forked from PRBonn/semantic-kitti-api
-
Notifications
You must be signed in to change notification settings - Fork 0
/
laserscan.py
279 lines (222 loc) · 10.1 KB
/
laserscan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
#!/usr/bin/env python3
import numpy as np
class LaserScan:
"""Class that contains LaserScan with x,y,z,r"""
EXTENSIONS_SCAN = ['.bin']
def __init__(self, project=False, H=64, W=1024, fov_up=3.0, fov_down=-25.0):
self.project = project
self.proj_H = H
self.proj_W = W
self.proj_fov_up = fov_up
self.proj_fov_down = fov_down
self.reset()
def reset(self):
""" Reset scan members. """
self.points = np.zeros((0, 3), dtype=np.float32) # [m, 3]: x, y, z
self.remissions = np.zeros((0, 1), dtype=np.float32) # [m ,1]: remission
# projected range image - [H,W] range (-1 is no data)
self.proj_range = np.full((self.proj_H, self.proj_W), -1,
dtype=np.float32)
# unprojected range (list of depths for each point)
self.unproj_range = np.zeros((0, 1), dtype=np.float32)
# projected point cloud xyz - [H,W,3] xyz coord (-1 is no data)
self.proj_xyz = np.full((self.proj_H, self.proj_W, 3), -1,
dtype=np.float32)
# projected remission - [H,W] intensity (-1 is no data)
self.proj_remission = np.full((self.proj_H, self.proj_W), -1,
dtype=np.float32)
# projected index (for each pixel, what I am in the pointcloud)
# [H,W] index (-1 is no data)
self.proj_idx = np.full((self.proj_H, self.proj_W), -1,
dtype=np.int32)
# for each point, where it is in the range image
self.proj_x = np.zeros((0, 1), dtype=np.float32) # [m, 1]: x
self.proj_y = np.zeros((0, 1), dtype=np.float32) # [m, 1]: y
# mask containing for each pixel, if it contains a point or not
self.proj_mask = np.zeros((self.proj_H, self.proj_W),
dtype=np.int32) # [H,W] mask
def size(self):
""" Return the size of the point cloud. """
return self.points.shape[0]
def __len__(self):
return self.size()
def open_scan(self, filename):
""" Open raw scan and fill in attributes
"""
# reset just in case there was an open structure
self.reset()
# check filename is string
if not isinstance(filename, str):
raise TypeError("Filename should be string type, "
"but was {type}".format(type=str(type(filename))))
# check extension is a laserscan
if not any(filename.endswith(ext) for ext in self.EXTENSIONS_SCAN):
raise RuntimeError("Filename extension is not valid scan file.")
# if all goes well, open pointcloud
scan = np.fromfile(filename, dtype=np.float32)
scan = scan.reshape((-1, 4))
# put in attribute
points = scan[:, 0:3] # get xyz
remissions = scan[:, 3] # get remission
self.set_points(points, remissions)
def set_points(self, points, remissions=None):
""" Set scan attributes (instead of opening from file)
"""
# reset just in case there was an open structure
self.reset()
# check scan makes sense
if not isinstance(points, np.ndarray):
raise TypeError("Scan should be numpy array")
# check remission makes sense
if remissions is not None and not isinstance(remissions, np.ndarray):
raise TypeError("Remissions should be numpy array")
# put in attribute
self.points = points # get xyz
if remissions is not None:
self.remissions = remissions # get remission
else:
self.remissions = np.zeros((points.shape[0]), dtype=np.float32)
# if projection is wanted, then do it and fill in the structure
if self.project:
self.do_range_projection()
def do_range_projection(self):
""" Project a pointcloud into a spherical projection image.projection.
Function takes no arguments because it can be also called externally
if the value of the constructor was not set (in case you change your
mind about wanting the projection)
"""
# laser parameters
fov_up = self.proj_fov_up / 180.0 * np.pi # field of view up in rad
fov_down = self.proj_fov_down / 180.0 * np.pi # field of view down in rad
fov = abs(fov_down) + abs(fov_up) # get field of view total in rad
# get depth of all points
depth = np.linalg.norm(self.points, 2, axis=1)
# get scan components
scan_x = self.points[:, 0]
scan_y = self.points[:, 1]
scan_z = self.points[:, 2]
# get angles of all points
yaw = -np.arctan2(scan_y, scan_x)
pitch = np.arcsin(scan_z / (depth + 1e-8))
# get projections in image coords
proj_x = 0.5 * (yaw / np.pi + 1.0) # in [0.0, 1.0]
proj_y = 1.0 - (pitch + abs(fov_down)) / fov # in [0.0, 1.0]
# scale to image size using angular resolution
proj_x *= self.proj_W # in [0.0, W]
proj_y *= self.proj_H # in [0.0, H]
# round and clamp for use as index
proj_x = np.floor(proj_x)
proj_x = np.minimum(self.proj_W - 1, proj_x)
proj_x = np.maximum(0, proj_x).astype(np.int32) # in [0,W-1]
self.proj_x = np.copy(proj_x) # store a copy in orig order
proj_y = np.floor(proj_y)
proj_y = np.minimum(self.proj_H - 1, proj_y)
proj_y = np.maximum(0, proj_y).astype(np.int32) # in [0,H-1]
self.proj_y = np.copy(proj_y) # stope a copy in original order
# copy of depth in original order
self.unproj_range = np.copy(depth)
# order in decreasing depth
indices = np.arange(depth.shape[0])
order = np.argsort(depth)[::-1]
depth = depth[order]
indices = indices[order]
points = self.points[order]
remission = self.remissions[order]
proj_y = proj_y[order]
proj_x = proj_x[order]
# assing to images
self.proj_range[proj_y, proj_x] = depth
self.proj_xyz[proj_y, proj_x] = points
self.proj_remission[proj_y, proj_x] = remission
self.proj_idx[proj_y, proj_x] = indices
self.proj_mask = (self.proj_idx > 0).astype(np.float32)
class SemLaserScan(LaserScan):
"""Class that contains LaserScan with x,y,z,r,sem_label,sem_color_label,inst_label,inst_color_label"""
EXTENSIONS_LABEL = ['.label']
def __init__(self, nclasses, sem_color_dict=None, project=False, H=64, W=1024, fov_up=3.0, fov_down=-25.0):
super(SemLaserScan, self).__init__(project, H, W, fov_up, fov_down)
self.reset()
self.nclasses = nclasses # number of classes
# make semantic colors
max_sem_key = 0
for key, data in sem_color_dict.items():
if key + 1 > max_sem_key:
max_sem_key = key + 1
self.sem_color_lut = np.zeros((max_sem_key + 100, 3), dtype=np.float32)
for key, value in sem_color_dict.items():
self.sem_color_lut[key] = np.array(value, np.float32) / 255.0
# make instance colors
max_inst_id = 100000
self.inst_color_lut = np.random.uniform(low=0.0,
high=1.0,
size=(max_inst_id, 3))
# force zero to a gray-ish color
self.inst_color_lut[0] = np.full((3), 0.1)
def reset(self):
""" Reset scan members. """
super(SemLaserScan, self).reset()
# semantic labels
self.sem_label = np.zeros((0, 1), dtype=np.uint32) # [m, 1]: label
self.sem_label_color = np.zeros((0, 3), dtype=np.float32) # [m ,3]: color
# instance labels
self.inst_label = np.zeros((0, 1), dtype=np.uint32) # [m, 1]: label
self.inst_label_color = np.zeros((0, 3), dtype=np.float32) # [m ,3]: color
# projection color with semantic labels
self.proj_sem_label = np.zeros((self.proj_H, self.proj_W),
dtype=np.int32) # [H,W] label
self.proj_sem_color = np.zeros((self.proj_H, self.proj_W, 3),
dtype=np.float) # [H,W,3] color
# projection color with instance labels
self.proj_inst_label = np.zeros((self.proj_H, self.proj_W),
dtype=np.int32) # [H,W] label
self.proj_inst_color = np.zeros((self.proj_H, self.proj_W, 3),
dtype=np.float) # [H,W,3] color
def open_label(self, filename):
""" Open raw scan and fill in attributes
"""
# check filename is string
if not isinstance(filename, str):
raise TypeError("Filename should be string type, "
"but was {type}".format(type=str(type(filename))))
# check extension is a laserscan
if not any(filename.endswith(ext) for ext in self.EXTENSIONS_LABEL):
raise RuntimeError("Filename extension is not valid label file.")
# if all goes well, open label
label = np.fromfile(filename, dtype=np.uint32)
label = label.reshape((-1))
# set it
self.set_label(label)
def set_label(self, label):
""" Set points for label not from file but from np
"""
# check label makes sense
if not isinstance(label, np.ndarray):
raise TypeError("Label should be numpy array")
# only fill in attribute if the right size
if label.shape[0] == self.points.shape[0]:
self.sem_label = label & 0xFFFF # semantic label in lower half
self.inst_label = label >> 16 # instance id in upper half
else:
print("Points shape: ", self.points.shape)
print("Label shape: ", label.shape)
raise ValueError("Scan and Label don't contain same number of points")
# sanity check
assert((self.sem_label + (self.inst_label << 16) == label).all())
if self.project:
self.do_label_projection()
def colorize(self):
""" Colorize pointcloud with the color of each semantic label
"""
self.sem_label_color = self.sem_color_lut[self.sem_label]
self.sem_label_color = self.sem_label_color.reshape((-1, 3))
self.inst_label_color = self.inst_color_lut[self.inst_label]
self.inst_label_color = self.inst_label_color.reshape((-1, 3))
def do_label_projection(self):
# only map colors to labels that exist
mask = self.proj_idx >= 0
# semantics
self.proj_sem_label[mask] = self.sem_label[self.proj_idx[mask]]
self.proj_sem_color[mask] = self.sem_color_lut[self.sem_label[self.proj_idx[mask]]]
# instances
self.proj_inst_label[mask] = self.inst_label[self.proj_idx[mask]]
self.proj_inst_color[mask] = self.inst_color_lut[self.inst_label[self.proj_idx[mask]]]