diff --git a/NAMESPACE b/NAMESPACE index 47fae67..493a56f 100644 --- a/NAMESPACE +++ b/NAMESPACE @@ -38,6 +38,7 @@ export(rc.feature.replace.na) export(rc.get.csv.data) export(rc.get.df.data) export(rc.get.xcms.data) +export(rc.merge.split.clusters) export(rc.qc) export(rc.ramclustr) export(rc.remove.qc) diff --git a/R/rc.merge.clusters.R b/R/rc.merge.clusters.R new file mode 100644 index 0000000..1a16f6a --- /dev/null +++ b/R/rc.merge.clusters.R @@ -0,0 +1,102 @@ +#' rc.merge.split.clusters +#' +#' Cluster refinement - scanning instruments (quadrupole, as in GC-MS) can display cluster splitting, possibily due to slight differences in measured peak retentiont time as a function of mass due to scan dynamics. this function enables a second pass clustering designed to merge two clusters if the second cluster is within a small retention time window and shows a sufficiently strong correlation. +#' +#' @param ramclustObj ramclustR object to annotate. +#' @param merge.threshold numeric. value between -1 and 1 indicating the correlational r threshold above which two clusters will be merged +#' @param cor.method character. default = 'spearman'. correlational method to use for calculating r. see documentation on R base cor() function for available options +#' @param rt.sd.factor numeric. default = 3. clusters within rt.sd.factor * ramclustObj$rtsd (cluster retention time standard deviation) are considered for merging. +#' @details exports files to a directory called 'spectra'. If one.file = FALSE, a new directory 'spectra/msp' is created to hold the individual msp files. if do.findman has been run, spectra are written as ms2 spectra, else as ms1. +#' @return new ramclustR object, with (generally) fewer clusters than the input ramclustR object. +#' @concept ramclustR +#' @concept RAMClustR +#' @concept metabolomics +#' @concept mass spectrometry +#' @concept clustering +#' @concept xcms +#' @author Corey Broeckling +#' @importFrom methods is +#' @export +#' +#' +rc.merge.split.clusters <- function( + ramclustObj = NULL, + merge.threshold = 0.7, + cor.method = 'spearman', + rt.sd.factor = 3 + +) { + + if(is.null(ramclustObj)) stop('please provide a ramclustObj', '\n') + if(!is.numeric(merge.threshold)) merge.threshold <- as.numeric(merge.threshold) + if(merge.threshold < 0 | merge.threshold > 1) stop("'merge.threshold' must be between zero and one", '\n') + + + ## for all clusters, see if there are clusters at nearby retentiontimes which highly correlate + ## if there are, join them, renumber featclus, and regenerate SpecAbund file. + orig.cl.n <- max(ramclustObj$featclus) + cls <- max(ramclustObj$featclus):2 + # ramclustObj <- RC + for(i in cls) { + if(max(diff(sort(unique(ramclustObj$featclus)))) > 1) stop("error 1") + potential.merges <- which( + (abs(ramclustObj$clrt[1:i] - ramclustObj$clrt[i])) < (rt.sd.factor*ramclustObj$clrtsd[i]) + ) + potential.merges <- potential.merges[!potential.merges == i] + if(length(potential.merges) == 0) next + + rval <- cor(ramclustObj$SpecAbund[,i], ramclustObj$SpecAbund[,potential.merges], method = cor.method) + merges <- potential.merges[which(rval >= merge.threshold)] + if(length(merges) == 0) next + + merges <- max(merges) + + ramclustObj$featclus[which(ramclustObj$featclus == i)] <- merges + # if(max(diff(sort(unique(ramclustObj$featclus)))) > 1) cat(i, "max diff = ", max(diff(sort(unique(ramclustObj$featclus)))), '\n') + old.featclus <- ramclustObj$featclus + new.featclus <- old.featclus + decend.by.one <- which(old.featclus > i) + new.featclus[decend.by.one] <- (old.featclus[decend.by.one])-1 + if(max(diff(sort(unique(new.featclus)))) > 1) stop("error 2") + ramclustObj$featclus <- new.featclus + + } + # sort(unique(ramclustObj$featclus)) + # sort(unique(RC$featclus)) + + ## store SpecAbund sample names + sa.rn <- dimnames(ramclustObj$SpecAbund)[[1]] + + # 0.99888 + + # collapse feature dataset into spectrum dataset + wts<-colSums(ramclustObj$MSdata) + ramclustObj$SpecAbund<-matrix(nrow=nrow(ramclustObj$SpecAbund), ncol=max(ramclustObj$featclus)) + for (ro in 1:nrow(ramclustObj$SpecAbund)) { + for (co in 1:ncol(ramclustObj$SpecAbund)) { + ramclustObj$SpecAbund[ro,co]<- weighted.mean(ramclustObj$MSdata[ro,which(ramclustObj$featclus==co)], wts[which(ramclustObj$featclus==co)]) + } + } + dimnames(ramclustObj$SpecAbund)[[1]] <- sa.rn + + strl <- nchar(max(ramclustObj$featclus)) - 1 + ramclustObj$cmpd <- paste("C", formatC(1:max(ramclustObj$featclus), digits = strl, flag = 0 ) , sep="") + ramclustObj$ann <- ramclustObj$cmpd + + clrt<-aggregate(ramclustObj$frt, by=list(ramclustObj$featclus), FUN="mean") + ramclustObj$clrt<-clrt[which(clrt[,1]!=0),2] + clrtsd<-aggregate(ramclustObj$frt, by=list(ramclustObj$featclus), FUN="sd") + ramclustObj$clrtsd<-clrtsd[which(clrtsd[,1]!=0),2] + ramclustObj$nfeat<-as.vector(table(ramclustObj$featclus)[2:max(ramclustObj$featclus)]) + ramclustObj$nsing<-length(which(ramclustObj$featclus==0)) + ramclustObj$annconf<-rep(4, length(ramclustObj$clrt)) + ramclustObj$annnotes<-rep("", length(ramclustObj$clrt)) + dimnames(ramclustObj$SpecAbund)[[1]] <- ramclustObj$sample_names + + new.cl.n <- max(ramclustObj$featclus) + cat(paste("Original cluster number =", orig.cl.n, '\n', "New cluster number =", new.cl.n, '\n')) + + return(ramclustObj) + +} + diff --git a/man/rc.merge.split.clusters.Rd b/man/rc.merge.split.clusters.Rd new file mode 100644 index 0000000..f97739d --- /dev/null +++ b/man/rc.merge.split.clusters.Rd @@ -0,0 +1,40 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/rc.merge.clusters.R +\name{rc.merge.split.clusters} +\alias{rc.merge.split.clusters} +\title{rc.merge.split.clusters} +\usage{ +rc.merge.split.clusters( + ramclustObj = NULL, + merge.threshold = 0.7, + cor.method = "spearman", + rt.sd.factor = 3 +) +} +\arguments{ +\item{ramclustObj}{ramclustR object to annotate.} + +\item{merge.threshold}{numeric. value between -1 and 1 indicating the correlational r threshold above which two clusters will be merged} + +\item{cor.method}{character. default = 'spearman'. correlational method to use for calculating r. see documentation on R base cor() function for available options} + +\item{rt.sd.factor}{numeric. default = 3. clusters within rt.sd.factor * ramclustObj$rtsd (cluster retention time standard deviation) are considered for merging.} +} +\value{ +new ramclustR object, with (generally) fewer clusters than the input ramclustR object. +} +\description{ +Cluster refinement - scanning instruments (quadrupole, as in GC-MS) can display cluster splitting, possibily due to slight differences in measured peak retentiont time as a function of mass due to scan dynamics. this function enables a second pass clustering designed to merge two clusters if the second cluster is within a small retention time window and shows a sufficiently strong correlation. +} +\details{ +exports files to a directory called 'spectra'. If one.file = FALSE, a new directory 'spectra/msp' is created to hold the individual msp files. if do.findman has been run, spectra are written as ms2 spectra, else as ms1. +} +\author{ +Corey Broeckling +} +\concept{RAMClustR} +\concept{clustering} +\concept{mass spectrometry} +\concept{metabolomics} +\concept{ramclustR} +\concept{xcms}