Skip to content

These datasets are collected for the GBIC project to conduct research about indoor human thermal comfort. The GBIC research project proposes to develop online thermal comfort models via a deep-learning approach and apply them to behavioral studies to drive “greener, smarter and healthier buildings” in the tropics (e.g., Singapore). Leveraging pr…

Notifications You must be signed in to change notification settings

cap-ntu/iTCM-Datasets

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

iTCM-Datasets

These datasets are collected for the GBIC project to conduct research about indoor human thermal comfort. The GBIC research project proposes to develop online thermal comfort models via a deep-learning approach and apply them to behavioral studies to drive “greener, smarter and healthier buildings” in the tropics (e.g., Singapore). Leveraging privacy-preserving data analytics over information acquired from smartphone crowdsourcing and in-situ wearables measurements, the project plans to develop and validate an integrative, economical and scalable thermal comfort management system.

Metadata

Canonical URL: https://researchdata.ntu.edu.sg

Title: Related data for: Heterogeneous Transfer Learning for Thermal Comfort Modeling

Related Publication: Weizheng Hu, Yong Luo, Zongqing Lu, and Yonggang Wen. 2019. Heterogeneous Transfer Learning for Thermal Comfort Modeling. In Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation (BuildSys ’19). Association for Computing Machinery, New York, NY, USA, 61–70. doi: 10.1145/3360322.3360843

Grant Information: Building and Construction Authority (BCA) Singapore: NRF2015ENC-GBICRD001-012

Subject: Computer and Information Science; Medicine, Health and Life Sciences

Keywords: thermal comfort, heart rate, skin temperature, HVAC, air-conditioning, thermal sensation, predicted mean vote (PMV)

Instruction

Those files with name no_3_thermal are used in Buildsys 2019 paper, the reason is:

We notice that the total number of +3 (hot) votes is deficient. There are only 31 “hot” votes received from 14 participants in our datasets. Thus, we consider that these “hot” votes cannot correctly reflect most of the participants' hot sensations and decide to remove them from both iTCM datasets.

.
├── BuildSys Paper Datasets
│   ├── buildsys_19_dataset_4314.csv
│   ├── buildsys_19_dataset_person1_346.csv
│   ├── buildsys_19_dataset_person2_385.csv
│   └── buildsys_19_dataset_person3_345.csv

// Datasets without "hot" (+3) votes (Used in Buildsys 2019 paper)
│   ├── buildsys_19_dataset_4293_no_3_thermal_index.csv ()
│   ├── buildsys_19_dataset_person1_345_no_3_thermal_index.csv
│   ├── buildsys_19_dataset_person2_380_no_3_thermal_index.csv
│   ├── buildsys_19_dataset_person3_341_no_3_thermal_index.csv
├── Documents
│   ├── 1) readme.txt
│   ├── 2) Experiment Introduction.docx
│   ├── 3) Dataset Features & Codes.docx
│   └── 4) Dataset v1 Information.docx
└── README.md

2 directories, 13 files

Sample Data

You may find the explaination of each field in 3) Dataset Features & Codes.docx.

id user_uuid hour age weight height gender at rh met cl hr st ati(-3-2) ati(0-5)
1 1b5d595c-1bb9-4f20-a78a-217958689877 21 19 74 170 1 25.33358 55.03636 1.192368839 0.54 74 31 0 3
2 1b5d595c-1bb9-4f20-a78a-217958689877 21 19 74 170 1 25.2573745 58.3366765 1.169438669 0.54 73 32 -1 2
3 1b5d595c-1bb9-4f20-a78a-217958689877 21 19 74 170 1 25.311282 59.00144 1.207590569 0.54 92 32 0 3
4 1b5d595c-1bb9-4f20-a78a-217958689877 22 19 74 170 1 25.334916 58.009603 1.113437381 0.54 72 32 -1 2
5 1b5d595c-1bb9-4f20-a78a-217958689877 22 19 74 170 1 25.333581 56.980052 1.184626185 0.54 77 32 -1 2
6 1b5d595c-1bb9-4f20-a78a-217958689877 22 19 74 170 1 25.1385505 55.5704215 1.146804373 0.54 77 33 1 4
7 1b5d595c-1bb9-4f20-a78a-217958689877 22 19 74 170 1 25.1385505 55.5704215 1.136650669 0.54 79 33 0 3
8 1b5d595c-1bb9-4f20-a78a-217958689877 22 19 74 170 1 25.1918955 54.5402515 1.184330398 0.54 79 33 1 4
9 1b5d595c-1bb9-4f20-a78a-217958689877 22 19 74 170 1 25.261325 53.424551 1.234368697 0.54 83 32 1 4
10 1b5d595c-1bb9-4f20-a78a-217958689877 23 19 74 170 1 25.218705 53.0346485 1.174277726 0.54 80 32 0 3

Scope of Dataset (BuildSys Paper)

Dataset Size (with hot votes) Air Temperature Range Relative Humidity Range
iTCM generic dataset 4293 (4314) 19.6°C - 30.6°C 37.3% - 83.6%
iTCM personal datasets 345 (346) + 380 (385) + 341 (345) 19.6°C - 29.9°C 42.4% - 75.5%

Scope of Dataset (Full Dataset)

Dataset Size Air Temperature Range Relative Humidity Range
iTCM generic dataset 6689 19.6°C - 30.6°C 37.3% - 83.6%
iTCM personal datasets 346 + 385 + 345 + 448 + 385 + 374. 19.3°C - 30.0°C 37.3% - 76.2%

License

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

About

These datasets are collected for the GBIC project to conduct research about indoor human thermal comfort. The GBIC research project proposes to develop online thermal comfort models via a deep-learning approach and apply them to behavioral studies to drive “greener, smarter and healthier buildings” in the tropics (e.g., Singapore). Leveraging pr…

Topics

Resources

Stars

Watchers

Forks

Packages

No packages published