-
Notifications
You must be signed in to change notification settings - Fork 0
/
model_prediccio_futur_Ndata.py
196 lines (173 loc) · 4.52 KB
/
model_prediccio_futur_Ndata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import pandas
from pandas.plotting import scatter_matrix
import matplotlib.pyplot as plt
from sklearn import model_selection
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
import numpy as np
import random
seed = 123456
data = pandas.read_excel(open('./data/results_new.xlsx','rb'), sheet_name=0);
result = pandas.read_excel(open('./data/results_new.xlsx','rb'), sheet_name=1);
f = open('./data/errors_AllvsNdata.txt','w');
X0 = data.values
Y0 = result.values
Nin = 8
Nout = 9 - Nin
N = 1000
Ncross = 10
X = np.zeros([N*Nin,12])
Y = np.zeros(N*Nin)
k = 0
for ii in range(Nin):
for jj in range(N):
X[k,0:11] = X0[jj,:]
X[k,11] = Y0[jj,ii]
Y[k] = Y0[jj,ii+1]
k = k + 1
nnfit = 10
Nfit_v = np.logspace(2.0,3.90309,num=nnfit)
for ii in range(len(Nfit_v)):
Nfit_v[ii] = int(round(Nfit_v[ii]))
Nfit_v = np.int_(Nfit_v)
print Nfit_v
errorSVM = np.zeros(nnfit)
errorLR = np.zeros(nnfit)
errorLDA = np.zeros(nnfit)
errorKNC = np.zeros(nnfit)
errorDTC = np.zeros(nnfit)
errorGNB = np.zeros(nnfit)
errorRF = np.zeros(nnfit)
for kk in range(nnfit):
Nfit = Nfit_v[kk]
print Nfit
for ss in range(Ncross):
indexs = range(N*Nin)
indexs = random.sample(indexs,Nfit)
X_t = X[indexs,:]
Y_t = Y[indexs]
X_v = np.zeros([Nout*N,12])
Y_v = np.zeros(Nout*N)
k = 0
for ii in range(Nout):
for jj in range(N):
X_v[k,0:11] = X0[jj,:]
X_v[k,11] = Y0[jj,ii+Nin]
Y_v[k] = Y0[jj,ii+Nin+1]
k = k + 1
# Suport Vector Machine
clf = SVC()
clf.fit(X_t,Y_t)
Y_p = clf.predict(X_v)
k = 0
for j in range(Nout):
for i in range(0,N):
errorSVM[kk] = errorSVM[kk]+abs(float(Y_v[k]-Y_p[k]))/Y_v[k]
k = k + 1
# Logistic Regression
logreg = LogisticRegression()
logreg.fit(X_t, Y_t)
Y_p = logreg.predict(X_v)
k = 0
for j in range(Nout):
for i in range(0,N):
errorLR[kk] = errorLR[kk]+abs(float(Y_v[k]-Y_p[k]))/Y_v[k]
k = k + 1
# Linear Discriminant Analysis
lda = LinearDiscriminantAnalysis()
lda.fit(X_t, Y_t)
Y_p = lda.predict(X_v)
k = 0
for j in range(Nout):
for i in range(0,N):
errorLDA[kk] = errorLDA[kk]+abs(float(Y_v[k]-Y_p[k]))/Y_v[k]
k = k + 1
# K Neighbors Classifier
KNC = KNeighborsClassifier()
KNC.fit(X_t, Y_t)
Y_p = KNC.predict(X_v)
k = 0
for j in range(Nout):
for i in range(0,N):
errorKNC[kk] = errorKNC[kk]+abs(float(Y_v[k]-Y_p[k]))/Y_v[k]
k = k + 1
# Decision Tree Classifier
DTC = DecisionTreeClassifier()
DTC.fit(X_t, Y_t)
Y_p = DTC.predict(X_v)
k = 0
for j in range(Nout):
for i in range(0,N):
errorDTC[kk] = errorDTC[kk]+abs(float(Y_v[k]-Y_p[k]))/Y_v[k]
k = k + 1
# Gaussian Naive Bayes
GNB = GaussianNB()
GNB.fit(X_t, Y_t)
Y_p = GNB.predict(X_v)
k = 0
for j in range(Nout):
for i in range(0,N):
errorGNB[kk] = errorGNB[kk]+abs(float(Y_v[k]-Y_p[k]))/Y_v[k]
k = k + 1
# Random Forest
RFC = RandomForestClassifier()
RFC.fit(X_t, Y_t)
Y_p = RFC.predict(X_v)
k = 0
for j in range(Nout):
for i in range(0,N):
errorRF[kk] = errorRF[kk]+abs(float(Y_v[k]-Y_p[k]))/Y_v[k]
k = k + 1
errorSVM = errorSVM/N/Ncross
errorLR = errorLR/N/Ncross
errorLDA = errorLDA/N/Ncross
errorKNC = errorKNC/N/Ncross
errorDTC = errorDTC/N/Ncross
errorGNB = errorGNB/N/Ncross
errorRF = errorRF/N/Ncross
errr = errorSVM+errorLR+errorLDA+errorKNC+errorDTC+errorGNB+errorRF
errr = errr/7
print 'SVM error = ', errorSVM
print 'LR error = ', errorLR
print 'LDA error = ', errorLDA
print 'KNC error = ', errorKNC
print 'DTC error = ', errorDTC
print 'GNB error = ', errorGNB
print 'RF error = ', errorRF
print 'Meanerror = ', errr/7
for err in Nfit_v:
f.write('%.4f ' % err)
f.write('\n')
for err in errorSVM:
f.write('%.4f ' % err)
f.write('\n')
for err in errorLR:
f.write('%.4f ' % err)
f.write('\n')
for err in errorLDA:
f.write('%.4f ' % err)
f.write('\n')
for err in errorKNC:
f.write('%.4f ' % err)
f.write('\n')
for err in errorDTC:
f.write('%.4f ' % err)
f.write('\n')
for err in errorGNB:
f.write('%.4f ' % err)
f.write('\n')
for err in errorRF:
f.write('%.4f ' % err)
f.write('\n')
for err in errr:
f.write('%.4f ' % err)
f.write('\n')
f.close()