-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplay.py
188 lines (138 loc) · 6.38 KB
/
play.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import argparse
import os
from numpy.lib import utils
from tqdm import tqdm
import torch
import numpy as np
from gym.gym import Gym
from model.train import Net
from collections import deque
from gym.utils import goal_enum
import torch.multiprocessing as mp
import time
from mcts.play_utils import *
seed = 5765
torch.manual_seed(seed)
import random
random.seed(seed)
np.random.seed(seed)
class Play():
def __init__(self, args):
self.datapath = os.getcwd() + args.dataset_folder + args.dataset_name + "/processed_data/"
self.args = args
self.net = Net(args)
# self.gym = Gym(datapath, args)
# self.mcts = MCTS(self.gym, self.net, args)
self.play()
def parallel_play(self,rank,world_size):
iterationTrainExamples = deque([])
# net = Net(self.args)
# net.nnet.eval()
gym = Gym(self.datapath, self.args)
print("Playing with Process", rank)
acc = 0
matrix = {}
stl_matrix = {}
total = {}
res = {}
res_stl = {}
for i in tqdm(range(self.args.numEps)):
result, stl, epi = run_episode(i,gym,self.net,self.args)
if epi in matrix:
matrix[epi] += result
total[epi] += 1
stl_matrix[epi] += stl
else:
matrix[epi] = result
total[epi] = 1
stl_matrix[epi] = stl
for key in matrix:
res[key] = matrix[key]/total[key]
res_stl[key] = stl_matrix[key]
print(total, res, res_stl)
# if states is not None:
# iterationTrainExamples += states
save_episodes(self.args.checkpoint,iterationTrainExamples,rank)
def play(self):
iterationTrainExamples = deque([], maxlen=self.args.maxlenOfQueue)
for ite in range(args.numIters):
self.net.nnet.eval()
t = time.time()
if self.args.parallel:
mp.spawn(self.parallel_play, args=(self.args.num_process,), nprocs=self.args.num_process, join=True)
else:
self.parallel_play(0,0)
print(time.time() - t)
# iterationTrainExamples += load_episodes(self.args.checkpoint)
# print("Number of training samples:",len(iterationTrainExamples))
# # print(iterationTrainExamples)
# # if ite==0:
# # self.save_episodes(iterationTrainExamples,ep)
# print("Training....")
# self.net.train(iterationTrainExamples)
# print("Testing....")
# self.net.nnet.eval()
# self.test()
def test(self):
accuracy = 0
for _ in tqdm(range(self.args.numEpsTest)):
self.mcts = MCTS(self.gym, self.net, self.args) # reset search tree
states = run_episode(0,self.gym,self.net,self.args)
if states is not None:
if states[0][3]==1:
accuracy += 1
print("Accuracy = ",accuracy/self.args.numEpsTest)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Train MCTS model')
parser.add_argument('--dataset_folder', type=str, default='/dataset/')
parser.add_argument('--dataset_name', type=str, default='111days')
parser.add_argument('--models_folder', type=str, default='/saved_models/')
# parser.add_argument('--model_weights', type=str, default='model_154_days_2.pt')
parser.add_argument('--model_weights', type=str, default='model_111_days_4.pt')
# parser.add_argument('--model_weights', type=str, default='model_goalGAILtest111_days_50.pt')
parser.add_argument('--checkpoint', type=str, default='/episodes/')
parser.add_argument('--load_episodes', type=bool, default=False)
parser.add_argument('--base_path', type=str, default=os.getcwd())
parser.add_argument('--algo', type=str, default='BC')
parser.add_argument('--obs', type=int, default=11)
parser.add_argument('--preds', type=int, default=120)
parser.add_argument('--preds_step', type=int, default=5)
parser.add_argument('--delim', type=str, default=' ')
parser.add_argument('--use_trajair', type=bool, default=False)
# parser.add_argument('--input_size', type=int, default=3)
# parser.add_argument('--num_channels', type=int, default=1)
# parser.add_argument('--channel_size', type=int, default=[128,256,512])
# parser.add_argument('--kernel_size', type=int, default=3)
# parser.add_argument('--dropout', type=float, default=0.05)
# parser.add_argument('--balance_data', type=bool, default=True)
parser.add_argument('--input_channels',type=int,default=3)
parser.add_argument('--tcn_channel_size',type=int,default=512)
parser.add_argument('--tcn_layers',type=int,default=2)
parser.add_argument('--tcn_kernels',type=int,default=4)
parser.add_argument('--num_context_input_c',type=int,default=2)
parser.add_argument('--num_context_output_c',type=int,default=9)
parser.add_argument('--cnn_kernels',type=int,default=2)
parser.add_argument('--gat_heads',type=int, default=4)
parser.add_argument('--graph_hidden',type=int,default=256)
parser.add_argument('--dropout',type=float,default=0.05)
parser.add_argument('--alpha',type=float,default=0.2)
parser.add_argument('--cvae_hidden',type=int,default=128)
parser.add_argument('--cvae_channel_size',type=int,default=128)
parser.add_argument('--cvae_layers',type=int,default=2)
parser.add_argument('--mlp_layer',type=int,default=91)
parser.add_argument('--numMCTS', type=int, default=50)
parser.add_argument('--cpuct', type=int, default= 1)
parser.add_argument('--huct', type=int, default= 4000)
parser.add_argument('--parallel', type=bool, default=False)
parser.add_argument('--num_process', type=int, default=1000)
parser.add_argument('--numEpisodeSteps', type=int, default=30)
parser.add_argument('--maxlenOfQueue', type=int, default=25600)
parser.add_argument('--numEps', type=int, default=100)
parser.add_argument('--numEpsTest', type=int, default=100)
parser.add_argument('--numIters', type=int, default=1)
parser.add_argument('--epochs', type=int, default=15)
parser.add_argument('--plot', type=bool, default=False)
args = parser.parse_args()
for arg in vars(args):
print(arg, getattr(args, arg))
Play(args)