forked from aodabas/cat2-xs_manuscript
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cat2-xs.tex
1313 lines (1181 loc) · 51.9 KB
/
cat2-xs.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
% !TeX spellcheck = en_GB
%\documentstyle[12pt]{article}
\documentclass[a4paper,11pt]{article}
\usepackage[bookmarks=true,
bookmarksnumbered=true, breaklinks=true,
pdfstartview=FitH, hyperfigures=false,
plainpages=false, naturalnames=true,
colorlinks=true,
pdfpagelabels]{hyperref}
\usepackage{geometry,latexsym,amssymb,amsmath,amsthm,color,bm}
\usepackage[latin5]{inputenc}
\usepackage{enumerate}
\usepackage{enumitem}
\usepackage[T1]{fontenc}
\usepackage{authblk}
%\usepackage{hyperref}
\usepackage[all]{xy}
\usepackage{palatino}
\usepackage{indentfirst}
\usepackage{titlesec}
\usepackage{graphics}
\usepackage{tabularx}
\usepackage{lipsum}
\usepackage{longtable}
\usepackage{array}
\usepackage{fancyvrb,shortvrb}
\usepackage[ruled,vlined]{algorithm2e}
\input{newcomm}
%\input{tcilatex.tex}
%\titleformat{\section}{\Large\filcenter}{}{1em}{}
%\titleformat{\section}{\Large\bfseries\filcenter}{}{1em}{}
\geometry {textwidth=17cm, textheight=25cm}
\def\baselinestretch{1.1}
%\linespread{1.2}
\renewcommand{\abstractname}{\normalsize\bfseries Abstract}
%\usepackage{setspace}
%\doublespacing
% or:
%\onehalfspacing
\theoremstyle{plain}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{conjecture}[theorem]{Conjecture}
\newenvironment{Prf}{{\bf Proof:} }{\hfill $\Box$\mbox{}}
\theoremstyle{definition}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{example}[theorem]{Example}
\newtheorem{remark}[theorem]{Remark}
\begin{document}
\title{Computing 3-Dimensional Groups : Crossed Squares and Cat$^2$-Groups}
\author[a]{Z. Arvasi}
\author[a]{A. Odaba\c{s}}
\author[b]{C.~D. Wensley}
\affil[a]{\small{Department of Mathematics and Computer Science, Osmangazi University, Eskisehir, Turkey}}
\affil[b]{\small{School of Computer Science and Electronic Engineering, Bangor University, North Wales, UK}}
\date{}
\maketitle
\begin{abstract}
The category \catXSq\ of crossed squares is equivalent to
the category \catCatt\ of cat$^2$-groups.
Functions for computing with these structures have been developed in
the package \XMod\ written using the \GAP\ computational discrete algebra
programming language.
This paper includes details of the algorithms used.
It contains tables listing the $1,000$ isomorphism classes of cat$^2$-groups on groups of order at most $30$.
\end{abstract}
\noindent{\bf Key Words:} cat$^2$-group, crossed square, \GAP, \XMod\
\\ {\bf Classification:} 18D35, 18G50.
%---------------------------------------------------------------------------%
\section{Introduction}
This paper is concerned with the latest developments in the general programme
of "computational higher-dimensional group theory" which forms part of the
"higher-dimensional group theory" programme described, for example,
by Brown in \cite{brown-lms}.
The $2$-dimensional part of these programmes is concerned with group objects
in the categories of groups or groupoids, and these objects may equivalently
be considered as crossed modules or cat$^1$-groups.
A summary of the definitions of these objects,
with some examples, is contained in \S 2.
The initial computational part of this programme was described in
Alp and Wensley \cite{alp-wensley-ijac}.
The output from this work was the package \XMod\ \cite{xmod}
for \GAP\ \cite{gap} which, at the time,
contained functions for constructing crossed modules and cat$^1$-groups of groups, and their morphisms, and conversions from one to another.
It also contained functions for computing the monoid of derivations of a
crossed module, and the equivalent monoid of sections of a cat$^1$-group.
The next development of \XMod\ used the package \groupoids\
\cite{groupoids} to compute crossed modules of groupoids.
Later still, a \GAP\ package \XModAlg\ \cite{xmodalg}
was written to compute cat$^1$-algebras and crossed modules of algebras,
as described in \cite{arvasi-odabas}.
The $3$-dimensional part of the higher-dimensional group theory programme
is concerned with objects in the category \catXSq\ of crossed squares
and the equivalent cat$^2$-groups category \catCatt.
The mathematical basis of these structures is described in \S 3,
and some computational details are included in \S 4.
In \S 5 we enumerate the $1,000$ isomorphism
classes of cat$^2$-group structures on the $92$ groups of order at most $30$.
There are many other ways of viewing crossed squares and cat$^2$-groups.
Conduch\'{e} in \cite{conduche} defined the equivalent notion of
$2$-crossed module.
Brown and Gilbert in \cite{brown-gilbert} introduced braided,
regular crossed modules as an alternative algebraic model of homotopy $3$-types.
They also proved that these structures are equivalent to simplicial groups
with Moore complex of length $2$.
In \cite{arvasi-ulualan} Arvasi and Ulualan explore the algebraic relationship
between these structures and also the quadratic modules of Baues \cite{baues},
and the homotopy equivalences between them.
The impetus for the study of higher-dimensional groups
comes from algebraic topology \cite{brown-indag}.
Crossed modules are algebraic models of connected (weak homotopy) $2$-types,
while crossed squares model connected $3$-types.
The principal topological example of a crossed module arises from
a pointed pair of spaces $ A \subseteq X$ where the boundary map is
$\partial : \pi_2(X,A) \to \pi_1(A)$.
Similarly, given a triad of pointed spaces $A \subseteq X,\ B \subseteq X$
we obtain a crossed square as shown in the left-hand diagram below.
A simple case, when $X$ is a $2$-sphere and $A,B$ are the
upper and lower hemispheres, results in the square on the right.
Here $F$ is a free group on one generator $x$,
the boundaries are the trivial and identity homomorphisms,
and the crossed pairing is given by
$h : F \times F \to F,\ (x^i,x^j) \mapsto x^{ij}$
(see Ellis \cite{ellis}).
\begin{equation*}
\xymatrix@R=20pt@C=20pt
{ & \pi_3(X;A,B) \ar[dd] \ar[rr] \ar[ddrr]
& & \pi_2(B, A \cap B) \ar[dd]
& & & F \ar[dd]_{0} \ar[rr]^{0} \ar[ddrr]^{0}
& & F \ar[dd]^{{\rm id}} \\
& & & & & \\
& \pi_2(A,A \cap B) \ar[rr]
& & \pi_1(A \cap B) & & & F \ar[rr]_{{\rm id}}
& & F }
\end{equation*}
The \XMod\ package follows a purely algebraic approach,
and does not compute any specifically topological results.
The interested reader may wish to investigate the \GAP\ package
\HAP\ \cite{hap} which also computes with cat$^1$-groups.
%---------------------------------------------------------------------------%
\section{Crossed Modules and Cat$^{1}$-Groups}
The notion of crossed module, generalizing the notion of a G-module,
was introduced by Whitehead \cite{whitehead-II} in the course of his studies
on the algebraic structure of the second relative homotopy group.
A \emph{crossed module} consists of a group homomorphism
$\partial : S \rightarrow R$, endowed with a left action $R$ on $S$
(written by $(r,s) \rightarrow {}^{r}s$ for $r \in R$ and $s \in S$)
satisfying the following conditions:
\begin{center}
\begin{tabular}{rclll}
$\partial (^{r}s)$
& $=$
& $r(\partial s)r^{-1}$
& & $\forall~ s \in S,~ r \in R; $ \\
$^{(\partial s_{2})}s_{1}$
& $=$
& $s_{2}s_{1}s_{2}^{-1}$
& & $\forall~ s_{1},s_{2} \in S$.
\end{tabular}
\end{center}
The first condition is called the \emph{pre-crossed module property}
and the second one the \emph{Peiffer identity}.
We will denote such a crossed module by $\calX = (\partial : S \rightarrow R)$.
A \emph{morphism of crossed modules}
$(\sigma ,\rho ) : \calX_{1} \rightarrow \calX_{2}$,
where $\calX_{1} = (\partial_{1} : S_{1} \rightarrow R_{1})$
and $\calX_{2} = (\partial_{2} : S_{2} \rightarrow R_{2})$,
consists of two group homomorphisms $\sigma : S_{1} \rightarrow S_{2}$
and $\rho : R_{1} \rightarrow R_{2}$ such that
\[
\partial_{2}\circ\sigma ~=~ \rho\circ\partial_{1},
\quad \mbox{and} \quad
\sigma(^{r}s) ~=~ ^{(\rho r)}\sigma s
\qquad
\forall s \in S,~ r \in R.
\]
Standard constructions for crossed modules include the following.
\begin{enumerate}
\item
A \emph{conjugation crossed module} \index{conjugation crossed module}
is an inclusion of a normal subgroup $N \unlhd R$,
where $R$ acts on $N$ by conjugation.
\item
An \emph{automorphism crossed module} \index{automorphism crossed module}
has as range a subgroup $R$ of the automorphism group $\Aut(S)$ of $S$
which contains the inner automorphism group $\Inn(S)$ of $S$.
The boundary maps $s \in S$ to the inner automorphism of $S$ by $s$.
\item
A \emph{zero boundary crossed module} \index{$R$-module}
has a $R$-module as source and $\partial = 0$.
\item
Any homomorphism $\partial : S \to R$, with $S$ abelian
and $\im\partial$ in the centre of $R$,
provides a crossed module with $R$ acting trivially on $S$.
\item
A \emph{central extension crossed module}
\index{central extension crossed module}
has as boundary a surjection $\partial : S \to R$ with central kernel,
where $r \in R$ acts on $S$ by conjugation with $\partial^{-1}r$.
\item
The \emph{direct product} of \index{direct product!of crossed modules}
$\calX_1 = (\partial_1 : S_1 \to R_1)$ and $\calX_2 = (\partial_2 : S_2 \to R_2)$
is $\calX_1 \times \calX_2
= (\partial_1 \times \partial_2 : S_1 \times S_2 \to R_1 \times R_2)$
% with $R_1, R_2$ acting trivially on $S_2,\ S_1$ respectively.
with direct product action
${}^{(r_1,r_2)}(s_1,s_2) = \left({}^{r_1}s_1,{}^{r_2}s_2\right)$.
\end{enumerate}
Loday reformulated the notion of crossed module as a cat$^{1}$-group.
Recall from \cite{Loday} that a \emph{cat$^{1}$-group} is a triple $(G;t,h)$ consisting of a group $G$ with two endomorphisms:
the \emph{tail map} $t$ and the \emph{head map} $h$,
having a common image $R$ and satisfying the following axioms.
\begin{equation} \label{cat1-axioms}
t \circ h = h, \quad
h \circ t = t,
\quad \mbox{and}\quad [\ker t,\ker h] = 1.
\end{equation}
When only the first two of these axioms are satisfied, the structure is a
\emph{pre-cat$^1$-group}.
It follows immediately that $t \circ t = t$ and $h \circ h = h$.
We picture $(G;t,h)$ as
\[
\xymatrix@R=40pt@C=40pt
{ G \ar@<+0.4ex>[r]^{t,h} \ar@<-0.4ex>[r] & R }
\]
A \emph{morphism of cat}$^{1}$\emph{-groups}
$(G_{1};t_1,h_1) \rightarrow (G_{2};t_2,h_2)$
is a group homomorphism $f : G_{1} \rightarrow G_{2}$ such that
\[
f \circ t_1 ~=~ t_2 \circ f
\quad\mbox{and}\quad
f \circ h_1 ~=~ h_2 \circ f.
\]
Crossed modules and cat$^{1}$-groups are equivalent two-dimensional
generalisations of a group.
It was shown in \cite[Lemma 2.2]{Loday} that,
on setting $S = \ker t,~ R = \im t$ and $\partial = h|_{S}$,
the conjugation action makes $(\partial : S \rightarrow R)$
into a crossed module.
Conversely, if $(\partial : S \rightarrow R)$ is a crossed module,
then setting $G = S \rtimes R$ and defining $t,h$ by $t(s,r) = (1,r)$
and $h(s,r) = (1,(\partial s)r)$ for $s \in S$, $r \in R$,
produces a cat$^{1}$-group $(G;t,h)$.
%---------------------------------------------------------------------------%
\section{Crossed Squares and Cat$^{2}$-Groups}
The notion of a crossed square is due to Guin-Walery and Loday \cite{walery-loday}.
A \emph{crossed square of groups} $\calS$ is a commutative square of groups
\begin{equation} \label{xsq-diag}
\xymatrix@R=20pt@C=20pt
{ & L \ar[dd]_{\lambda} \ar[rr]^{\kappa} \ar[ddrr]^{\pi}
& & M \ar[dd]^{\mu}
& & & L \ar[dd]_{\kappa} \ar[rr]^{\lambda} \ar[ddrr]^{\pi}
& & N \ar[dd]^{\nu} \\
\calS \quad =
& & & & & \tilde{\calS} \quad = \\
& N \ar[rr]_{\nu}
& & P & & & M \ar[rr]_{\mu}
& & P }
\end{equation}
\noindent together with left actions of $P$ on $L,M,N$
and a \emph{crossed pairing} map ${\ \bt\ } : M \times N \rightarrow L$.
Then $M$ acts on $N$ and $L$ via $P$ and $N$ acts on $M$ and $L$ via $P$.
The diagram illustrates an \emph{oriented crossed square},
since a choice of where to place $M$ and $N$ has been made.
The \emph{transpose} $\tilde{\calS}$ of $\calS$ is obtained by making the alternative choice.
Since crossed pairing identities are similar to those for commutators,
the crossed pairing for $\tilde{\calS}$ is $\btt$
where $(n \btt m) = (m \bt n)^{-1}$.
Transposition gives an equivalence relation on the set of
oriented crossed squares, and a crossed square is an equivalence class.
The structure of an oriented crossed square must satisfy the following axioms
for all $l \in L,~ m,m^{\prime} \in M,~ n,n^{\prime} \in N$ and $p \in P$.
\begin{enumerate}
\item
With the given actions, the homomorphisms $\kappa, \lambda, \mu, \nu$
and $\pi = \mu\circ\kappa = \nu\circ\lambda$ are crossed modules,
and both $\kappa, \lambda$ are $P$-equivariant,
\item
$(mm^{\prime} {\ \bt\ } n) ~=~ (^{m}m^{\prime} {\ \bt\ } {^{m}n})\,(m {\ \bt\ } n)$
\quad and \quad
$(m {\ \bt\ } {nn^{\prime}}) ~=~ (m {\ \bt\ } n)\,(^{n}m {\ \bt\ } ^{n}n^{\prime})$,
\item
$\kappa(m {\ \bt\ } n) ~=~ m({}^{n} m^{-1})$
\quad and \quad
$\lambda(m {\ \bt\ } n) ~=~ ({}^{m}n)n^{-1}$,
\item
$(\kappa l {\ \bt\ } n) ~=~ l({}^{n} l^{-1})$
\quad and \quad
$(m {\ \bt\ } \lambda l) ~=~ ({}^{m}l)l^{-1}$,
\item
$^{p}(m {\ \bt\ } n) ~=~ (^{p}m {\ \bt\ } ^{p}n)$.
\end{enumerate}
\noindent
Note that axiom 1. implies that $(\id,\mu), (\id,\nu), (\kappa,\id)$
and $(\lambda,\id)$ are morphisms of crossed modules.
\medskip
\noindent
Standard constructions for crossed squares include the following.
\begin{enumerate}
\item
If $M,N$ are normal subgroups of the group $P$ then the diagram of inclusions
\[
\xymatrix@R=40pt@C=40pt
{ M \cap N \ar[r]^(0.6){} \ar[d]_{}
& M \ar[d]^{} \\
N \ar[r]_{}
& P }
\]
\noindent together with the actions of $P$ on $M,N$ and $M\cap N$
given by conjugation, and the commutator map
\[
[~,~] ~:~ M\times N \rightarrow M\cap N,\quad
(m,n)\mapsto [m,n] \,=\, mnm^{-1}n^{-1},
\]
is a crossed square.
We call this an \emph{inclusion crossed square}.
\item
The diagram
\[
\xymatrix@R=40pt@C=40pt
{ M \ar[r]^{\alpha} \ar[d]_{\alpha}
& \Inn\,M \ar[d]^{\iota} \\
\Inn\,M \ar[r]_{\iota}
& \Aut\,M }
\]
\noindent is a crossed square,
where $\alpha $ maps $m\in M$ to the inner automorphism%
\[
\beta_{m} : M \rightarrow M,\quad
m^{\prime}\mapsto mm^{\prime}m^{-1},
\]
and where $\iota $ is the inclusion of $\Inn\,M$ in $\Aut\,M$;
the actions are standard; and the crossed pairing is
\[
\bt ~:~ \Inn\,M \times \Inn\,M \rightarrow M,\quad
(\beta_{m},\beta_{m^{\prime}}) \;\mapsto\; [m,m^{\prime}]~.
\]
\item
If $P$ is a group and $M,N$ are ordinary $P$-modules,
and if $A$ is an arbitrary abelian group on which $P$ is assumed to act trivially,
then there is a crossed square
\[
\xymatrix@R=40pt@C=40pt
{ A \ar[r]^{0} \ar[d]_{0}
& M \ar[d]^{0} \\
N \ar[r]_{0}
& P }
\]
\item
Given two crossed modules, $(\mu : M \rightarrow P)$ and $(\nu : N \rightarrow P)$,
there is a universal crossed square
\[
\xymatrix@R=40pt@C=40pt
{ M \otimes N \ar[d]_{\lambda} \ar[r]^{\kappa}
& M \ar[d]^{\mu} \\
N \ar[r]_{\nu}
& P }
\]
where $M \otimes N$ is constructed using the nonabelian tensor product of groups
\cite{brown-loday}.
\item
The \emph{direct product} of crossed squares $\calS_1,\calS_2$ is
\[
\xymatrix@R=40pt@C=50pt
{ L_1 \times L_2 \ar[r]^{\kappa_1 \times \kappa_2}
\ar[d]_{\lambda_1 \times \lambda_2}
& M_1 \times M_2 \ar[d]^{\mu_1 \times \mu_2} \\
N_1 \times N_2 \ar[r]_{\nu_1 \times \nu_2}
& P_1 \times P_2 }
\]
with actions
\[
{}^{(p_1,p_2)}(l_1,l_2) = \left({}^{p_1}l_1,{}^{p_2}l_2\right), \quad
{}^{(p_1,p_2)}(m_1,m_2) = \left({}^{p_1}m_1,{}^{p_2}m_2\right), \quad
{}^{(p_1,p_2)}(n_1,n_2) = \left({}^{p_1}n_1,{}^{p_2}n_2\right),
\]
and crossed pairing
\[
\bt\left((m_1,m_2),(n_1,n_2)\right) ~=~ \left(\bt_1(m_1,n_1),\bt_2(m_2,n_2)\right).
\]
\end{enumerate}
The crossed square $\calS$ in (\ref{xsq-diag}) can be thought of
as a horizontal or vertical crossed module of crossed modules:
\[
\xymatrix@R=20pt@C=20pt
{ L \ar[dd]_{\lambda}
& & M \ar[dd]^{\mu}
& & L \ar[rr]^{\kappa}
& {} \ar[dd]^{(\lambda,\mu)}
& M \\
\quad \ar[rr]^{(\kappa,\nu)}
& & & & & & \quad \\
N & & P
& & N \ar[rr]_{\nu}
& {}
& P
}
\]
\noindent
where $(\kappa,\nu)$ is the boundary of the crossed module with
domain $(\lambda : L \rightarrow N)$ and codomain $(\mu : M \rightarrow P)$.
(See also section 9.2 of \cite{wensley-notes}.)
There is an evident notion of morphism of crossed squares
which preserves all the structure,
so that we obtain a category \catXSq, the category of crossed squares.
\medskip
Although, when first introduced by Loday and Walery \cite{walery-loday},
the notion of crossed square of groups was not linked to that of cat$^{2}$-groups,
it was in this form that Loday gave their generalisation
to an $n$-fold structure, cat$^{n}$-groups (see \cite{Loday}).
When $n=1$ this is the notion of cat$^1$-group given earlier.
When $n=2$ we obtain a cat$^{2}$-group.
Again we have a group $G$, but this time with two \emph{independent}
cat$^{1}$-group structures on it.
So a \emph{cat$^{2}$-group} is a $5$-tuple, $(G;t_1,h_1;t_2,h_2)$,
where $(G;t_{i},h_{i}),~ i=1,2$ are cat$^{1}$-groups, and
\[
t_{1} \circ t_{2} ~=~ t_{2} \circ t_{1}, \quad
h_{1} \circ h_{2} ~=~ h_{2} \circ h_{1}, \quad
t_{1} \circ h_{2} ~=~ h_{2} \circ t_{1}, \quad
t_{2} \circ h_{1} ~=~ h_{1} \circ t_{2}.
\]
To emphasise the relationship with crossed squares
we may illustrate an \emph{oriented} cat$^2$-group by the diagram
\begin{equation} \label{cat2-diag}
\xymatrix@R=50pt@C=50pt
{ G \ar@<+0.4ex>[r]^{t_1,h_1} \ar@<-0.4ex>[r]
\ar@<-0.4ex>[d]_{t_2,h_2} \ar@<+0.4ex>[d]
\ar@<-0.4ex>[rd]^{\ t_1 \circ t_2} \ar@<+0.4ex>[rd]_{h_1 \circ h_2}
& R_1 \ar@<+0.4ex>[d]^{t_2,h_2} \ar@<-0.4ex>[d] \\
R_2 \ar@<-0.4ex>[r]_{t_1,h_1} \ar@<+0.4ex>[r]
& R_{12}
}
\end{equation}
where $R_{12}$ is the image of $t_1 \circ t_2 = t_2 \circ t_1$.
\medskip
A morphism of cat$^{2}$-groups is a triple $(\gamma ,\rho_1 ,\rho_2)$,
as shown in the diagram
\[
\xymatrix@R=40pt@C=40pt
{ R_1 \ar[d]_{\rho_1}
& G \ar[d]_{\gamma} \ar@<-0.4ex>[l]_{t_1,h_1} \ar@<+0.4ex>[l]
\ar@<+0.4ex>[r]^{t_2,h_2} \ar@<-0.4ex>[r]
& R_2 \ar[d]^{\rho_2} \\
R'_1
& G' \ar@<+0.4ex>[l]^{t'_1,h'_1} \ar@<-0.4ex>[l]
\ar@<-0.4ex>[r]_{t'_2,h'_2} \ar@<+0.4ex>[r]
& R'_2
}
\]
\noindent where
$\gamma : G \to G^{\prime},~ \rho_1 = \gamma|_{R_1}$
and $\rho_2 = \gamma|_{R_2}$ are homomorphisms satisfying:
\[
\rho_1 \circ t_1 = t_1^{\prime} \circ \gamma, \qquad
\rho_1 \circ h_1 = h_1^{\prime} \circ \gamma, \qquad
\rho_2 \circ t_2 = t_2^{\prime} \circ \gamma, \qquad
\rho_2 \circ h_2 = h_2^{\prime} \circ \gamma.
\]
We thus obtain a category \catCatt, the category of cat$^{2}$-groups.
Notice that, unlike the situation with crossed squares
where the diagonal is a crossed module,
it is \emph{not} required that the diagonal in (\ref{cat2-diag})
is a cat$^1$-group -- it may just be a pre-cat$^1$-group.
The simplest example of this situation
is described in Example \ref{ex-d8} below.
Loday, in \cite{Loday} proved that there is an equivalence of categories
between the category \catCatt\ and the category \catXSq.
We now consider the sketch proof of this result
(see also \cite{mutlu-porter-2003}).
The cat$^{2}$-group $(G;t_1,h_1;t_2,h_2)$ determines a diagram of homomorphisms
\begin{equation} \label{ker-im-diag}
\xymatrix@R=50pt@C=50pt
{ \ker t_1 \cap \ker t_2 \ar[d]_{(\id,\partial_2)} \ar[r]^{(\partial_1,\id)}
& \im t_1 \cap \ker t_2 \ar[d]^{(\id,\partial_2)} \\
\ker t_1 \cap \im t_2 \ar[r]_{(\partial_1,\id)}
& \im t_1 \cap \im t_2 }
\end{equation}
\noindent where each morphism is a crossed module for the natural action,
conjugation in $G$.
The required crossed pairing is given by the commutator in $G$ since,
if $x \in \im t_1 \cap \ker t_2$ and $y \in \ker t_1 \cap \im t_2$
then $[x,y] \in \ker t_1 \cap \ker t_2$.
It is routine to check the crossed square axioms.
Conversely, if
\[
\xymatrix@R=40pt@C=40pt
{ L \ar[d]_{\lambda} \ar[r]^{\kappa}
& M \ar[d]^{\mu} \\
N \ar[r]_{\nu}
& P }
\]
\noindent is a crossed square,
then we consider it as a morphism of crossed modules
$(\kappa,\nu) : (\lambda : L \to N) \rightarrow (\mu : M \to P)$.
Using the equivalence between crossed modules and cat$^{1}$-groups this
gives a morphism
\[
\partial : (L \rtimes N,t,h) \longrightarrow (M \rtimes P, t^{\prime}, h^{\prime})
\]
of cat$^{1}$-groups.
There is an action of $(m,p) \in M \rtimes P$ on $(l,n) \in L \rtimes N$
given by
\[
^{(m,p)}(l,n) ~=~ (^{m}(^{p}l) (m \bt\ ^{p}n),\ ^{p}n)\,.
\]
Using this action, we form its associated cat$^{2}$-group with source
$(L \rtimes N) \rtimes (M \rtimes P)$
and induced endomorphisms $t_1,h_1,t_2,h_2$.
\begin{example} \label{ex-d8}
Let $D_8 = \langle a,b ~|~ a^2, b^2, (ab)^4 \rangle$
be the dihedral group of order $8$,
and let $c=[a,b]=(ab)^2$ so that $a^b=ac$ and $b^a=bc$.
(The standard permutation representation is given by
$a=(1,2)(3,4), b=(1,3), ab=(1,2,3,4), c=(1,3)(2,4)$.)
Define $t_a,t_b : D_8 \to D_8$ by $t_a : [a,b] \mapsto [a,1]$
and $t_b : [a,b] \mapsto [1,b]$.
Construct cat$^1$-groups $C_a = (D_8,t_a,t_a)$ and $C_b = (D_8,t_b,t_b)$.
Diagrams (\ref{cat2-diag}) and (\ref{ker-im-diag}) become
\[
\xymatrix@R=40pt@C=50pt
{ D_8 \ar@<+0.4ex>[r]^{t_a} \ar@<-0.4ex>[r]
\ar@<-0.4ex>[d]_{t_b} \ar@<+0.4ex>[d]
\ar@<-0.4ex>[rd]^{\ t} \ar@<+0.4ex>[rd]
& A \ar@<+0.4ex>[d]^{t_b} \ar@<-0.4ex>[d]
& & C \ar[r]^{c\ \mapsto\ 1} \ar[d]_{c\ \mapsto\ 1}
& A \ar[d]^{a\ \mapsto\ 1} \\
B \ar@<-0.4ex>[r]_{t_a} \ar@<+0.4ex>[r]
& I
& & B \ar[r]_{b\ \mapsto\ 1}
& I }
\]
where $A = \langle a \rangle$, $B = \langle b \rangle$, $C = \langle c \rangle$
and $I$ is the trivial group.
The crossed pairing is given by $\bt(a,b)=c$.
The diagonal map $t = t_a \circ t_b$ has kernel $D_8$,
and $[\ker t,\ker t] = C$, so the diagonal is \emph{not} a cat$^1$-group.
\end{example}
\begin{definition}
A \emph{cat$^{n}$-group} consists of a group $G$
with $n$ independent cat$^{1}$-group structures $(G;t_{i},h_{i})$,
$1 \leq i \leq n$, such that for all $i \ne j$
\[
t_{i}t_{j} = t_{j}t_{i}, \quad
h_{i}h_{j} = h_{j}h_{i} \quad \mbox{and} \quad
t_{i}h_{j} = h_{j}t_{i}.
\]
\end{definition}
A generalisation of crossed square to higher dimensions was given by Ellis
and Stenier (cf. \cite{ellis-stenier}).
It is called a \textquotedblleft crossed $n$-cube\textquotedblright.
We only use this construction for $n=2$.
%---------------------------------------------------------------------------%
\section{Computer Implementation}
\GAP\ \cite{gap} is an open-source system for discrete computational
algebra. The system consists of a library of implementations of mathematical
structures: groups, vector spaces, modules, algebras, graphs, codes,
designs, etc.; plus databases of groups of small order, character tables, etc.
The system has world-wide usage in the area of education and scientific research.
\GAP\ is free software and user contributions to the system are supported.
These contributions are organized in a form of \GAP\ packages
and are distributed together with the system. Contributors can
submit additional packages for inclusion after a reviewing process.
The Small Groups library by Besche, Eick and O'Brien in \cite{besche-eick-obrien}
provides access to descriptions of the groups of small order.
The groups are listed up to isomorphism.
The library contains all groups of order at most 2000 except 1024.
%...............................%
\subsection{2-Dimensional Groups}
The \XMod\ package for \GAP\ contains functions for computing with
crossed modules, cat$^{1}$-groups and their morphisms,
and was first described in \cite{xmod}.
A more general notion of cat$^1$-group is implemented in \XMod,
where the tail and head maps are no longer required to be endomorphisms on $G$.
Instead it is required that $t$ and $h$ have a common image $R$,
and an \emph{embedding} $e : R \to G$ is added.
The axioms in (\ref{cat1-axioms}) then become:
\[
t \circ e \circ h = h, \quad
h \circ e \circ t = t,
\quad \mbox{and}\quad [\ker t,\ker h] = 1,
\]
and again it follows that $t \circ e \circ t = t$ and $h \circ e \circ h = h$.
We denote such a cat$^1$-group by $(e;t,h : G \to R)$.
This package may be used to select a cat$^{1}$-group from a data file.
All cat$^{1}$-structures on groups of size up to 70
(ordered according to the \GAP\ numbering of small groups)
are stored in a list in the file \texttt{cat1data.g}.
The function \textbf{Cat1Select} may be used in three ways.
\textbf{Cat1Select( size )} returns the names of the groups with this size,
while \textbf{Cat1Select( size, gpnum )} prints a list of cat$^1$1-structures
for this chosen group.
\textbf{Cat1Select( size, gpnum, num )} returns the chosen cat$^1$1-group.
\textbf{XModOfCat1Group} produces the associated crossed module.
The following \GAP\ session illustrates the use of these functions.
\begin{Verbatim}[frame=single, fontsize=\small, commandchars=\\\{\}]
\textcolor{blue}{gap> Cat1Select( 12 );}
Usage: Cat1Select( size, gpnum, num );
[ "C3 : C4", "C12", "A4", "D12", "C6 x C2" ]
\textcolor{blue}{gap> Cat1Select( 12, 3 );}
Usage: Cat1Select( size, gpnum, num );
There are 2 cat1-structures for the group A4.
Using small generating set [ f1, f2 ] for source of homs.
[ [range gens], [tail genimages], [head genimages] ] :-
(1) [ [ f1 ], [ f1, <identity> of ... ], [ f1, <identity> of ... ] ]
(2) [ [ f1, f2 ], tail = head = identity mapping ]
2
\textcolor{blue}{gap> C1 := Cat1Select( 12, 3, 2 );}
[A4=>A4]
\textcolor{blue}{gap> X1 := XModOfCat1Group( C1 );}
[triv->A4]
\end{Verbatim}
%...............................%
\subsection{3-dimensional Groups}
We have developed new functions for \XMod\ which construct
(pre-)cat$^{2}$-groups, (pre-)cat$^{3}$-groups, and their morphisms.
Functions for (pre-)cat$^{2} $-groups include \textbf{PreCat2Group},
\textbf{Cat2Group}, \textbf{IsPreCat2Group}, \textbf{IsCat2Group}
and \textbf{PreCat2GroupByPreCat1Groups}.
Attributes of a (pre)cat$^{2}$-group constructed in this way include
\textbf{GeneratingCat1Groups}, \textbf{Size}, \textbf{Name} and
\textbf{Edge2DimensionalGroup} where '\textbf{Edge}' is one of
\{\textbf{Up, Left, Right, Down, Diagonal}\}.
As with cat$^1$-groups, we use a more general notion for cat$^2$-groups.
An \emph{oriented cat$^2$-group} has the form
\[
\xymatrix@R=80pt@C=100pt
{ G \ar@<+0.5ex>[r]^{t_1,h_1} \ar@<+0.1ex>[r]
\ar@<-0.5ex>[d]_{t_2,h_2} \ar@<-0.1ex>[d]
\ar@<+0.5ex>[rd]^(0.35){e_2 \circ t_2 \circ e_1 \circ t_1,}
\ar@<+0.1ex>[rd]^(0.45){\ e_2 \circ h_2 \circ e_1 \circ h_1}
& R_1 \ar@<+0.5ex>[d]^(0.45){e_2 \circ t_2 \circ e_1}
\ar@<+0.5ex>[d]^(0.55){e_2 \circ h_2 \circ e_1}
\ar@<+0.1ex>[d]
\ar@<+0.4ex>[l]^{e_1} \\
R_2 \ar@<+0.5ex>[r]^{e_1 \circ t_1 \circ e_2,~ e_1 \circ h_1 \circ e_2}
\ar@<+0.1ex>[r]
\ar@<-0.4ex>[u]_{e_2}
& R_{12} \ar@<+0.4ex>[l]^{t_1} \ar@<+0.4ex>[u]^{t_2}
\ar@<+0.4ex>[ul]^{{\rm inc}}
}
\]
where $R_1, R_2$ need not be subgroups of $G$,
but $R_{12}$ is taken to be the common image of
$e_2 \circ t_2 \circ e_1 \circ t_1$ and
$e_1 \circ t_1 \circ e_2 \circ t_2$, a subgroup of $G$.
Generalizing these functions, we have introduced \textbf{Cat3Group} and \textbf{HigherDimension} which construct cat$^{3}$-groups.
Functions for cat$^{n}$-groups of higher dimension will be added as time permits.
An orientation of a cat$^{3}$-group on $G$ displays a cube whose six faces
(ordered as front; up, left, right, down, back) are cat$^{2}$-groups.
The group $G$ is positioned where the front, up and left faces meet.
The following \GAP\ session illustrates the use of these functions.
Notice that the cat$^2$-group \verb|C2ab| is the second example
with a diagonal which is only a pre-cat$^1$-group.
\begin{Verbatim}[frame=single, fontsize=\small, commandchars=\\\{\}]
\textcolor{blue}{gap> a := (1,2,3,4)(5,6,7,8);;}
\textcolor{blue}{gap> b := (1,5)(2,6)(3,7)(4,8);;}
\textcolor{blue}{gap> c := (2,6)(4,8);;}
\textcolor{blue}{gap> G := Group( a, b, c );;}
\textcolor{blue}{gap> SetName( G, "c4c2:c2" );}
\textcolor{blue}{gap> t1a := GroupHomomorphismByImages( G, G, [a,b,c], [(),(),c] );; }
\textcolor{blue}{gap> C1a := PreCat1GroupByEndomorphisms( t1a, t1a );;}
\textcolor{blue}{gap> t1b := GroupHomomorphismByImages( G, G, [a,b,c], [a,(),()] );;}
\textcolor{blue}{gap> C1b := PreCat1GroupByEndomorphisms( t1b, t1b );;}
\textcolor{blue}{gap> C2ab := Cat2Group( C1a, C1b );}
(pre-)cat2-group with generating (pre-)cat1-groups:
1 : [c4c2:c2 => Group( [ (), (), (2,6)(4,8) ] )]
2 : [c4c2:c2 => Group( [ (1,2,3,4)(5,6,7,8), (), () ] )]
\textcolor{blue}{gap> IsCat2Group( C2ab );}
true
\textcolor{blue}{gap> Size( C2ab );}
[ 16, 2, 4, 1 ]
\textcolor{blue}{gap> IsCat1Group( Diagonal2DimensionalGroup( C2ab ) );}
false
\textcolor{blue}{gap> t1c := GroupHomomorphismByImages( G, G, [a,b,c], [a,b,c] );;}
\textcolor{blue}{gap> C1c := PreCat1GroupByEndomorphisms( t1c, t1c );;}
\textcolor{blue}{gap> C3abc := Cat3Group( C1a, C1b, C1c );}
(pre-)cat3-group with generating (pre-)cat1-groups:
1 : [c4c2:c2 => Group( [ (), (), (2,6)(4,8) ] )]
2 : [c4c2:c2 => Group( [ (1,2,3,4)(5,6,7,8), (), () ] )]
3 : [c4c2:c2 => Group( [ (1,2,3,4)(5,6,7,8), (1,5)(2,6)(3,7)(4,8),
(2,6)(4,8) ] )]
\textcolor{blue}{gap> IsPreCat3Group( C3abc );}
true
\textcolor{blue}{gap> HigherDimension( C3abc );}
4
\textcolor{blue}{gap> Front3DimensionalGroup( C3abc );}
(pre-)cat2-group with generating (pre-)cat1-groups:
1 : [c4c2:c2 => Group( [ (), (), (2,6)(4,8) ] )]
2 : [c4c2:c2 => Group( [ (1,2,3,4)(5,6,7,8), (), () ] )]
\end{Verbatim}
%............................................%
\subsection{Morphisms of 3-Dimensional Groups}
The function \textbf{MakeHigherDimensionalGroupMorphism} defines morphisms of
higher dimensional groups, such as cat$^{2}$-groups and crossed squares.
Functions for cat$^{2}$-group morphisms include
\textbf{Cat2GroupMorphismByCat1GroupMorphisms}, \textbf{Cat2GroupMorphism} and
\textbf{IsCat2GroupMorphism}.
The function \textbf{AllCat2GroupMorphisms} is used to find
all morphisms between two cat$^{2}$-groups.
In the following \GAP\ session, we obtain a cat$^{2}$-group morphism
using these functions.
\begin{Verbatim}[frame=single, fontsize=\small, commandchars=\\\{\}]
\textcolor{blue}{gap> C2_82 := Cat2Group( Cat1Group(8,2,1), Cat1Group(8,2,2) );}
(pre-)cat2-group with generating (pre-)cat1-groups:
1 : [C4 x C2 => Group( [ <identity> of ..., <identity> of ...,
<identity> of ... ] )]
2 : [C4 x C2 => Group( [ <identity> of ..., f2 ] )]
\textcolor{blue}{gap> C2_83 := Cat2Group( Cat1Group(8,3,2), Cat1Group(8,3,3) );}
(pre-)cat2-group with generating (pre-)cat1-groups:
1 : [D8 => Group( [ f1, f1 ] )]
2 : [D8=>D8]
\textcolor{blue}{gap> up1 := GeneratingCat1Groups( C2_82 )[1];;}
\textcolor{blue}{gap> lt1 := GeneratingCat1Groups( C2_82 )[2];;}
\textcolor{blue}{gap> up2 := GeneratingCat1Groups( C2_83 )[1];;}
\textcolor{blue}{gap> lt2 := GeneratingCat1Groups( C2_83 )[2];;}
\textcolor{blue}{gap> G1 := Source( up1 );; R1 := Range( up1 );; Q1 := Range( lt1 );;}
\textcolor{blue}{gap> G2 := Source( up2 );; R2 := Range( up2 );; Q2 := Range( lt2 );;}
\textcolor{blue}{gap> homG := AllHomomorphisms( G1, G2 );;}
\textcolor{blue}{gap> homR := AllHomomorphisms( R1, R2 );;}
\textcolor{blue}{gap> homQ := AllHomomorphisms( Q1, Q2 );;}
\textcolor{blue}{gap> upmor := Cat1GroupMorphism( up1, up2, homG[1], homR[1] );;}
\textcolor{blue}{gap> IsCat1GroupMorphism( upmor );}
true
\textcolor{blue}{gap> ltmor := Cat1GroupMorphism( lt1, lt2, homG[1], homQ[1] );;}
\textcolor{blue}{gap> mor2 := PreCat2GroupMorphism( C2_82, C2_83, upmor, ltmor );}
<mapping: (pre-)cat2-group with generating (pre-)cat1-groups:
1 : [C4 x C2 => Group( [ <identity> of ..., <identity> of ...,
<identity> of ... ] )]
2 : [C4 x C2 => Group( [ <identity> of ..., f2 ] )] -> (pre-)cat
2-group with generating (pre-)cat1-groups:
1 : [D8 => Group( [ f1, f1 ] )]
2 : [D8=>D8] >
\textcolor{blue}{gap> IsCat2GroupMorphism( mor2 );}
true
\textcolor{blue}{gap> mor8283 := AllCat2GroupMorphisms( C2_82, C2_83 );;}
\textcolor{blue}{gap> Length( mor8283 );}
2
\end{Verbatim}
%..............................%
\subsection{Natural Equivalence}
The equivalence between categories \catXSq\ and \catCatt\
is implemented by the functions
\textbf{CrossedSquareOfCat2Group} and \textbf{Cat2GroupOfCrossedSquare}
which construct crossed squares and cat$^{2}$-groups
from the given cat$^{2}$-groups and crossed squares, respectively.
The following \GAP\ session illustrates the use of these functions.
The dihedral group $D_{20}$ has two normal subgroups $D_{10}$
whose intersection is the cyclic $C_5$.
We construct the crossed square of normal subgroups,
and then use the conversion functions to obtain the associated cat$^{2}$-group.
We then obtain the crossed square \texttt{Xab}
associated to the cat$^2$-group \texttt{C2ab} obtained earlier.
\begin{Verbatim}[frame=single, fontsize=\small, commandchars=\\\{\}]
\textcolor{blue}{gap> d20 := DihedralGroup( IsPermGroup, 20 );;}
\textcolor{blue}{gap> gend20 := GeneratorsOfGroup( d20 ); }
[ (1,2,3,4,5,6,7,8,9,10), (2,10)(3,9)(4,8)(5,7) ]
\textcolor{blue}{gap> p1 := gend20[1];; p2 := gend20[2];; p12 := p1*p2; }
(1,10)(2,9)(3,8)(4,7)(5,6)
\textcolor{blue}{gap> d10a := Subgroup( d20, [ p1^2, p2 ] );; }
\textcolor{blue}{gap> d10b := Subgroup( d20, [ p1^2, p12 ] );; }
\textcolor{blue}{gap> c5d := Subgroup( d20, [ p1^2 ] );; }
\textcolor{blue}{gap> SetName( d20, "d20" ); SetName( d10a, "d10a" ); }
\textcolor{blue}{gap> SetName( d10b, "d10b" ); SetName( c5d, "c5d" ); }
\textcolor{blue}{gap> XS1 := CrossedSquareByNormalSubgroups( c5d, d10a, d10b, d20 ); }
[ c5d -> d10a ]
[ | | ]
[ d10b -> d20 ]
\textcolor{blue}{gap> IsCrossedSquare( XS1 ); }
true
\textcolor{blue}{gap> C2G1 := Cat2GroupOfCrossedSquare( XS1 ); }
(pre-)cat2-group with generating (pre-)cat1-groups:
1 : [((d20 |X d10a) |X (d10b |X c5d))=>(d20 |X d10a)]
2 : [((d20 |X d10a) |X (d10b |X c5d))=>(d20 |X d10b)]
\textcolor{blue}{gap> IsCat2Group( C2G1 ); }
true
\textcolor{blue}{gap> Xab := CrossedSquareOfCat2Group( C2ab ); }
crossed square with crossed modules:
up = [Group( [ (1,5)(2,6)(3,7)(4,8) ] ) -> Group( [ ( 2, 6)( 4, 8) ] )]
left = [Group( [ (1,5)(2,6)(3,7)(4,8) ] ) -> Group(
[ (1,2,3,4)(5,6,7,8), (), () ] )]
right = [Group( [ ( 2, 6)( 4, 8) ] ) -> Group( () )]
down = [Group( [ (1,2,3,4)(5,6,7,8), (), () ] ) -> Group( () )]
\textcolor{blue}{gap> IsCrossedSquare( Xab ); }
true
\textcolor{blue}{gap> IdGroup( Xab ); }
[ [ 2, 1 ], [ 2, 1 ], [ 4, 1 ], [ 1, 1 ] ]
\end{Verbatim}
%---------------------------------------------------------------------------%
\section{Table of cat$^{2}$-groups}
The function \textbf{AllCat2Groups(G)} constructs a list $L_G$
of all $n_G$ cat$^{2}$-groups $(G;t_1,h_1;t_2,h_2)$ over $G$.
The function \textbf{AreIsomorphicCat2Groups} is used for checking whether
or not two cat$^{2}$-groups are isomorphic,
and \textbf{AllCat2GroupsUpToIsomorphism} returns a list of representatives
of the isomorphism classes.
The function \textbf{AllCat2GroupFamilies} returns a list of the positions
$[1 \ldots n_G]$ partitioned according to these classes.
In the following \GAP\ session, we compute all $47$ cat$^{2}$-groups on
$C_{4} \times C_{2}$; representatives of the $14$ isomorphism classes;
and the list of lists of positions in the families.
So the eighth class consists of cat$^2$-group numbers $[31,34,35,38]$,
and \texttt{iso82[8]=all82[31]}.
\begin{Verbatim}[frame=single, fontsize=\small, commandchars=\\\{\}]
\textcolor{blue}{gap> c4c2 := SmallGroup( 8, 2 );;}
\textcolor{blue}{gap> all82 := AllCat2Groups( c4c2 );;}
\textcolor{blue}{gap> Length( all82 );}
47
\textcolor{blue}{gap> iso82 := AllCat2GroupsUpToIsomorphism( c4c2 );;}
\textcolor{blue}{gap> Length( iso82 );}
14
\textcolor{blue}{gap> AllCat2GroupFamilies( c4c2 );}
[ [ 1 ], [ 2, 5, 8, 11 ], [ 3, 4, 9, 10 ], [ 14, 17, 22, 25 ],
[ 15, 16, 23, 24 ], [ 30 ], [ 6, 7, 12, 13 ], [ 31, 34, 35, 38 ],
[ 32, 33, 36, 37 ], [ 18, 19, 26, 27 ], [ 20, 21, 28, 29 ],
[ 39, 42, 43, 46 ], [ 40, 41, 44, 45 ], [ 47 ] ]
\textcolor{blue}{gap> iso82[8];}
(pre-)cat2-group with generating (pre-)cat1-groups:
1 : [Group( [ f1, f2, f3 ] ) => Group( [ f2, f2 ] )]
2 : [Group( [ f1, f2, f3 ] ) => Group( [ f2, f1 ] )]
\textcolor{blue}{gap> IsomorphismCat2Groups( all82[31], all82[34] ) = fail;}
false
\end{Verbatim}
In the following tables the groups of size at most $30$ are ordered by their
\GAP\ number.
For each group $G$ we list the number $|IE(G)|$ of idempotent endomorphisms;
the number $|\calC^1(G)|$ of cat$^1$-groups on $G$,
followed by the number of their isomorphism classes;
and then the number $|\calC^2(G)|$ of cat$^2$-groups on $G$,
and the number of their isomorphism classes.
The number of isomorphism classes $\calC^1(G)$ of cat$^{1}$-groups
is given in \cite{alp-wensley-ijac}.
We may reduce the size of the table by noting the results for cyclic groups.
When $G=C_{p^{k}}$ is cyclic, with $p$ prime,
the only idempotent endomorphisms are the identity and zero maps.
In this case all the cat$^1$-groups have equal tail and head maps,
and all isomorphism classes are singletons.
Similarly, when $G = C_{p_1^{k_1}p_2^{k_2} \ldots p_m^{k_m}}$ is cyclic,
and its order is the product of $m$ distinct primes $p_i$
having multiplicities $k_i$,
there are $2^m$ idempotent endomorphisms and cat$^1$-groups.
We thus obtain the following results up to $m=4$.
The rows headed ``groups'' list, for each cat$^2$-group, its four groups
$[G,R_1,R_2,R_{12}]$ where, for example, $2 \times [G,I,C_{p^k},I]$
denotes $\{[G,I,C_{p_1^{k_1}},I],[G,I,C_{p_2^{k_2}},I]\}$. \\
\bigskip
\begin{longtable}{ccccccc}
\hline\hline
& $G$
& $|\mathrm{IE}(G)|$
& $|\calC^1(G)|$
& $|\calC^1(G)/\cong |$
& $|\calC^{2}(G)|$
& $|\calC^{2}(G)/\cong |$ \\
\hline\hline
& $C_{p_1^{k_1}}$
& 2
& 2
& 2
& 3
& 3 \\
\hline
\multicolumn{7}{l}{%
\begin{tabular}{ll}
groups & $[G,I,I,I],~ [G,I,G,I],~ [G,G,G,G]$
\end{tabular}%
} \\
\hline\hline
& $C_{p_1^{k_1}p_2^{k_2}}$
& 4
& 4
& 4
& 10
& 10 \\
\hline
\multicolumn{7}{l}{
\begin{tabular}{ll}
groups & $[G,I,I,I],~ [G,I,G,I],~ [G,G,G,G],~ 2 \times [G,I,C_{p^k},I],$ \\
& $2 \times [G,C_{p^k},G,C_{p^k}],~
2 \times [G,C_{p^k},C_{p^k},C_{p^k}],~
[G,C_{p_1^{k_1}},C_{p_2^{k_2}},I]$
\end{tabular}
} \\
\hline\hline
& $C_{p_1^{k_1}p_2^{k_2}p_3^{k_3}}$
& 8
& 8
& 8
& 36
& 36 \\
\hline
\multicolumn{7}{l}{
\begin{tabular}{ll}
groups & $[G,I,I,I],~ [G,I,G,I],~ [G,G,G,G],~ 3 \times [G,I,C_{p^k},I],$ \\
& $3 \times [G,C_{p^k},G,C_{p^k}],~
3 \times [G,C_{p^k},C_{p^k},C_{p^k}],~
3 \times [G,C_{p^k},C_{q^j},I],$ \\
& $3 \times [G,I,C_{p^kq^j},I],~
3 \times [G,C_{p^kq^j},G,C_{p^kq^j}],~
3 \times [G,C_{p^kq^j},C_{p^kq^j},C_{p^kq^j}],$ \\
& $6 \times [G,C_{p^k},C_{p^kq^j},C_{p^k}],~
3 \times [G,C_{r^i},C_{p^kq^j},I],~
3 \times [G,C_{p^kq^j},C_{p^kr^i},C_{p^k}]$
\end{tabular}
} \\
\hline\hline
& $C_{p_1^{k_1}p_2^{k_2}p_3^{k_3}p_4^{k_4}}$
& 16
& 16