation*}
\vec{B}(\vec{r})
= \frac{\mu_0I}{2\pi \rho} \hat\phi
= \frac{\mu_0I}{2\pi \rho} \Big( -\frac{y}{\rho}, \frac{x}{\rho}, 0 \Big)
\end{equation*}
\end{column}
\end{columns}
\vspace{0.2cm}
We also know the force exerted on a current within a magnetic field:
\begin{equation*}
\vec{F} = I \int_{L} d\vec{\ell} \times \vec{B}
\end{equation*}
\vspace{0.1cm}
The two above ingredients allow us to
{\bf calculate the force between two parallel conductors.}\\
\end{frame}
%
%
%
\begin{frame}{Force between two parallel conductors}
Consider the 2 wires (1) and (2) shown below.\\
\vspace{0.2cm}
\begin{columns}
\begin{column}{0.40\textwidth}
\includegraphics[width=0.90\textwidth]{./images/schematics/magnetic_force_between_wires_rho.png}\\
\end{column}
\begin{column}{0.60\textwidth}
\begin{itemize}
\item We will calculate the {\bf force $\vec{F}$ exerted on the current in wire (2)}.
\item This force is {\bf caused by the magnetic field $\vec{B}$} at the location of wire (2)
{\bf due to the current in wire (1)}. (*)
\end{itemize}
\vspace{0.1cm}
Convince yourselves, using the right-hand rule, that the magnetic force is:
\begin{itemize}
\item {\bf attractive} if both currents flow in the {\bf same direction}, and
\item {\bf repulsive} if the two currents flow in {\bf opposite directions}.\\
\end{itemize}
\end{column}
\end{columns}
\vspace{0.1cm}
\noindent\rule{2cm}{0.4pt}\\
{\scriptsize
(*)
We will see that an {\bf interchange of (1) and (2) leaves the result unchanged}:
i.e. the same result is obtained if we consider
the force on wire (1) due to the field produced by wire (2).\\
}
\end{frame}
%
%
%
\begin{frame}{Force between two parallel conductors}
The force on wire (2) due to the field produced by wire (1) is:
\begin{equation*}
\vec{F}_{21} = I_{2} \int d\vec{\ell}_{2} \times \vec{B}_{1}
\end{equation*}
where an infinitesimal element $d\vec{\ell}_{2}$ on wire (2) can be written as (*):
\begin{equation*}
d\vec{\ell}_{2} = \Big( x, y, z+dz \Big) - \Big( x, y, z \Big) = \Big( 0, 0, dz \Big)
\end{equation*}
and the magnetic field due to wire (1) is:
\begin{equation*}
\vec{B}_{1} = \frac{\mu_0I_{1}}{2\pi \rho} \Big( -\frac{y}{\rho}, \frac{x}{\rho}, 0 \Big)
\end{equation*}\\
\vspace{0.1cm}
Putting everything together,
the force $\vec{F}_{21}$ can be written as:
\begin{equation*}
\vec{F}_{21} = \frac{\mu_0 I_{1} I_{2}}{2\pi \rho} \int \Big( 0, 0, dz \Big) \times \Big( -\frac{y}{\rho}, \frac{x}{\rho}, 0 \Big)
\end{equation*}
\noindent\rule{2cm}{0.4pt}\\
{\scriptsize
(*) We take both wires to be along the z axis.
Wire (1) passes through (x,y)=(0,0), whereas wire (2) passes through an arbitrary point on (x,y) plane.
}
\end{frame}
%
%
%
\begin{frame}{Force between two parallel conductors}
The cross product appearing in the previous equation can be calculated as:
\begin{equation*}
\Big( 0, 0, dz \Big) \times \Big( -\frac{y}{\rho}, \frac{x}{\rho}, 0 \Big) =
\left|
\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
0 & 0 & dz \\
-\frac{y}{\rho} & \frac{x}{\rho} & 0 \\
\end{array}
\right| =
\end{equation*}
\begin{equation*}
\hat{x}
\left|
\begin{array}{cc}
0 & dz \\
\frac{x}{\rho} & 0 \\
\end{array}
\right| -
\hat{y}
\left|
\begin{array}{cc}
0 & dz \\
-\frac{y}{\rho} & 0 \\
\end{array}
\right| +
\hat{z}
\left|
\begin{array}{cc}
0 & 0 \\
-\frac{y}{\rho} & \frac{x}{\rho} \\
\end{array}
\right| =
\Big( -\frac{x}{\rho}, -\frac{y}{\rho}, 0 \Big) dz
\end{equation*}
\vspace{0.1cm}
Therefore:
\begin{equation*}
\vec{F}_{21} =
\frac{\mu_0 I_{1} I_{2}}{2\pi \rho} \int_{L} \Big( -\frac{x}{\rho}, -\frac{y}{\rho}, 0 \Big) dz =
- \frac{\mu_0 I_{1} I_{2}}{2\pi \rho} \int_{L} \Big(\frac{x}{\rho}, \frac{y}{\rho}, 0 \Big) dz
\end{equation*}
The vector $\Big(\frac{x}{\rho}, \frac{y}{\rho}, 0 \Big)$ is a
constant for the integration over the length L of the wire, hence:
\begin{equation*}
\vec{F}_{21} =
- \frac{\mu_0 I_{1} I_{2}}{2\pi \rho} \Big(\frac{x}{\rho}, \frac{y}{\rho}, 0 \Big) \int_{L} dz
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Force between two parallel conductors}
Performing the trivial integration over z, we have:
\begin{equation*}
\vec{F}_{21} = - \frac{\mu_0 I_{1} I_{2} L}{2\pi \rho} \Big(\frac{x}{\rho}, \frac{y}{\rho}, 0 \Big)
\end{equation*}
\vspace{0.2cm}
\begin{columns}
\begin{column}{0.16\textwidth}
\begin{center}
\includegraphics[width=0.90\textwidth]{./images/schematics/magnetic_force_between_wires_rho_hat.png}\\
\end{center}
\end{column}
\begin{column}{0.84\textwidth}
{\small
What is $\Big(\frac{x}{\rho}, \frac{y}{\rho}, 0 \Big)$?
It can be easily seen that it is the unit vector $\hat{\rho}$, pointing along the (shortest) distance between wires (1) and (2).
\begin{equation*}
\hat{\rho} = \Big(\frac{x}{\rho}, \frac{y}{\rho}, 0 \Big) \; , \;
\hat{\rho} \cdot \hat{\rho} = \Big( \frac{x}{\rho} \Big)^2 + \Big( \frac{y}{\rho} \Big)^2 = 1
\end{equation*}
}
\end{column}
\end{columns}
\vspace{0.2cm}
The force $\vec{F}_{21}$ on wire (2) due to the field of wire (1) is written as:
\begin{equation*}
\vec{F}_{21} = - \frac{\mu_0 I_{1} I_{2} L}{2\pi \rho} \hat{\rho}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Force between two parallel conductors}
The force $\vec{F}_{21}$ on wire (2) due to the field of wire (1):
\begin{equation*}
\vec{F}_{21} = - \frac{\mu_0 I_{1} I_{2} L}{2\pi \rho} \hat{\rho}
\end{equation*}
\begin{columns}
\begin{column}{0.70\textwidth}
\begin{center}
\includegraphics[width=0.98\textwidth]{./images/schematics/magnetic_force_between_wires_2_cases_02.png}\\
\end{center}
\end{column}
\begin{column}{0.30\textwidth}
The presence of $-\hat{\rho}$ tells us that, if $I_1$ and $I_2$ have the same direction,
the force $\vec{F}_{21}$ pulls the wire (2) towards the wire (1).
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Force between two parallel conductors}
Consequently, the force $\vec{F}_{12}$ on wire (1) due to the field of wire (2) is given by:
\begin{equation*}
\vec{F}_{12} = - \frac{\mu_0 I_{1} I_{2} L}{2\pi \rho} \hat{\rho^{\prime}} = \frac{\mu_0 I_{1} I_{2} L}{2\pi \rho} \hat{\rho}
\end{equation*}
\begin{columns}
\begin{column}{0.70\textwidth}
\begin{center}
\includegraphics[width=0.98\textwidth]{./images/schematics/magnetic_force_between_wires_2_cases_03.png}\\
\end{center}
\end{column}
\begin{column}{0.30\textwidth}
The relative minus sign is because the corresponding unit vector $\hat{\rho^{\prime}}$ starting
from wire (2) and pointing towards wire (1) has the opposite direction wrt $\hat{\rho}$:
$\hat{\rho^{\prime}}$ = -$\hat{\rho}$
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Force between two parallel conductors}
The force $\vec{F}_{21}$ on wire (2) due to the field of wire (1):
\begin{equation*}
\vec{F}_{21} = - \frac{\mu_0 I_{1} I_{2} L}{2\pi \rho} \hat{\rho}
\end{equation*}
The force $\vec{F}_{12}$ on wire (1) due to the field of wire (2):
\begin{equation*}
\vec{F}_{12} = - \frac{\mu_0 I_{1} I_{2} L}{2\pi \rho} \hat{\rho^{\prime}} = \frac{\mu_0 I_{1} I_{2} L}{2\pi \rho} \hat{\rho}
\end{equation*}
Notice that in both cases, the magnitude of the force is the same, as expected:
\begin{equation*}
|\vec{F}_{21}| = |\vec{F}_{12}| = \frac{\mu_0 I_{1} I_{2} L}{2\pi \rho}
\end{equation*}
From now on we will drop the indices from the force and write it as:
\begin{equation*}
F = \frac{\mu_0 I_{1} I_{2} L}{2\pi \rho}
\end{equation*}
\end{frame}
%
% Worked example
%
{
\setbeamercolor {frametitle} {bg=eBG1}
\setbeamercolor {author in head/foot} {bg=eBG1}
\setbeamercolor {title in head/foot} {bg=eBG2}
\setbeamercolor {date in head/foot} {bg=eBG3}
\setbeamercolor {date in head/foot} {fg=eFG3}
%
%
%
\begin{frame}{Worked example}
\begin{blockexmplque}{Question}
\begin{columns}
\begin{column}{0.30\textwidth}
\begin{center}
\includegraphics[width=0.98\textwidth]{./images/problems/lect5_force_2wires.png}\\
\end{center}
\end{column}
\begin{column}{0.70\textwidth}
{\small
The figure on the left shows wire 1 in cross section; the wire
is long and straight, carries a current of 4.00 mA out of the
page, and is at distance $d_1$ = 2.40 cm from a surface.
Wire 2, which is parallel to wire 1 and also long, is at
horizontal distance $d_2$ = 5.00 cm from wire 1 and carries a
current of 6.80 mA into the page.\\
}
\end{column}
\end{columns}
\vspace{0.2cm}
What is the x-component of
the magnetic force {\em per unit length} on wire 2 due to wire 1?
\end{blockexmplque}
\vspace{0.3cm}
{\small
The magnitude of the force per unit length between the wires is given by:
\begin{equation*}
\frac{F}{L} = \frac{\mu_0 I_{1} I_{2}}{2\pi d} \Rightarrow
\frac{F}{L} = \frac{\mu_0 I_{1} I_{2}}{2\pi \sqrt{d_1^2+d_2^2}}
\end{equation*}
}
\end{frame}
%
%
%
\begin{frame}{Worked example}
\begin{columns}
\begin{column}{0.30\textwidth}
\begin{center}
\includegraphics[width=0.98\textwidth]{./images/problems/lect5_force_2wires.png}\\
\end{center}
\end{column}
\begin{column}{0.70\textwidth}
{\small
The x-component is found by multiplying the amplitude with:
\begin{equation*}
cos\phi = \frac{d_2}{\sqrt{d_1^2+d_2^2}}
\end{equation*}
}
\end{column}
\end{columns}
{\small
Therefore, the x-component of
the magnetic force {\em per unit length} on wire 2 due to wire 1 is:
\begin{equation*}
\frac{F_x}{L} =
\frac{\mu_0 I_{1} I_{2}}{2\pi \sqrt{d_1^2+d_2^2}} \cdot
\frac{d_2}{\sqrt{d_1^2+d_2^2}} \Rightarrow
\frac{F_x}{L} =
\frac{\mu_0 I_{1} I_{2} d_2}{2\pi (d_1^2+d_2^2)} \Rightarrow
\end{equation*}
\begin{equation*}
\frac{F_x}{L} =
\frac{ (4\pi \times 10^{-7} \; T \cdot m/A)
(4.00 \times 10^{-3}\; A)
(6.80 \times 10^{-3}\; A)
(0.050 \; m)}
{2\pi \Big( (0.024\; m)^2+(0.050\; m)^2 \Big)} \Rightarrow
\end{equation*}
\begin{equation*}
\frac{F_x}{L} = 8.84 \times 10^{-11} \; N/m
\end{equation*}
}
\end{frame}
} % worked example
%
%
%
\begin{frame}{The definition of an Ampere}
The force between two conducting wires
\begin{equation*}
F = \frac{\mu_0 I_{1} I_{2} L}{2\pi \rho}
\end{equation*}
is used to {\bf define the SI unit of current (Ampere)}\\
\vspace{0.3cm}
Assume:
\begin{itemize}
\item 2 straight parallel conductors, placed in vacuum
\item The conductors are 1 m apart
\item They have infinite length and negligible cross section.\\
\end{itemize}
\vspace{0.3cm}
One {\bf Ampere is the amount of current that},
if maintained between those conductors {\bf produces a force of 2 $\times$ $10^{-7}$ N per metre of length.}
\end{frame}
%
%
%
\begin{frame}{Current loop}
\begin{columns}
\begin{column}{0.40\textwidth}
\includegraphics[width=0.99\textwidth]{./images/schematics/current_loop.png}\\
\end{column}
\begin{column}{0.60\textwidth}
Let's consider a {\bf current loop} as the one shown on the left.\\
\vspace{0.3cm}
{\small
A current loop is a {\bf magnetic dipole} which is the magnetic analogue of the
electric dipole we saw at an earlier lecture. The analogies
will become clearer later in this lecture series.\\
}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{A current loop within a magnetic field}
Let's study a {\bf conducting loop within a magnetic field}.\\
\vspace{0.3cm}
\begin{columns}
\begin{column}{0.30\textwidth}
\includegraphics[width=0.99\textwidth]{./images/schematics/current_loop_in_magnetic_field.png}\\
\end{column}
\begin{column}{0.70\textwidth}
{\small
For simplicity, we will examine:
\begin{itemize}
{\small
\item a loop with a {\bf rectangular shape},
\item circulated by a {\bf constant current I},
\item placed within a {\bf uniform magnetic field B} that is {\bf perpendicular to the long sides}.
}
\end{itemize}
}
\end{column}
\end{columns}
We will assume that the loop can {\bf rotate freely around an axis} parallel
to the long sides going through the centre of the short sides (see figure).\\
\end{frame}
%
%
%
\begin{frame}{Force on the sides of a current loop}
\begin{columns}
\begin{column}{0.37\textwidth}
\includegraphics[width=0.99\textwidth]{./images/schematics/magnetic_torque_current_loop_perspective.png}\\
\vspace{0.3cm}
\includegraphics[width=0.99\textwidth]{./images/schematics/magnetic_torque_current_loop_top_view.png}\\
\end{column}
\begin{column}{0.63\textwidth}
{\small
We will study the force exerted on each side of the loop.
This force, as we have seen, is given by:
\begin{equation*}
\vec{F} = I \int_{L} d\vec{\ell} \times \vec{B}
\end{equation*}
\vspace{0.1cm}
Its direction is given by the right-hand rule.\\
\begin{center}
\includegraphics[width=0.30\textwidth]{./images/schematics/right_hand_rule_fbi.png}\\
\end{center}
Let {\bf a} be the length of the short sides, and {\bf b} the length of the long sides.
As the loop rotates, the angle between the short sides and the magnetic field $\vec{B}$ changes:
Let's call this angle $\theta$ (see figure).\\
}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Force on the sides of a current loop}
\begin{columns}
\begin{column}{0.37\textwidth}
\includegraphics[width=0.99\textwidth]{./images/schematics/magnetic_torque_current_loop_perspective.png}\\
\vspace{0.3cm}
\includegraphics[width=0.99\textwidth]{./images/schematics/magnetic_torque_current_loop_top_view.png}\\
\end{column}
\begin{column}{0.63\textwidth}
{\small
$|\vec{B}|$ is constant over the loop,
but, as it (the loop) rotates, the angle between the short sides (and, hence, their current)
and $\vec{B}$ changes.\\
\vspace{0.2cm}
Therefore, the force on the short sides is:
\begin{equation*}
|\vec{F}_1| = |\vec{F}_2| = I a |\vec{B}| sin\theta
\end{equation*}
where the angle $\theta$ was defined previously.
Obviously, as the loop rotates the force on the short sides varies between:
\begin{equation*}
|\vec{F}_1| = |\vec{F}_2| =
\left\{
\begin{array}{l}
0, \text{for $\theta = 0$, and} \\
I a |\vec{B}|, \text{for $\theta = \pi/2$}
\end{array}
\right.
\end{equation*}
On the other hand, the long sides are perpendicular to $\vec{B}$
and, hence, the force on them is constant and is given by:
\begin{equation*}
|\vec{F}_3| = |\vec{F}_4| = I b |\vec{B}|
\end{equation*}
}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Direction of forces on the sides of a current loop}
\begin{columns}
\begin{column}{0.37\textwidth}
\includegraphics[width=0.99\textwidth]{./images/schematics/magnetic_torque_current_loop_perspective.png}\\
\vspace{0.3cm}
\includegraphics[width=0.99\textwidth]{./images/schematics/magnetic_torque_current_loop_top_view.png}\\
\end{column}
\begin{column}{0.63\textwidth}
{\small
Using the right-hand rule, one can easily see that the forces on the
short sides ($\vec{F}_1$ and $\vec{F}_2$) are either:
\begin{itemize}
\item both pointing inwards trying to {\em squeeze} the loop (for $ 0 < \theta < \pi$), or
\item both pointing outwards trying to {\em expand} the loop (for $\pi < \theta < 2\pi$).
\end{itemize}
On either case, the forces on the short sides are parallel to the axis or rotation,
hence they exert {\bf no torque on the loop}.\\
\vspace{0.2cm}
On the other hand, the forces on the two long sides ($\vec{F}_3$ and $\vec{F}_4$)
have constant but opposite directions. They are perpendicular to the axis of rotation and,
therefore, {\bf they exert a torque on the loop}.\\
}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Torque on a current loop}
\begin{columns}
\begin{column}{0.37\textwidth}
\includegraphics[width=0.99\textwidth]{./images/schematics/magnetic_torque_current_loop_top_view.png}\\
\end{column}
\begin{column}{0.63\textwidth}
{\small
The torque $\vec{T}$ exerted by a force $\vec{F}$ is:
\begin{equation*}
\vec{T} = \vec{r} \times \vec{F}
\end{equation*}
where $\vec{r}$ is the displacement vector,
pointing from the axis of rotation to the point where the force is applied.
}
\end{column}
\end{columns}
In our case (see figure above) $\vec{T}$ (which points into the page, $\hat{in}$) is:
\begin{equation*}
\vec{T} =
\bigg\{ \frac{a}{2} |F_{3}| sin \Big(\frac{\pi}{2}+\theta \Big) +
\frac{a}{2} |F_{4}| sin \Big(\frac{\pi}{2}+\theta \Big) \bigg\} \hat{in}
\xRightarrow {|F_{3}| = |F_{4}| = I b |\vec{B}|}
\end{equation*}
\begin{equation*}
\vec{T} =
\cancel{2} \frac{a}{\cancel{2}}
\Big( I b |\vec{B}| \Big) sin\Big(\frac{\pi}{2}+\theta \Big) \hat{in} =
I \Big( a \; b \Big) |\vec{B}| sin\Big(\frac{\pi}{2}+\theta \Big) \hat{in}
\xRightarrow {|\vec{S}| = ab,\;\; \phi = \frac{\pi}{2}+\theta = \angle(\vec{S},\vec{B})}
\end{equation*}
\begin{equation*}
\vec{T} = \Big( I \vec{S} \Big) \times \vec{B}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Magnetic dipole moment}
The {\bf magnetic dipole moment} $\vec{m}$ of a current loop is defined as
\begin{equation*}
\vec{m} = I \vec{S}
\end{equation*}
The magnetic moment of a magnet is a quantity that
{\bf determines the torque it will experience in an external magnetic field.}
\begin{columns}
\begin{column}{0.30\textwidth}
\begin{center}
\includegraphics[width=0.75\textwidth]{./images/schematics/magnetic_dipole_moment_02.png}
\vspace{0.2cm}
\includegraphics[width=0.75\textwidth]{./images/schematics/magnetic_dipole_moment_01.jpg}\\
\end{center}
\end{column}
\begin{column}{0.70\textwidth}
{\small
The magnetic dipole moment is {\bf a vector}.
it has both a magnitude ($|\vec{m}|$ = I $|\vec{S}|$) and a direction:
\begin{itemize}
\item Curl your right hand in the direction of the current in the loop: Your thumb points towards the magnetic dipole moment.
\item You can also think that it points from the south to north pole of the magnet.
\end{itemize}
}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Magnetic dipole moment for any planar loop}
Is the simple definition of the magnetic dipole moment $\vec{m}$
\begin{equation*}
\vec{m} = I \vec{S}
\end{equation*}
a consequence of considering a simple loop with a rectangular shape?\\
\begin{columns}
\begin{column}{0.40\textwidth}
\includegraphics[width=0.98\textwidth]{./images/schematics/current_loop_irregular_shape.png}\\
\end{column}
\begin{column}{0.60\textwidth}
{\bf What if the current loop had an arbitrary shape?}\\
\vspace{0.3cm}
Any planar current loop of any shape can be approximated by a
set of rectangular loops.
\end{column}
\end{columns}
\end{frame}
%
% Worked example
%
{
\setbeamercolor {frametitle} {bg=eBG1}
\setbeamercolor {author in head/foot} {bg=eBG1}
\setbeamercolor {title in head/foot} {bg=eBG2}
\setbeamercolor {date in head/foot} {bg=eBG3}
\setbeamercolor {date in head/foot} {fg=eFG3}
%
%
%
\begin{frame}{Worked example}
\begin{blockexmplque}{Question}
\begin{columns}
\begin{column}{0.30\textwidth}
\begin{center}
\includegraphics[width=0.98\textwidth]{./images/problems/lect5_rectangular_loop}\\
\end{center}
\end{column}
\begin{column}{0.70\textwidth}
{\small
The rectangular loop in the figure is pivoted around the y-axis and
carries a current of 15.0 A in the direction shown.
\begin{enumerate}
{\small
\item
If the loop is in uniform magnetic field with magnitude 0.48 T in the +x direction,
find the magnitude and direction of the torque required to hold the loop
in the position shown.
\item
What torque would be required if the loop were pivoted about an axis
through its centre, parallel to the y-axis?
}
\end{enumerate}
}
\end{column}
\end{columns}
\end{blockexmplque}
\vspace{0.3cm}
{\small
(1) The torque exerted by a field $\vec{B}$ on a magnetic dipole moment $\vec{m}$ is:
\begin{equation*}
\vec{T} = \vec{m} \times \vec{B}
\end{equation*}
}
\end{frame}
%
%
%
\begin{frame}{Worked example}
\begin{columns}[T]
\begin{column}{0.30\textwidth}