-
-
Notifications
You must be signed in to change notification settings - Fork 111
/
segment.go
422 lines (390 loc) · 11.8 KB
/
segment.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
package capnp
import (
"encoding/binary"
"errors"
"capnproto.org/go/capnp/v3/exc"
"capnproto.org/go/capnp/v3/internal/str"
)
// A SegmentID is a numeric identifier for a Segment.
type SegmentID uint32
// A Segment is an allocation arena for Cap'n Proto objects.
// It is part of a Message, which can contain other segments that
// reference each other.
type Segment struct {
// msg associated with this segment. A Message instance m maintains the
// invariant that that all m.segs[].msg == m.
msg *Message
id SegmentID
data []byte
}
// Message returns the message that contains s.
func (s *Segment) Message() *Message {
return s.msg
}
// BindTo binds the segment to a given message. This is usually only called by
// Arena implementations and does not perform any kind of safety check.
func (s *Segment) BindTo(m *Message) {
s.msg = m
}
// ID returns the segment's ID.
func (s *Segment) ID() SegmentID {
return s.id
}
// Data returns the raw byte slice for the segment.
func (s *Segment) Data() []byte {
return s.data
}
func (s *Segment) inBounds(addr address) bool {
return addr < address(len(s.data))
}
func (s *Segment) regionInBounds(base address, sz Size) bool {
end, ok := base.addSize(sz)
if !ok {
return false
}
return end <= address(len(s.data))
}
// slice returns the segment of data from base to base+sz.
// It panics if the slice is out of bounds.
func (s *Segment) slice(base address, sz Size) []byte {
return s.data[base:base.addSizeUnchecked(sz)]
}
func (s *Segment) readUint8(addr address) uint8 {
return s.slice(addr, 1)[0]
}
func (s *Segment) readUint16(addr address) uint16 {
return binary.LittleEndian.Uint16(s.slice(addr, 2))
}
func (s *Segment) readUint32(addr address) uint32 {
return binary.LittleEndian.Uint32(s.slice(addr, 4))
}
func (s *Segment) readUint64(addr address) uint64 {
return binary.LittleEndian.Uint64(s.slice(addr, 8))
}
func (s *Segment) readRawPointer(addr address) rawPointer {
return rawPointer(s.readUint64(addr))
}
func (s *Segment) writeUint8(addr address, val uint8) {
s.slice(addr, 1)[0] = val
}
func (s *Segment) writeUint16(addr address, val uint16) {
binary.LittleEndian.PutUint16(s.slice(addr, 2), val)
}
func (s *Segment) writeUint32(addr address, val uint32) {
binary.LittleEndian.PutUint32(s.slice(addr, 4), val)
}
func (s *Segment) writeUint64(addr address, val uint64) {
binary.LittleEndian.PutUint64(s.slice(addr, 8), val)
}
func (s *Segment) writeRawPointer(addr address, val rawPointer) {
s.writeUint64(addr, uint64(val))
}
// root returns a 1-element pointer list that references the first word
// in the segment. This only makes sense to call on the first segment
// in a message.
func (s *Segment) root() PointerList {
sz := ObjectSize{PointerCount: 1}
if !s.regionInBounds(0, sz.totalSize()) {
return PointerList{}
}
return PointerList{
seg: s,
length: 1,
size: sz,
depthLimit: s.Message().depthLimit(),
}
}
func (s *Segment) lookupSegment(id SegmentID) (*Segment, error) {
if s.id == id {
return s, nil
}
return s.Message().Segment(id)
}
func (s *Segment) readPtr(paddr address, depthLimit uint) (ptr Ptr, err error) {
s, base, val, err := s.resolveFarPointer(paddr)
if err != nil {
return Ptr{}, exc.WrapError("read pointer", err)
}
if val == 0 {
return Ptr{}, nil
}
if depthLimit == 0 {
return Ptr{}, errors.New("read pointer: depth limit reached")
}
switch val.pointerType() {
case structPointer:
sp, err := s.readStructPtr(base, val)
if err != nil {
return Ptr{}, exc.WrapError("read pointer", err)
}
if !s.Message().canRead(sp.readSize()) {
return Ptr{}, errors.New("read pointer: read traversal limit reached")
}
sp.depthLimit = depthLimit - 1
return sp.ToPtr(), nil
case listPointer:
lp, err := s.readListPtr(base, val)
if err != nil {
return Ptr{}, exc.WrapError("read pointer", err)
}
if !s.Message().canRead(lp.readSize()) {
return Ptr{}, errors.New("read pointer: read traversal limit reached")
}
lp.depthLimit = depthLimit - 1
return lp.ToPtr(), nil
case otherPointer:
if val.otherPointerType() != 0 {
return Ptr{}, errors.New("read pointer: unknown pointer type")
}
return Interface{
seg: s,
cap: val.capabilityIndex(),
}.ToPtr(), nil
default:
// Only other types are far pointers.
return Ptr{}, errors.New("read pointer: far pointer landing pad is a far pointer")
}
}
func (s *Segment) readStructPtr(base address, val rawPointer) (Struct, error) {
addr, ok := val.offset().resolve(base)
if !ok {
return Struct{}, errors.New("struct pointer: invalid address")
}
sz := val.structSize()
if !s.regionInBounds(addr, sz.totalSize()) {
return Struct{}, errors.New("struct pointer: invalid address")
}
return Struct{
seg: s,
off: addr,
size: sz,
}, nil
}
func (s *Segment) readListPtr(base address, val rawPointer) (List, error) {
addr, ok := val.offset().resolve(base)
if !ok {
return List{}, errors.New("list pointer: invalid address")
}
lsize, ok := val.totalListSize()
if !ok {
return List{}, errors.New("list pointer: size overflow")
}
if !s.regionInBounds(addr, lsize) {
return List{}, errors.New("list pointer: address out of bounds")
}
lt := val.listType()
if lt == compositeList {
hdr := s.readRawPointer(addr)
var ok bool
addr, ok = addr.addSize(wordSize)
if !ok {
return List{}, errors.New("composite list pointer: content address overflow")
}
if hdr.pointerType() != structPointer {
return List{}, errors.New("composite list pointer: tag word is not a struct")
}
sz := hdr.structSize()
n := int32(hdr.offset())
// TODO(someday): check that this has the same end address
if tsize, ok := sz.totalSize().times(n); !ok {
return List{}, errors.New("composite list pointer: size overflow")
} else if !s.regionInBounds(addr, tsize) {
return List{}, errors.New("composite list pointer: address out of bounds")
}
return List{
seg: s,
size: sz,
off: addr,
length: n,
flags: isCompositeList,
}, nil
}
if lt == bit1List {
return List{
seg: s,
off: addr,
length: val.numListElements(),
flags: isBitList,
}, nil
}
return List{
seg: s,
size: val.elementSize(),
off: addr,
length: val.numListElements(),
}, nil
}
func (s *Segment) resolveFarPointer(paddr address) (dst *Segment, base address, resolved rawPointer, err error) {
// Encoding details at https://capnproto.org/encoding.html#inter-segment-pointers
val := s.readRawPointer(paddr)
switch val.pointerType() {
case doubleFarPointer:
padSeg, err := s.lookupSegment(val.farSegment())
if err != nil {
return nil, 0, 0, exc.WrapError("double-far pointer", err)
}
padAddr := val.farAddress()
if !padSeg.regionInBounds(padAddr, wordSize*2) {
return nil, 0, 0, errors.New("double-far pointer: address out of bounds")
}
far := padSeg.readRawPointer(padAddr)
if far.pointerType() != farPointer {
return nil, 0, 0, errors.New("double-far pointer: first word in landing pad is not a far pointer")
}
tagAddr, ok := padAddr.addSize(wordSize)
if !ok {
return nil, 0, 0, errors.New("double-far pointer: landing pad address overflow")
}
tag := padSeg.readRawPointer(tagAddr)
if pt := tag.pointerType(); (pt != structPointer && pt != listPointer) || tag.offset() != 0 {
return nil, 0, 0, errors.New("double-far pointer: second word is not a struct or list with zero offset")
}
if dst, err = s.lookupSegment(far.farSegment()); err != nil {
return nil, 0, 0, exc.WrapError("double-far pointer", err)
}
return dst, 0, landingPadNearPointer(far, tag), nil
case farPointer:
var err error
dst, err = s.lookupSegment(val.farSegment())
if err != nil {
return nil, 0, 0, exc.WrapError("far pointer", err)
}
padAddr := val.farAddress()
if !dst.regionInBounds(padAddr, wordSize) {
return nil, 0, 0, errors.New("far pointer: address out of bounds")
}
var ok bool
base, ok = padAddr.addSize(wordSize)
if !ok {
return nil, 0, 0, errors.New("far pointer: landing pad address overflow")
}
return dst, base, dst.readRawPointer(padAddr), nil
default:
var ok bool
base, ok = paddr.addSize(wordSize)
if !ok {
return nil, 0, 0, errors.New("pointer base address overflow")
}
return s, base, val, nil
}
}
func (s *Segment) writePtr(off address, src Ptr, forceCopy bool) error {
if !src.IsValid() {
s.writeRawPointer(off, 0)
return nil
}
// Copy src, if needed, and process pointers where placement is
// irrelevant (capabilities and zero-sized structs).
var srcAddr address
var srcRaw rawPointer
switch src.flags.ptrType() {
case structPtrType:
st := src.Struct()
if st.size.isZero() {
// Zero-sized structs should always be encoded with offset -1 in
// order to avoid conflating with null. No allocation needed.
s.writeRawPointer(off, rawStructPointer(-1, ObjectSize{}))
return nil
}
if forceCopy || src.seg.msg != s.msg || st.flags&isListMember != 0 {
newSeg, newAddr, err := alloc(s, st.size.totalSize())
if err != nil {
return exc.WrapError("write pointer: copy", err)
}
dst := Struct{
seg: newSeg,
off: newAddr,
size: st.size,
depthLimit: maxDepth,
// clear flags
}
if err := copyStruct(dst, st); err != nil {
return exc.WrapError("write pointer", err)
}
st = dst
src = dst.ToPtr()
}
srcAddr = st.off
srcRaw = rawStructPointer(0, st.size)
case listPtrType:
l := src.List()
if forceCopy || src.seg.msg != s.msg {
sz := l.allocSize()
newSeg, newAddr, err := alloc(s, sz)
if err != nil {
return exc.WrapError("write pointer: copy", err)
}
dst := List{
seg: newSeg,
off: newAddr,
length: l.length,
size: l.size,
flags: l.flags,
depthLimit: maxDepth,
}
if dst.flags&isCompositeList != 0 {
// Copy tag word
newSeg.writeRawPointer(newAddr, l.seg.readRawPointer(l.off-address(wordSize)))
var ok bool
dst.off, ok = dst.off.addSize(wordSize)
if !ok {
return errors.New("write pointer: copy composite list: content address overflow")
}
sz -= wordSize
}
if dst.flags&isBitList != 0 || dst.size.PointerCount == 0 {
end, _ := l.off.addSize(sz) // list was already validated
copy(newSeg.data[dst.off:], l.seg.data[l.off:end])
} else {
for i := 0; i < l.Len(); i++ {
err := copyStruct(dst.Struct(i), l.Struct(i))
if err != nil {
return exc.WrapError("write pointer: copy list element"+str.Itod(i), err)
}
}
}
l = dst
src = dst.ToPtr()
}
srcAddr = l.off
if l.flags&isCompositeList != 0 {
srcAddr -= address(wordSize)
}
srcRaw = l.raw()
case interfacePtrType:
i := src.Interface()
if src.seg.Message() != s.Message() {
c := s.Message().CapTable().Add(i.Client().AddRef())
i = NewInterface(s, c)
}
s.writeRawPointer(off, i.value(off))
return nil
default:
panic("unreachable")
}
switch {
case src.seg == s:
// Common case: src is in same segment as pointer.
// Use a near pointer.
s.writeRawPointer(off, srcRaw.withOffset(nearPointerOffset(off, srcAddr)))
return nil
case hasCapacity(src.seg.data, wordSize):
// Enough room adjacent to src to write a far pointer landing pad.
// TODO: instead of alloc (which may choose another segment),
// enforce to _always_ use seg (because we know it has capacity).
_, padAddr, _ := alloc(src.seg, wordSize)
src.seg.writeRawPointer(padAddr, srcRaw.withOffset(nearPointerOffset(padAddr, srcAddr)))
s.writeRawPointer(off, rawFarPointer(src.seg.id, padAddr))
return nil
default:
// Not enough room for a landing pad, need to use a double-far pointer.
padSeg, padAddr, err := alloc(s, wordSize*2)
if err != nil {
return exc.WrapError("write pointer: make landing pad", err)
}
padSeg.writeRawPointer(padAddr, rawFarPointer(src.seg.id, srcAddr))
padSeg.writeRawPointer(padAddr.addSizeUnchecked(wordSize), srcRaw)
s.writeRawPointer(off, rawDoubleFarPointer(padSeg.id, padAddr))
return nil
}
}