-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathrun_finetune_vae.py
581 lines (492 loc) · 18.3 KB
/
run_finetune_vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
# %%
# credits:
# Flax code is adapted from https://github.com/huggingface/transformers/blob/main/examples/flax/vision/run_image_classification.py
# GAN related code are adapted from https://github.com/patil-suraj/vit-vqgan/
import inspect
import os
from functools import partial
# os.environ['XLA_PYTHON_CLIENT_MEM_FRACTION'] = '0.5'
os.environ["XLA_PYTHON_CLIENT_PREALLOCATE"] = "false"
# cuda
# os.environ["CUDA_VISIBLE_DEVICES"] = "1"
from copy import deepcopy
from pathlib import Path
import flax.linen as nn
import jax
import jax.numpy as jnp
import numpy as np
import optax
import torch
import torchvision.transforms as T
from datasets import Dataset as HFDataset
from flax import jax_utils
from flax.jax_utils import pad_shard_unpad, unreplicate
from flax.serialization import from_bytes, to_bytes
from flax.training import train_state
from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key
from lpips_j.lpips import LPIPS
from PIL import Image
from stable_diffusion_jax import AutoencoderKL
from torch.utils.data import DataLoader
from tqdm import tqdm
from vit_vqgan import StyleGANDiscriminator, StyleGANDiscriminatorConfig
import wandb
# %%
# since we don't fine-tune the encoder: we don't have kl loss
kl_loss = False # changin this have no effect
# It's not clear if sampling from the distribution is better than using the mean
# For simplicity, we use the mean
sample_from_distribution = False # changing this have no effect
# %%
# paths and configs
wandb.init(project="vae")
learning_rate = 1e-4
gradient_accumulation_steps = 1
warmup_steps = 4000 * gradient_accumulation_steps
log_steps = 1 * gradient_accumulation_steps
eval_steps = 100 * gradient_accumulation_steps
log_steps = 10 * gradient_accumulation_steps
eval_steps = 100 * gradient_accumulation_steps
total_steps = 150_000 * gradient_accumulation_steps
# skip disc loss for the first 1000 steps, because discriminator is not trained yet
disc_loss_skip_steps = 1000 * gradient_accumulation_steps
# model = VQModel.from_pretrained("dalle-mini/vqgan_imagenet_f16_16384")
data_root = "/disks"
# a huggingface dataset containing columns "path" and optionally "indices"
# path: can be absolute or relative to `data_root`
# indices: VQ indices of the image at `path`
hfds = HFDataset.from_json("danbooru_image_paths_ds.json")
# this corresponds to a local dir containing the config.json file
# the config.json file is copied from https://github.com/patil-suraj/vit-vqgan/
disc_config_path = "configs/vqgan/discriminator/config.json"
output_dir = Path("output-dir-vae")
output_dir.mkdir(exist_ok=True)
# the empereically observed values from initial runs, we will scale them closer to the scale of l2 loss
scale_l2 = 0.001
scale_lpips = 0.25
# adjust scale to make the loss comparable to l2 loss
cost_l2 = 0.5
cost_lpips = scale_l2 / scale_lpips * 5
cost_gradient_penalty = 100000000 # this follows vit-vqgan repo
cost_disc = 0.005
# %%
# convert the weight to jax first, see:
# https://github.com/patil-suraj/stable-diffusion-jax/blob/47297f53bb4907f119079654310bfb14134c2714/example.py#L23
fx_path = Path.home() / "models/stable-diffusion-v1-4-jax"
vae, vae_params = AutoencoderKL.from_pretrained(f"{fx_path}/vae", _do_init=False)
# default to float 32, I don't care
# %%
model = vae
original_params = deepcopy(vae_params)
# %%
vae_params.keys()
# %%
class EncoderImageDataset(torch.utils.data.Dataset):
# this class was originally used to preprocess images into VQ indices
# now we only use its load() method, and preprocess images into VQ indices on the fly
def __init__(self, df, shape=(256, 256)):
self.df = df
self.shape = shape
def __len__(self):
return len(self.df)
@staticmethod
def load(path):
img = Image.open(path).convert("RGB").resize((256, 256))
img = torch.unsqueeze(T.ToTensor()(img), 0)
return img.permute(0, 2, 3, 1).numpy()
def __getitem__(self, idx):
row = self.df.iloc[idx]
path = row["resized_path"]
return self.load(path)
class DecoderImageDataset(torch.utils.data.Dataset):
def __init__(self, hfds, root=None):
"""hdfs: HFDataset"""
self.hfds = hfds
self.root = root
def __len__(self):
return len(self.hfds)
def __getitem__(self, idx):
example = self.hfds[idx]
# indices = example["indices"]
path = example["path"]
if self.root is not None:
path = os.path.join(self.root, path.lstrip("/"))
orig_arr = EncoderImageDataset.load(path)
return {
# "indices": indices,
"original": orig_arr,
"name": Path(path).name,
}
@staticmethod
def collate_fn(examples, return_names=False):
res = {
# "indices": [example["indices"] for example in examples],
"original": np.concatenate(
[example["original"] for example in examples], axis=0
),
}
if return_names:
res["name"] = [example["name"] for example in examples]
return res
def try_batch_size(fn, start_batch_size=1):
# try batch size
batch_size = start_batch_size
while True:
try:
print(f"Trying batch size {batch_size}")
fn(batch_size * 2)
batch_size *= 2
except Exception as e:
return batch_size
def get_param_counts(params):
param_counts = [k.size for k in jax.tree_util.tree_leaves(params)]
param_counts = sum(param_counts)
return param_counts
def get_training_params():
keys = ["decoder", "post_quant_conv", "quantize"]
decoder_params = {k: v for k, v in original_params.items() if k in keys}
return deepcopy(decoder_params)
# %%
for k, v in original_params.items():
print(k, get_param_counts(v) / 1e6)
# %%
disc_config = StyleGANDiscriminatorConfig.from_pretrained(disc_config_path)
disc_model = StyleGANDiscriminator(
disc_config,
seed=42,
_do_init=True,
)
lpips_fn = LPIPS()
def init_lpips(rng, image_size):
x = jax.random.normal(rng, shape=(1, image_size, image_size, 3))
return lpips_fn.init(rng, x, x)
# %%
# encoder_params = {k: v for k, v in params.items() if k not in keys}
rng = jax.random.PRNGKey(0)
rng, dropout_rng = jax.random.split(rng)
lpips_params = init_lpips(rng, image_size=256)
params = get_training_params()
warmup_fn = optax.linear_schedule(
init_value=0.0,
end_value=learning_rate,
transition_steps=warmup_steps + 1, # ensure not 0
)
decay_fn = optax.linear_schedule(
init_value=learning_rate,
end_value=0,
transition_steps=total_steps - warmup_steps,
)
schedule_fn = optax.join_schedules(
schedules=[warmup_fn, decay_fn],
boundaries=[warmup_steps],
)
disc_loss_skip_schedule = optax.join_schedules(
schedules=[
optax.constant_schedule(0),
optax.constant_schedule(1),
],
boundaries=[disc_loss_skip_steps],
)
optimizer = optax.adamw(learning_rate=schedule_fn)
# discriminator_optimizer
optimizer_disc = optax.adamw(learning_rate=schedule_fn)
# gradient accumulation for main optimizer
optimizer = optax.MultiSteps(optimizer, gradient_accumulation_steps)
# Setup train state
class TrainState(train_state.TrainState):
dropout_rng: jnp.ndarray
def replicate(self):
return jax_utils.replicate(self).replace(
dropout_rng=shard_prng_key(self.dropout_rng)
)
state = TrainState.create(
apply_fn=model.decode_code,
params=jax.device_put(params),
tx=optimizer,
dropout_rng=dropout_rng,
)
state_disc = TrainState.create(
apply_fn=disc_model,
params=jax.device_put(disc_model.params),
tx=optimizer_disc,
dropout_rng=dropout_rng,
)
loss_fn = optax.l2_loss
#
def reconstruct(params_with_encoder, params_with_decoder, original, train=False):
distribution = vae.encode(original, params=params_with_encoder)
latent = distribution.mode()
reconstruction = model.decode(latent, params_with_decoder, train=train)
return reconstruction
def train_step(state, batch, state_disc):
"""Returns new_state, metrics, reconstruction"""
dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng)
def compute_loss(params, batch, dropout_rng, train=True):
original = batch["original"]
reconstruction = reconstruct(original_params, params, original, train=train)
loss_l2 = loss_fn(reconstruction, original).mean()
disc_fake_scores = state_disc.apply_fn(
reconstruction,
params=state_disc.params,
dropout_rng=dropout_rng,
train=train,
)
loss_disc = jnp.mean(nn.softplus(-disc_fake_scores))
loss_lpips = jnp.mean(lpips_fn.apply(lpips_params, original, reconstruction))
loss = (
loss_l2 * cost_l2
+ loss_lpips * cost_lpips
+ loss_disc * cost_disc * disc_loss_skip_schedule(state.step)
)
loss_details = {
"loss_l2": loss_l2 * cost_l2,
"loss_lpips": loss_lpips * cost_lpips,
"loss_disc": loss_disc * cost_disc,
}
return loss, (loss_details, reconstruction)
grad_fn = jax.value_and_grad(compute_loss, has_aux=True)
(loss, (loss_details, reconstruction)), grad = grad_fn(
state.params, batch, dropout_rng, train=True
)
# legacy code, I didn't use multi gpu
# grad = jax.lax.pmean(grad, "batch")
new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng)
metrics = loss_details | {"learning_rate": schedule_fn(state.step)}
# metrics = jax.lax.pmean(metrics, axis_name="batch")
return new_state, metrics, reconstruction
# %%
def compute_stylegan_loss(
disc_params, batch, fake_images, dropout_rng, disc_model_fn, train
):
disc_fake_scores = disc_model_fn(
fake_images, params=disc_params, dropout_rng=dropout_rng, train=train
)
disc_real_scores = disc_model_fn(
batch, params=disc_params, dropout_rng=dropout_rng, train=train
)
# -log sigmoid(f(x)) = log (1 + exp(-f(x))) = softplus(-f(x))
# -log(1-sigmoid(f(x))) = log (1 + exp(f(x))) = softplus(f(x))
# https://github.com/pfnet-research/sngan_projection/issues/18#issuecomment-392683263
loss_real = nn.softplus(-disc_real_scores)
loss_fake = nn.softplus(disc_fake_scores)
disc_loss_stylegan = jnp.mean(loss_real + loss_fake)
# gradient penalty r1: https://github.com/NVlabs/stylegan2/blob/bf0fe0baba9fc7039eae0cac575c1778be1ce3e3/training/loss.py#L63-L67
r1_grads = jax.grad(
lambda x: jnp.mean(
disc_model_fn(x, params=disc_params, dropout_rng=dropout_rng, train=train)
)
)(batch)
# get the squares of gradients
r1_grads = jnp.mean(r1_grads**2)
disc_loss = disc_loss_stylegan + cost_gradient_penalty * r1_grads
disc_loss_details = {
"pred_p_real": jnp.exp(-loss_real).mean(), # p = 1 -> predict real is real
"pred_p_fake": jnp.exp(-loss_fake).mean(), # p = 1 -> predict fake is fake
"loss_real": loss_real.mean(),
"loss_fake": loss_fake.mean(),
"loss_stylegan": disc_loss_stylegan,
"loss_gradient_penalty": cost_gradient_penalty * r1_grads,
"loss": disc_loss,
}
return disc_loss, disc_loss_details
train_compute_stylegan_loss = partial(compute_stylegan_loss, train=True)
grad_stylegan_fn = jax.value_and_grad(train_compute_stylegan_loss, has_aux=True)
def train_step_disc(state_disc, batch, fake_images):
dropout_rng, new_dropout_rng = jax.random.split(state_disc.dropout_rng)
# convert fake images to int then back to float, so discriminator can't cheat
dtype = fake_images.dtype
fake_images = (fake_images.clip(0, 1) * 255).astype(jnp.uint8).astype(dtype) / 255
(disc_loss, disc_loss_details), disc_grads = grad_stylegan_fn(
state_disc.params,
batch,
fake_images,
dropout_rng,
disc_model,
)
new_state = state_disc.apply_gradients(
grads=disc_grads, dropout_rng=new_dropout_rng
)
metrics = disc_loss_details | {"learning_rate_disc": schedule_fn(state_disc.step)}
# metrics = jax.lax.pmean(metrics, axis_name="batch")
return new_state, metrics
# %%
# Take the first 100 images as validation set
train_ds = DecoderImageDataset(hfds.select(range(100, len(hfds))), root=data_root)
test_ds = DecoderImageDataset(hfds.select(range(100)), root=data_root)
# %%
jit_train_step = jax.jit(train_step)
jit_train_step_disc = jax.jit(train_step_disc)
# %%
def try_train_batch_size_fn(batch_size):
example = train_ds[0]
batch = train_ds.collate_fn([example] * batch_size)
new_state, metrics, reconstruction = jit_train_step(state, batch, state_disc)
new_state, metrics = jit_train_step_disc(
state_disc, batch["original"], reconstruction
)
return
# this takes about 20 GB of memory, adjust batch size accordingly for your GPU
train_batch_size = 8
state = jax.device_put(state, jax.devices()[0])
train_batch_size = try_batch_size(
try_train_batch_size_fn, start_batch_size=train_batch_size
)
print(f"Training batch size: {train_batch_size}")
# %%
# %%
# %%
# try it again, make sure there is no error
try_train_batch_size_fn(train_batch_size)
print(f"Training batch size: {train_batch_size}")
# %%
wandb.log({"train_dataset_size": len(train_ds)})
# %%
dataloader = DataLoader(
train_ds,
batch_size=train_batch_size,
shuffle=True,
collate_fn=partial(DecoderImageDataset.collate_fn, return_names=False),
num_workers=4,
drop_last=True,
prefetch_factor=4,
persistent_workers=True,
)
# %%
# recreate states, because we tried training them before
state = TrainState.create(
apply_fn=model.decode_code,
params=jax.device_put(params),
tx=optimizer,
dropout_rng=dropout_rng,
)
state_disc = TrainState.create(
apply_fn=disc_model,
params=jax.device_put(disc_model.params),
tx=optimizer_disc,
dropout_rng=dropout_rng,
)
state = jax.device_put(state, jax.devices()[0])
state_disc = jax.device_put(state_disc, jax.devices()[0])
# %%
# data loader without shuffle, so we can see the progress on the same images
train_dl_eval = DataLoader(
train_ds,
batch_size=train_batch_size,
shuffle=False,
collate_fn=partial(DecoderImageDataset.collate_fn, return_names=True),
num_workers=4,
drop_last=True,
prefetch_factor=4,
persistent_workers=True,
)
test_dl = DataLoader(
test_ds,
batch_size=train_batch_size,
shuffle=False,
collate_fn=partial(DecoderImageDataset.collate_fn, return_names=True),
num_workers=4,
drop_last=True,
prefetch_factor=4,
persistent_workers=True,
)
# %%
# evaluation functions
@jax.jit
def infer_fn(batch, state):
original = batch["original"]
reconstruction = reconstruct(original_params, state.params, original)
return reconstruction
def evaluate(use_tqdm=False, step=None):
losses = []
iterable = test_dl if not use_tqdm else tqdm(test_dl)
for batch in iterable:
name = batch.pop("name")
reconstruction = infer_fn(batch, state)
losses.append(loss_fn(reconstruction, batch["original"]).mean())
loss = np.mean(jax.device_get(losses))
wandb.log({"test_loss": loss, "step": step})
def postpro(decoded_images):
"""util function to postprocess images"""
decoded_images = decoded_images.clip(0.0, 1.0) # .reshape((-1, 256, 256, 3))
return [
Image.fromarray(np.asarray(decoded_img * 255, dtype=np.uint8))
for decoded_img in decoded_images
]
def log_images(dl, num_images=8, suffix="", step=None):
logged_images = 0
def batch_gen():
while True:
for batch in dl:
yield batch
batch_iter = batch_gen()
while logged_images < num_images:
batch = next(batch_iter)
names = batch.pop("name")
reconstruction = infer_fn(batch, state)
left_right = np.concatenate([batch["original"], reconstruction], axis=2)
images = postpro(left_right)
for name, image in zip(names, images):
wandb.log(
{f"{name}{suffix}": wandb.Image(image, caption=name), "step": step}
)
logged_images += len(images)
def log_test_images(num_images=8, step=None):
return log_images(dl=test_dl, num_images=num_images, step=step)
def log_train_images(num_images=8, step=None):
return log_images(
dl=train_dl_eval, num_images=num_images, suffix="|train", step=step
)
def data_iter():
while True:
for batch in dataloader:
yield batch
# %%
for steps, batch in zip(tqdm(range(total_steps)), data_iter()):
state, metrics, reconstruction = jit_train_step(state, batch, state_disc)
state_disc, metrics_disc = jit_train_step_disc(
state_disc, batch["original"], reconstruction
)
# metrics = metrics | metrics_disc
metrics["disc_step"] = metrics_disc
metrics["step"] = steps
if steps % log_steps == 1:
wandb.log(metrics)
if steps % eval_steps == 1:
evaluate(step=steps)
log_test_images(step=steps)
log_train_images(step=steps)
with Path(output_dir / "latest_state_disc.msgpack").open("wb") as f:
f.write(to_bytes(jax.device_get(state_disc)))
with Path(output_dir / "latest_state.msgpack").open("wb") as f:
f.write(to_bytes(jax.device_get(state)))
# how to use the model
"""
# load the model to stable_diffusion_jax
# https://github.com/patil-suraj/stable-diffusion-jax/tree/main/stable_diffusion_jax
from stable_diffusion_jax.convertkk_diffusers_to_jax import convert_diffusers_to_jax
from stable_diffusion_jax import AutoencoderKL
from pathlib import Path
pt_path = Path.home()/"models/stable-diffusion-v1-4"
fx_path = Path.home()/"models/stable-diffusion-v1-4-jax"
#convert_diffusers_to_jax(pt_path, fx_path)
# %%
# inference with jax
dtype = jnp.bfloat16
vae, vae_params = AutoencoderKL.from_pretrained(f"{fx_path}/vae", _do_init=False, dtype=dtype)
# %%
from flax.serialization import msgpack_restore
weight_dir = Path('.')
path = weight_dir/'latest_state.msgpack'
with open(path, "rb") as f:
state_dict = msgpack_restore(f.read())
state_dict.keys()
# %%
from copy import deepcopy
new_params = deepcopy(vae_params)
for k, v in state_dict['params'].items():
if k in new_params:
new_params[k] = v
vae.save_pretrained(f"{fx_path}/vae-anime", params=new_params)
# after this, you can use the model in stable-diffusion-jax, as:
# vae, vae_params = AutoencoderKL.from_pretrained(f"{fx_path}/vae-anime", _do_init=False, dtype=dtype)
"""