-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhanazaki.py
284 lines (238 loc) · 10.9 KB
/
hanazaki.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.axes import Axes
from typing import Union, List, Tuple, Dict
from pathlib import Path
from ..utils.plots import reservoir_analysis
from .basemodel import Reservoir
class Hanazaki(Reservoir):
"""Representation of a reservoir according to Hanazaki, Yamazaki & Yoshimura (2021)."""
def __init__(self,
Vmin: float,
Vf:float,
Ve: float,
Vtot: float,
Qn: float,
Qf: float,
A: int,
At: int = 86400):
"""
Parameters:
-----------
Vmin: float
Volume (m3) associated to the conservative storage
Vf: float
Volume (m3) associated to the flood storage
Ve: float
Volume (m3) associated with an emergency situation
Vtot: float
Total reservoir storage capacity (m3)
Qn: float
Normal outflow (m3/s)
Qf: float
Outflow (m3/s) in case of flood
A: integer
Area (m2) of the reservoir catchment
At: int
Simulation time step in seconds.
"""
super().__init__(Vmin, Vtot, None, Qf, At)
# storage limits
self.Vf = Vf
self.Ve = Ve
# outflow limits
self.Qn = Qn
# release coefficient
self.k = max(1 - 5 * (Vtot - Vf) / A, 0)
def timestep(self,
I: float,
V: float,
verbose: bool = False
) -> List[float]:
"""Given an inflow and an initial storage values, it computes the corresponding outflow
Parameters:
-----------
I: float
Inflow (m3/s)
V: float
Volume stored in the reservoir (m3)
verbose: bool
Whether to show on screen the evolution
Returns:
--------
Q, V: List[float]
Outflow (m3/s) and updated storage (m3)
"""
# update reservoir storage with the inflow volume
V += I * self.At
# ouflow depending on the inflow and storage level
if V < self.Vmin:
Q = V * self.Qn / self.Vf
elif V < self.Vf:
if I < self.Qf:
Q = self.Vmin / self.Vf * self.Qn + ((V - self.Vmin) / (self.Ve - self.Vmin))**2 * (self.Qf - self.Vmin / self.Vf * self.Qn)
elif I >= self.Qf:
Q = self.Vmin / self.Vf * self.Qn + (V - self.Vmin) / (self.Vf - self.Vmin) * (self.Qf - self.Vmin / self.Vf * self.Qn)
elif V < self.Ve:
if I < self.Qf:
Q = self.Vmin / self.Vf * self.Qn + ((V - self.Vmin) / (self.Ve - self.Vmin))**2 * (self.Qf - self.Vmin / self.Vf * self.Qn)
elif I >= self.Qf:
Q = self.Qf + self.k * (V - self.Vf) / (self.Ve - self.Vf) * (I - self.Qf)
elif self.Ve <= V:
if I < self.Qf:
Q = self.Qf
elif I >= self.Qf:
Q = I
if verbose:
if V > self.Vtot:
print(f'{V} m3 is greater than the reservoir capacity of {self.Vtot} m3')
# update reservoir storage with the outflow volume
AV = np.min([Q * self.At, V])
AV = np.max([AV, V - self.Vtot])
V -= AV
assert 0 <= V, f'The volume at the end of the timestep is negative: {V:.0f} m3'
assert V <= self.Vtot, f'The volume at the end of the timestep is larger than the total reservoir capacity: {V:.0f} m3 > {self.Vtot:.0f} m3'
assert 0 <= Q, 'The simulated outflow is negative'
return Q, V
def routine(self, V: pd.Series, I: Union[float, pd.Series], modified: bool = True):
"""Given a time series of reservoir storage (m3) and a value or a time series of inflow (m3/s), it computes the ouflow (m3/s). This function is only meant for explanatory purposes; since the volume time series is given, the computed outflow does not update the reservoir storage. If the intention is to simulate the behaviour of the reservoir, refer to the function "simulate"
Parameters:
-----------
V: pd.Series
Time series of reservoir storage (m3)
I: Union[float, pd.Series]
Reservor inflow (m3/s)
modified: bool
Whether to use the modified (default) of the orinigal Hanazaki's routine. The modified routine avoids the breaks in the outflow function at Vmin, Vf and Ve.
Returns:
--------
O: pd.Series
Time series of reservoir outflow (m3/s)
"""
if isinstance(I, float) or isinstance(I, int):
assert I >= 0, '"I" must be a positive value'
I = pd.Series(I, index=V.index)
maskI = I < self.Qf
maskV1 = V < self.Vmin
maskV2 = (self.Vmin <= V) & (V < self.Vf)
maskV3 = (self.Vf <= V) & (V < self.Ve)
maskV4 = self.Ve <= V
O = pd.Series(index=V.index, dtype=float)
# if in the lower storage level
O[maskV1] = self.Qn * V[maskV1] / self.Vf
# if input below flood...
# ... and storage below emergency level
mask = (maskI & maskV2) | (maskI & maskV3)
if np.sum(mask) > 0:
if modified:
O[mask] = self.Vmin / self.Vf * self.Qn + ((V[mask] - self.Vmin) / (self.Ve - self.Vmin))**2 * (self.Qf - self.Vmin / self.Vf * self.Qn)
else:
O[mask] = .5 * self.Qn + ((V[mask] - self.Vmin) / (self.Ve - self.Vmin))**2 * (self.Qf - self.Qn)
# ... and storage above emergency level
O[maskI & maskV4] = self.Qf
# if inflow over flood...
# ... and storage in the normal level
mask = ~maskI & maskV2
if np.sum(mask) > 0:
if modified:
O[mask] = self.Vmin / self.Vf * self.Qn + (V[mask] - self.Vmin) / (self.Vf - self.Vmin) * (self.Qf - self.Vmin / self.Vf * self.Qn)
else:
O[mask] = .5 * self.Qn + (V[mask] - self.Vmin) / (self.Vf - self.Vmin) * (self.Qf - self.Qn)
# ... and storage in flood level
mask = ~maskI & maskV3
if np.sum(mask) > 0:
O[mask] = self.Qf + self.k * (V[mask] - self.Vf) / (self.Ve - self.Vf) * (I[mask] - self.Qf)
# ... and storage in emergency level
O[~maskI & maskV4] = I[~maskI & maskV4]
return O
def plot_routine(self, modified: bool = True, ax: Axes = None, **kwargs):
"""It creates a plot that explains the reservoir routine.
Parameters:
-----------
modified: bool
Whether to use the modified (default) of the orinigal Hanazaki's routine. The modified routine avoids the breaks in the outflow function at Vmin, Vf and Ve.
ax: Axes
If provided, the plot will be added to the given axes
"""
# dummy storage time series
V = pd.Series(np.linspace(0, self.Vtot + .01, 1000))
# create scatter plot
if ax is None:
fig, ax = plt.subplots(figsize=kwargs.get('figsize', (4, 4)))
# outflow when inflow is lower than the flood outflow
outflow1 = self.routine(V, .9 * self.Qf, modified=modified)
ax.scatter(V, outflow1, s=.05, c='C0', label=r'$I < Q_f$')
# outflow when inflow is larger than the flood outflow
outflow2 = self.routine(V, 1.2 * self.Qf, modified=modified)
ax.scatter(V, outflow2, s=.05, c='C1', label=r'$I \geq Q_f$')
# reference storages and outflows
vs = [self.Vmin, self.Vf, self.Ve]
if modified:
qs = [self.Vmin / self.Vf * self.Qn, self.Qf, self.Qf]
else:
qs = [.5 * self.Qn, self.Qf, self.Qf]
for v, q in zip(vs, qs):
ax.vlines(v, 0, q, color='k', ls=':', lw=.5, zorder=0)
ax.hlines(q, 0, v, color='k', ls=':', lw=.5, zorder=0)
# labels
if modified:
ax.text(0, qs[0], r'$\frac{V_c}{V_f} Q_n$', ha='left', va='bottom')
else:
ax.text(0, qs[0], r'$0.5 Q_n$', ha='left', va='bottom')
ax.text(0, qs[1], r'$Q_f$', ha='left', va='bottom')
ax.text(self.Vmin, 0, r'$V_c$', rotation=90, ha='left', va='bottom')
ax.text(self.Vf, 0, r'$V_f$', rotation=90, ha='right', va='bottom')
ax.text(self.Ve, 0, r'$V_e$', rotation=90, ha='right', va='bottom')
# setup
ax.set(xlim=(0, self.Vtot),
xlabel='storage (hm3)',
ylim=(0, None),
ylabel='outflow (m3/s)')
ax.legend(frameon=False, loc=2)
def get_params(self):
"""It generates a dictionary with the reservoir paramenters in the Hanazaki model."""
params = {'Vmin': self.Vmin,
'Vf': self.Vf,
'Ve': self.Ve,
'Vtot': self.Vtot,
'Qn': self.Qn,
'Qf': self.Qf,
'k': self.k}
params = {key: float(value) for key, value in params.items()}
return params
def compare(self, series1: pd.DataFrame, series2: pd.DataFrame = None, save: Union[Path, str] = None, **kwargs):
"""It compares two reservoir timeseries (inflow, outflow and storage) using the function 'reservoir_analysis'. If only 1 time series is given, the plot will simply show the reservoir behaviour of that set of time series.
Inputs:
-------
series1: pd.DataFrame
A table with the time series of 'inflow', 'outflow' and 'storage'
series2: pd.DataFrame
A second table with the time series of 'inflow', 'outflow' and 'storage'
save: Union[Path, str]
Directory and file where the figure will be saved
kwargs:
-------
title: str
If provided, title of the figure
labels: List[str]
A list of 2 strings to be used as labels for each set of time series
alpha: float
The transparency of the scatter plot
"""
# storage limits
Vlims = np.array([self.Vmin, self.Vf, self.Ve]) / self.Vtot
# outflow limits
Qlims = np.array([self.Vmin / self.Vf * self.Qn, self.Qf, self.Qf]) / self.Qf
# plot analysis
series1_norm = self.normalize_timeseries(series1)
if series2 is not None:
series2_norm = self.normalize_timeseries(series2)
else:
series2_norm = series2
reservoir_analysis(series1_norm, series2_norm,
x_thr=Vlims, y_thr=Qlims,
title=kwargs.get('title', None),
labels=kwargs.get('labels', ['sim', 'obs']),
alpha=kwargs.get('alpha', .05),
save=save)