-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathddp.py
290 lines (234 loc) · 11.8 KB
/
ddp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import argparse
import logging
import sys
from pathlib import Path
import torch
import torch.nn as nn
import torch.nn.functional as F
import wandb
from torch import optim
from torch.utils.data import DataLoader, random_split
from tqdm import tqdm
from utils.data_loading import BasicDataset, CarvanaDataset
from utils.dice_score import dice_loss
from evaluate import evaluate
from unet import UNet
import os
import torch.distributed as dist
# for reproducibility
import random
import numpy as np
import torch.backends.cudnn as cudnn
# ABOUT DDP
# for model loading in ddp mode
from torch.nn.parallel import DistributedDataParallel as DDP
# for data loading in ddp mode
from torch.utils.data.distributed import DistributedSampler
import torch.multiprocessing as mp
from torch.distributed import init_process_group, destroy_process_group
def init_seeds(seed=0, cuda_deterministic=True):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
# Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
if cuda_deterministic: # slower, more reproducible
cudnn.deterministic = True
cudnn.benchmark = False
else: # faster, less reproducible
cudnn.deterministic = False
cudnn.benchmark = True
def train_net(net,
device,
start: int = 0,
epochs: int = 5,
batch_size: int = 1,
learning_rate: float = 1e-5,
val_percent: float = 0.1,
save_checkpoint: bool = True,
img_scale: float = 0.5,
amp: bool = False):
if DDP_ON: # modify the net's attributes when using ddp
net.n_channels = net.module.n_channels
net.n_classes = net.module.n_classes
# 1. Create dataset
try:
dataset = CarvanaDataset(dir_img, dir_mask, img_scale)
except (AssertionError, RuntimeError):
dataset = BasicDataset(dir_img, dir_mask, img_scale)
# 2. Split into train / validation partitions
n_val = int(len(dataset) * val_percent)
n_train = len(dataset) - n_val
train_set, val_set = random_split(dataset, [n_train, n_val], generator=torch.Generator().manual_seed(0))
# 3. Create data loaders
loader_args = dict(batch_size=batch_size, num_workers=WORLD_SIZE*4, pin_memory=True) # batchsize is for a single process(GPU)
if DDP_ON:
train_sampler = DistributedSampler(train_set)
train_loader = DataLoader(train_set, sampler=train_sampler, **loader_args)
else:
train_loader = DataLoader(train_set, shuffle=True, **loader_args)
# no need for distributed sampler for val
val_loader = DataLoader(val_set, shuffle=False, drop_last=True, **loader_args)
# (Initialize logging)
if LOCAL_RANK == 0:
experiment = wandb.init(project='U-Net-DDP', resume='allow', anonymous='must')
experiment.config.update(dict(epochs=epochs, batch_size=batch_size, learning_rate=learning_rate,
val_percent=val_percent, save_checkpoint=save_checkpoint, img_scale=img_scale,
amp=amp))
logging.info(f'''Starting training:
Epochs: {epochs}
Start from: {start}
Batch size: {batch_size}
Learning rate: {learning_rate}
Training size: {n_train}
Validation size: {n_val}
Checkpoints: {save_checkpoint}
Device: {device.type}
Images scaling: {img_scale}
Mixed Precision: {amp}
''')
# 4. Set up the optimizer, the loss, the learning rate scheduler and the loss scaling for AMP
criterion = nn.CrossEntropyLoss()
optimizer = optim.AdamW(net.parameters(), lr=learning_rate, weight_decay=1e-8)
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=epochs, eta_min=1e-7)
grad_scaler = torch.cuda.amp.GradScaler(enabled=amp)
global_step = 0
# 5. Begin training
for epoch in range(start, start+epochs):
if LOCAL_RANK == 0:
print('lr: ', optimizer.param_groups[0]['lr'])
net.train()
epoch_loss = 0
# To avoid duplicated data sent to multi-gpu
train_loader.sampler.set_epoch(epoch)
disable = False if LOCAL_RANK == 0 else True
with tqdm(total=n_train, desc=f'Epoch {epoch}/{epochs+start}', unit='img', disable=disable) as pbar:
for batch in train_loader:
images = batch['image']
true_masks = batch['mask']
assert images.shape[1] == net.n_channels, \
f'Network has been defined with {net.n_channels} input channels, ' \
f'but loaded images have {images.shape[1]} channels. Please check that ' \
'the images are loaded correctly.'
images = images.to(device=device, dtype=torch.float32)
true_masks = true_masks.to(device=device, dtype=torch.long)
with torch.cuda.amp.autocast(enabled=amp):
masks_pred = net(images)
loss = criterion(masks_pred, true_masks) \
+ dice_loss(F.softmax(masks_pred, dim=1).float(),
F.one_hot(true_masks, net.n_classes).permute(0, 3, 1, 2).float(),
multiclass=True)
optimizer.zero_grad(set_to_none=True)
grad_scaler.scale(loss).backward()
grad_scaler.step(optimizer)
grad_scaler.update()
pbar.update(images.shape[0])
global_step += 1
epoch_loss += loss.item()
if LOCAL_RANK == 0:
experiment.log({
'train loss': loss.item(),
'step': global_step,
'epoch': epoch
})
pbar.set_postfix(**{'loss (batch)': loss.item()})
# Evaluation round
division_step = (n_train // (5 * batch_size))
if division_step > 0:
if global_step % division_step == 0:
histograms = {}
for tag, value in net.named_parameters():
tag = tag.replace('/', '.')
if not torch.isinf(value).any():
histograms['Weights/' + tag] = wandb.Histogram(value.data.cpu())
if not torch.isinf(value.grad).any():
histograms['Gradients/' + tag] = wandb.Histogram(value.grad.data.cpu())
val_score = evaluate(net, val_loader, device, disable_log = disable)
if LOCAL_RANK == 0:
logging.info('Validation Dice score: {}'.format(val_score))
experiment.log({
'learning rate': optimizer.param_groups[0]['lr'],
'validation Dice': val_score,
'images': wandb.Image(images[0].cpu()),
'masks': {
'true': wandb.Image(true_masks[0].float().cpu()),
'pred': wandb.Image(masks_pred.argmax(dim=1)[0].float().cpu()),
},
'step': global_step,
'epoch': epoch,
**histograms
})
scheduler.step()
if save_checkpoint and LOCAL_RANK == 0 and (epoch % args.save_every == 0):
Path(dir_checkpoint).mkdir(parents=True, exist_ok=True)
torch.save(net.module.state_dict(), str(dir_checkpoint / 'DDP_checkpoint_epoch{}.pth'.format(epoch)))
logging.info(f'Checkpoint {epoch} saved!')
##################################### arguments ###########################################
parser = argparse.ArgumentParser(description='Train the UNet on images and target masks')
parser.add_argument('--epochs', '-e', metavar='E', type=int, default=5, help='Number of epochs')
parser.add_argument('--batch-size', '-b', dest='batch_size', metavar='B', type=int, default=1, help='Batch size')
parser.add_argument('--learning-rate', '-l', metavar='LR', type=float, default=1e-5,
help='Learning rate', dest='lr')
parser.add_argument('--load', '-f', type=str, default=False, help='Load model from a .pth file')
parser.add_argument('--scale', '-s', type=float, default=0.5, help='Downscaling factor of the images')
parser.add_argument('--validation', '-v', dest='val', type=float, default=10.0,
help='Percent of the data that is used as validation (0-100)')
parser.add_argument('--amp', action='store_true', default=False, help='Use mixed precision')
parser.add_argument('--bilinear', action='store_true', default=False, help='Use bilinear upsampling')
parser.add_argument('--classes', '-c', type=int, default=2, help='Number of classes')
parser.add_argument('--exp_name', type=str, default='wxg_exp')
parser.add_argument('--ddp_mode', action='store_true')
parser.add_argument('--save_every', type=int, default=5)
parser.add_argument('--start_from', type=int, default=0)
args = parser.parse_args()
dir_img = Path('./data/imgs/')
dir_mask = Path('./data/masks/')
dir_checkpoint = Path('./checkpoints/')
DDP_ON = True if args.ddp_mode else False
#########################################################################################
if DDP_ON:
init_process_group(backend="nccl")
LOCAL_RANK = device_id = int(os.environ["LOCAL_RANK"])
WORLD_SIZE = torch.cuda.device_count()
device = torch.device('cuda', device_id) # note that device_id is an integer but device is a datetype.
print(f"Start running basic DDP on rank {LOCAL_RANK}.")
logging.info(f'Using device {device_id}')
if __name__ == '__main__':
#!highly recommended]
# ref: pytorch org ddp tutorial
# 1. https://pytorch.org/tutorials/beginner/ddp_series_multigpu.html#multi-gpu-training-with-ddp
# 2. https://pytorch.org/tutorials/beginner/ddp_series_multigpu.html
init_seeds(0)
# Change here to adapt to your data
# n_channels=3 for RGB images
# n_classes is the number of probabilities you want to get per pixel
net = UNet(n_channels=3, n_classes=args.classes, bilinear=args.bilinear)
if LOCAL_RANK == 0:
print(f'Network:\n'
f'\t{net.n_channels} input channels\n'
f'\t{net.n_classes} output channels (classes)\n'
f'\t{"Bilinear" if net.bilinear else "Transposed conv"} upscaling')
if args.load:
# ref: https://blog.csdn.net/hustwayne/article/details/120324639 use method 2 with module
# net.load_state_dict(torch.load(args.load, map_location=device))
net.load_state_dict({k.replace('module.', ''): v for k, v in
torch.load(args.load, map_location=device).items()})
logging.info(f'Model loaded from {args.load}')
torch.cuda.set_device(LOCAL_RANK)
net.to(device=device)
# wrap our model with ddp
net = DDP(net, device_ids = [device_id], output_device=device_id)
try:
train_net(net=net,
start=args.start_from,
epochs=args.epochs,
batch_size=args.batch_size,
learning_rate=args.lr,
device=device,
img_scale=args.scale,
val_percent=args.val / 100,
amp=args.amp)
except KeyboardInterrupt:
torch.save(net.module.state_dict(), 'INTERRUPTED_DDP.pth')
logging.info('Saved interrupt')
raise
destroy_process_group()