-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_cost.py
62 lines (54 loc) · 2.49 KB
/
plot_cost.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from costmap import CostMap
from matplotlib import pyplot as plt
import numpy as np
import time
from tqdm import tqdm
# import seaborn as sns
def plot_cost():
mp3d = CostMap('./dataset/111_days/processed_data/train')
fig = plt.figure()
sp = fig.add_subplot(111)
# fig.show()
x = np.arange(-6, 6, 0.1)
y = np.arange(-6, 6, 0.1)
print(x.shape)
xv, yv = np.meshgrid(x, y,sparse=False)
arr = np.empty((120,120))
for i in tqdm(range(len(xv))):
for j in range(len(yv)):
z = 0.5096 #(km)
angle = -0 #degrees
wind = 1 # 1 for right -1 for left
# print(xv.shape)
# print(mp3d.state_value(xv[i,j], yv[i,j], z, angle, wind))
# plt.scatter(x= xv[i,j], y = yv[i,j], c = mp3d.state_value(xv[i,j], yv[i,j], z, angle, wind))
arr[i][j] = mp3d.state_value(xv[i,j], yv[i,j], z, angle, wind)
# plt.colorbar()
xlabels = ['{:3.1f}'.format(x) for x in xv[0,:]]
ax = sns.heatmap(arr,xticklabels=xlabels, yticklabels=xlabels)
ax.invert_yaxis()
ax.set_xticks(ax.get_xticks()[::3])
ax.set_xticklabels(xlabels[::3])
ax.set_yticks(ax.get_yticks()[::3])
ax.set_yticklabels(xlabels[::3])
plt.savefig("mcts_"+ ".png")
def generate_ref():
x = np.arange(-6.0,3,43.321/1000)
y = np.repeat(-2,len(x))
z = np.repeat(-0.5,len(x))
print(len(x))
traj = np.vstack((x,y,z)).transpose()
print("traj",traj.shape)
x = np.array([[ 0.0 ,43.32168421052632 ,86.64336842105263 ,129.96505263157894 ,173.28673684210526 ,216.6084210526316 ,259.93010526315794 ,303.2517894736842 ,346.5734736842105 ,389.89515789473677 ,433.2168421052632 ,476.5385263157894 ,519.8602105263158, 563.1818947368421, 606.5035789473684, 649.8252631578947, 693.146947368421, 736.4686315789475 ,779.7903157894735 ,823.1120000000001 ],[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ],[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ]])
x[0] = x[0] + 627.0
x[0] = x[0]/1000
x[1] = x[1] - 2.5
x[2] = x[2] + 0.5
curr_position = x.transpose()
print(traj.shape,curr_position.shape)
# print(np.linalg.norm(traj-np.tile(curr_position[0,:],(len(y),1)),axis=1))
idx_closest = np.argmin(np.linalg.norm(traj-np.tile(curr_position[0,:],(len(y),1)),axis=1))
idx_closest = 207
print(min(idx_closest+20,traj.shape[0]-2),traj[207,:])
if __name__ == '__main__':
generate_ref()