Skip to content

Sentence transformer evaluation in R

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md
Notifications You must be signed in to change notification settings

ccb-hms/stransevalr

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

stransevalr

The goal of stransevalr is to use reticulate to evaluate question-answer pairs with sentence transformers in R.

Installation and Usage

I’ve been using these modules on O2:

module load gcc/9.2.0 R/4.4.0 cmake/3.14.1 cuda/12.1 python/3.10.11

This is a basic example which shows you how to create the virtual environment with reticulate if needed, then analyze an input question-answer-response file. This code block will create the virtual environment for you if it doesn’t exist or set it to be used if it does. I tried to cut it down as much as possible but these four python packages have ~50 dependencies which take forever to install :(

library(reticulate)

# change the virtual environment directory as you like
env_dir = file.path(Sys.getenv("HOME"),
                    ".virtualenvs/sntenv") 

if (dir.exists(env_dir)) {
  
    use_virtualenv(env_dir)
  
} else {
  
    strt = Sys.time()
    
    virtualenv_create(env_dir,
                      python = "/n/app/python/3.10.11.conda/bin/python")
    # ^ If this fails, you probably don't have the python 3.10.11 module loaded
    
    virtualenv_install(env_dir, 
                       packages = c("numpy==1.26.4", "cuda-python==12.1.0", "torch==2.2.2"),
                       pip_options = c("--upgrade", "--force-reinstall"))
    
    virtualenv_install(env_dir, 
                       packages = c("pandas", "sentence_transformers"))
    
    fin = Sys.time()
    
    print(fin - strt)
}

Exit R, activate the venv, then start R and you can install the package from GitHub with:

# install.packages("remotes")
remotes::install_github("ccb-hms/stransevalr")

stransevalr in and of itself is pretty light on the R front outside of reticulate:

The first column must be named question, the second must be answer, and the remaining columns should have names indicating the model they came from e.g. llama_70b_rag:

library(data.table)
library(stransevalr)

options(datatable.print.trunc.cols = TRUE, digits = 3)

# show input file
system.file("extdata", "correct_fmt.tsv", package = "stransevalr") |> 
  fread() |>
  tibble::as_tibble()
# A tibble: 10 × 4
   question                 answer Response_Azure_Bioc_…¹ Response_Azure_GPT4_…²
   <chr>                    <chr>  <chr>                  <chr>                 
 1 "I am a bit confused ab… "The … "The False Discovery … "FDR, FDR adjusted p-…
 2 "I am working on RNA-Se… "Just… "It seems like you're… "In DESeq2, adding th…
 3 "I am new in this kind … "Ther… "Yes, you're correct … "You're correct that …
 4 "I am testing salmon an… "To a… "The `tximport` funct… "1. ScaledTPM and len…
 5 "In all RNA-seq analysi… "The … "The dispersion param… "In RNA-seq analysis,…
 6 "I know findOverlaps() … "From… "Based on your questi… "It seems like you're…
 7 "I have just downloaded… "I wr… "To map the coordinat… "Mapping genomic coor…
 8 "How can I filter out t… "If y… "Yes, you are on the … "Yes, you are on the …
 9 "I am analysing my RNA-… "You … "The issue you're fac… "It seems like you ar…
10 "How do I merge a list … "Merg… "You can merge a list… "To merge a list of G…
# ℹ abbreviated names: ¹Response_Azure_Bioc_RAG, ²Response_Azure_GPT4_Temp0

To run the evaluation you hand the input file to stransevalr():

input = system.file("extdata", "correct_fmt.tsv", package = "stransevalr")

res = stransevalr(input)

res |> tibble::as_tibble()
# A tibble: 7 × 3
  m                          res              cosine_sims
  <chr>                      <list>           <list>     
1 Response_Azure_Bioc_RAG    <dbl [10 × 384]> <dbl [10]> 
2 Response_Azure_GPT4_Temp0  <dbl [10 × 384]> <dbl [10]> 
3 scrambled_answer           <dbl [10 × 384]> <dbl [10]> 
4 scrambled_combined_answers <dbl [10 × 384]> <dbl [10]> 
5 scrabble_match_nword       <dbl [10 × 384]> <dbl [10]> 
6 scrabble_match_nchar       <dbl [10 × 384]> <dbl [10]> 
7 reembed_ground_truth       <dbl [10 × 384]> <dbl [10]> 

The embeddings and cosine similarities are in nested list columns. You can unnest the similarities and add an index with a bit of data.table:

res[,.(m, cosine_sims)][,.(cos_sim =  unlist(cosine_sims)), by = m][, q_i := 1:.N , by = m] |> head()
                         m   cos_sim   q_i
                    <char>     <num> <int>
1: Response_Azure_Bioc_RAG 0.8001171     1
2: Response_Azure_Bioc_RAG 0.7180428     2
3: Response_Azure_Bioc_RAG 0.4934007     3
4: Response_Azure_Bioc_RAG 0.7712072     4
5: Response_Azure_Bioc_RAG 0.7607350     5
6: Response_Azure_Bioc_RAG 0.6629975     6

There are functions for creating the bar and dot/boxplots as well:

library(ggplot2)

p1 = plot_cos_sim_bars(res)
p2 = plot_cos_sim_boxes(res)

ggsave(p1, filename = "~/p1.png", w = 12, h = 7)
ggsave(p2, filename = "~/p2.png", w = 12, h = 7)

You can provide your own similarity function with the sim_fun argument:

euc_dist = \(x,y) sqrt(sum((x - y)^2))

res2 = stransevalr(input, sim_fun = euc_dist)

About

Sentence transformer evaluation in R

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages