Skip to content

Latest commit

 

History

History
41 lines (27 loc) · 1.12 KB

README.md

File metadata and controls

41 lines (27 loc) · 1.12 KB

LotusStat

Statistical post processing of Lotus simulations

Installation

  1. Clone repository
  2. Navigate to ...\LotusStat\
  3. Checkout the latest version git checkout vX.Y.Z
  4. Install the package python setup.py install

Quick example

Also found in ...\LotusStat\examples\quick_examply.py

import lotusstat as lstat
import matplotlib.pyplot as plt

data_path = 'fort.9'

data_df = lstat.convert_data_path_to_dataFrame_2d(data_path)
data_df = data_df.iloc[500:,:]

data_df = lstat.calculate_total_forces(data_df)

lift_stats = lstat.calculate_signal_stats(data_df, 'totalForceY', signal_range=(0.8, 1))
drag_stats = lstat.calculate_signal_stats(data_df, 'totalForceX', signal_range=(0.8, 1))

fig1, ax1 = lstat.plot_lift_signal(data_df, show_visc=True, plot_stats=True, stats=lift_stats, show_stats=True, figsize=(10,5))
fig2, ax2 = lstat.plot_drag_signal(data_df, show_visc=False, plot_stats=True, stats=drag_stats, show_stats=True, figsize=(10,5))
plt.close()
plt.close()

lstat.save_figures_to_pdf([fig1, fig2], 'report.pdf')