From a0b5cb3c79010fcdcf10b8e0633ef0f17a4e479e Mon Sep 17 00:00:00 2001 From: SeraGabor Date: Tue, 6 Feb 2024 10:48:47 +0100 Subject: [PATCH] fix: change anim position --- src/anim/trans-anim-2.json | 2 +- src/components/sections/two-column-h2.js | 4 ++-- 2 files changed, 3 insertions(+), 3 deletions(-) diff --git a/src/anim/trans-anim-2.json b/src/anim/trans-anim-2.json index b57c7d715..b90f43a25 100644 --- a/src/anim/trans-anim-2.json +++ b/src/anim/trans-anim-2.json @@ -1 +1 @@ -{"v":"4.8.0","meta":{"g":"LottieFiles AE 3.5.3","a":"","k":"","d":"","tc":""},"fr":60,"ip":0,"op":585,"w":1400,"h":1000,"nm":"MAIN_ANIM _CROP_RENDER_LOTTIE_P02-P05","ddd":0,"assets":[{"id":"image_0","w":188,"h":142,"u":"","p":"","e":1},{"id":"image_1","w":410,"h":352,"u":"","p":"","e":1},{"id":"image_2","w":531,"h":402,"u":"","p":"","e":1},{"id":"image_3","w":531,"h":377,"u":"","p":"","e":1},{"id":"image_4","w":531,"h":368,"u":"","p":"","e":1},{"id":"image_5","w":531,"h":390,"u":"","p":"","e":1},{"id":"image_6","w":412,"h":318,"u":"","p":"","e":1},{"id":"image_7","w":410,"h":316,"u":"","p":"","e":1},{"id":"image_8","w":332,"h":273,"u":"","p":"","e":1},{"id":"image_9","w":427,"h":327,"u":"","p":"","e":1},{"id":"image_10","w":356,"h":287,"u":"","p":"","e":1},{"id":"image_11","w":279,"h":243,"u":"","p":"","e":1},{"id":"image_12","w":351,"h":284,"u":"","p":"","e":1},{"id":"image_13","w":484,"h":360,"u":"","p":"","e":1},{"id":"image_14","w":484,"h":360,"u":"","p":"","e":1},{"id":"image_15","w":484,"h":360,"u":"","p":"","e":1},{"id":"image_16","w":484,"h":360,"u":"","p":"","e":1},{"id":"image_17","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_18","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_19","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_20","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_21","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_22","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_23","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_24","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_25","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_26","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_27","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_28","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_29","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_30","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_31","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_32","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_33","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_34","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_35","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_36","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_37","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_38","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_39","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_40","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_41","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_42","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_43","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_44","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_45","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_46","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_47","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_48","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_49","w":41,"h":59,"u":"","p":"","e":1},{"id":"image_50","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_51","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_52","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_53","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_54","w":41,"h":59,"u":"","p":"","e":1},{"id":"image_55","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_56","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_57","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_58","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_59","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_60","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_61","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_62","w":236,"h":135,"u":"","p":"","e":1},{"id":"image_63","w":261,"h":149,"u":"","p":"","e":1},{"id":"image_64","w":289,"h":165,"u":"","p":"","e":1},{"id":"image_65","w":292,"h":167,"u":"","p":"","e":1},{"id":"image_66","w":289,"h":165,"u":"","p":"","e":1},{"id":"image_67","w":283,"h":161,"u":"","p":"","e":1},{"id":"image_68","w":286,"h":163,"u":"","p":"","e":1},{"id":"image_69","w":290,"h":165,"u":"","p":"","e":1},{"id":"image_70","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_71","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_72","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_73","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_74","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_75","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_76","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_77","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_78","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_79","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_80","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_81","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_82","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_83","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_84","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_85","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_86","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_87","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_88","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_89","w":42,"h":59,"u":"","p":"","e":1},{"id":"image_90","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_91","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_92","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_93","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_94","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_95","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_96","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_97","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_98","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_99","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_100","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_101","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_102","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_103","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_104","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_105","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_106","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_107","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_108","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_109","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_110","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_111","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_112","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_113","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_114","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_115","w":287,"h":164,"u":"","p":"","e":1},{"id":"image_116","w":252,"h":144,"u":"","p":"","e":1},{"id":"image_117","w":245,"h":140,"u":"","p":"","e":1},{"id":"image_118","w":298,"h":170,"u":"","p":"","e":1},{"id":"image_119","w":298,"h":170,"u":"","p":"","e":1},{"id":"image_120","w":298,"h":170,"u":"","p":"","e":1},{"id":"image_121","w":275,"h":157,"u":"","p":"","e":1},{"id":"image_122","w":261,"h":149,"u":"","p":"","e":1},{"id":"image_123","w":418,"h":275,"u":"","p":"","e":1},{"id":"image_124","w":271,"h":151,"u":"","p":"","e":1},{"id":"image_125","w":41,"h":59,"u":"","p":"","e":1},{"id":"image_126","w":41,"h":59,"u":"","p":"","e":1},{"id":"image_127","w":53,"h":59,"u":"","p":"","e":1},{"id":"image_128","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_129","w":53,"h":59,"u":"","p":"","e":1},{"id":"image_130","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_131","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_132","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_133","w":41,"h":59,"u":"","p":"","e":1},{"id":"image_134","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_135","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_136","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_137","w":53,"h":59,"u":"","p":"","e":1},{"id":"image_138","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_139","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_140","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_141","w":53,"h":59,"u":"","p":"","e":1},{"id":"image_142","w":53,"h":59,"u":"","p":"","e":1},{"id":"image_143","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_144","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_145","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_146","w":53,"h":59,"u":"","p":"","e":1},{"id":"image_147","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_148","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_149","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_150","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_151","w":53,"h":59,"u":"","p":"","e":1},{"id":"image_152","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_153","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_154","w":53,"h":59,"u":"","p":"","e":1},{"id":"image_155","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_156","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_157","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_158","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_159","w":53,"h":59,"u":"","p":"","e":1},{"id":"image_160","w":229,"h":131,"u":"","p":"","e":1},{"id":"image_161","w":254,"h":145,"u":"","p":"","e":1},{"id":"image_162","w":290,"h":165,"u":"","p":"","e":1},{"id":"image_163","w":270,"h":154,"u":"","p":"","e":1},{"id":"image_164","w":231,"h":132,"u":"","p":"","e":1},{"id":"image_165","w":141,"h":81,"u":"","p":"","e":1},{"id":"image_166","w":273,"h":156,"u":"","p":"","e":1},{"id":"image_167","w":265,"h":151,"u":"","p":"","e":1},{"id":"image_168","w":53,"h":59,"u":"","p":"","e":1},{"id":"image_169","w":53,"h":59,"u":"","p":"","e":1},{"id":"image_170","w":53,"h":59,"u":"","p":"","e":1},{"id":"image_171","w":41,"h":59,"u":"","p":"","e":1},{"id":"image_172","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_173","w":53,"h":59,"u":"","p":"","e":1},{"id":"image_174","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_175","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_176","w":53,"h":59,"u":"","p":"","e":1},{"id":"image_177","w":41,"h":59,"u":"","p":"","e":1},{"id":"image_178","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_179","w":53,"h":59,"u":"","p":"","e":1},{"id":"image_180","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_181","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_182","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_183","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_184","w":41,"h":59,"u":"","p":"","e":1},{"id":"image_185","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_186","w":53,"h":59,"u":"","p":"","e":1},{"id":"image_187","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_188","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_189","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_190","w":53,"h":59,"u":"","p":"","e":1},{"id":"image_191","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_192","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_193","w":53,"h":59,"u":"","p":"","e":1},{"id":"image_194","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_195","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_196","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_197","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_198","w":53,"h":59,"u":"","p":"","e":1},{"id":"image_199","w":53,"h":59,"u":"","p":"","e":1},{"id":"image_200","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_201","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_202","w":41,"h":59,"u":"","p":"","e":1},{"id":"image_203","w":41,"h":59,"u":"","p":"","e":1},{"id":"image_204","w":274,"h":155,"u":"","p":"","e":1},{"id":"image_205","w":299,"h":169,"u":"","p":"","e":1},{"id":"image_206","w":270,"h":153,"u":"","p":"","e":1},{"id":"image_207","w":323,"h":183,"u":"","p":"","e":1},{"id":"image_208","w":316,"h":179,"u":"","p":"","e":1},{"id":"image_209","w":303,"h":172,"u":"","p":"","e":1},{"id":"image_210","w":234,"h":133,"u":"","p":"","e":1},{"id":"image_211","w":302,"h":172,"u":"","p":"","e":1},{"id":"comp_0","layers":[{"ddd":0,"ind":1,"ty":0,"nm":"MAIN_ANIM _CROP","refId":"comp_1","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[960,600,0],"ix":2},"a":{"a":0,"k":[1580,1029.5,0],"ix":1},"s":{"a":0,"k":[58.281,58.281,100],"ix":6}},"ao":0,"w":3160,"h":2059,"ip":0,"op":1141,"st":-59,"bm":0}]},{"id":"comp_1","layers":[{"ddd":0,"ind":1,"ty":0,"nm":"MAIN_ANIM","refId":"comp_2","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.282,"y":1},"o":{"x":0.445,"y":0},"t":487,"s":[1580,917,0],"to":[0,16.667,0],"ti":[0,-16.667,0]},{"t":609,"s":[1580,1017,0]}],"ix":2},"a":{"a":0,"k":[1976,1513,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"w":3952,"h":3026,"ip":0,"op":1200,"st":0,"bm":0}]},{"id":"comp_2","layers":[{"ddd":0,"ind":1,"ty":0,"nm":"BLOCKS","parent":4,"refId":"comp_3","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1318.152,1024.984,0],"ix":2},"a":{"a":0,"k":[1976,1513,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"w":3952,"h":3026,"ip":518,"op":1200,"st":518,"bm":0},{"ddd":0,"ind":2,"ty":0,"nm":"GEPEK_JOBB_LENT_start","parent":4,"refId":"comp_4","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11,"x":"var $bm_rt;\nvar p = 0.8;\nvar a = 50;\nvar s = 1.70158;\nfunction inOutQuint(t, b, c, d, a, p) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction easeAndWizz() {\n var t, d, sX, eX, sY, eY, sZ, eZ, val1, val2, val2, val3;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n var dim = 1;\n try {\n key(1)[1].length;\n dim = 2;\n key(1)[2].length;\n dim = 3;\n } catch (e) {\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1[0];\n eX = $bm_sub(key2[0], key1[0]);\n if (dim >= 2) {\n sY = key1[1];\n eY = $bm_sub(key2[1], key1[1]);\n if (dim >= 3) {\n sZ = key1[2];\n eZ = $bm_sub(key2[2], key1[2]);\n }\n }\n if (time < key1.time || time > key2.time) {\n return value;\n } else {\n val1 = inOutQuint(t, sX, eX, d, a, p, s);\n switch (dim) {\n case 1:\n return val1;\n break;\n case 2:\n val2 = inOutQuint(t, sY, eY, d, a, p, s);\n return [\n val1,\n val2\n ];\n break;\n case 3:\n val2 = inOutQuint(t, sY, eY, d, a, p, s);\n val3 = inOutQuint(t, sZ, eZ, d, a, p, s);\n return [\n val1,\n val2,\n val3\n ];\n break;\n default:\n return null;\n }\n }\n}\n$bm_rt = easeAndWizz() || value;"},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1272.175,805.34,0],"ix":2},"a":{"a":0,"k":[711.5,472,0],"ix":1},"s":{"a":0,"k":[310,310,100],"ix":6}},"ao":0,"w":1423,"h":944,"ip":119,"op":479,"st":119,"bm":0},{"ddd":0,"ind":3,"ty":0,"nm":"GEPEK_BAL_LENT_start","parent":4,"refId":"comp_5","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11,"x":"var $bm_rt;\nvar p = 0.8;\nvar a = 50;\nvar s = 1.70158;\nfunction inOutQuint(t, b, c, d, a, p) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction easeAndWizz() {\n var t, d, sX, eX, sY, eY, sZ, eZ, val1, val2, val2, val3;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n var dim = 1;\n try {\n key(1)[1].length;\n dim = 2;\n key(1)[2].length;\n dim = 3;\n } catch (e) {\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1[0];\n eX = $bm_sub(key2[0], key1[0]);\n if (dim >= 2) {\n sY = key1[1];\n eY = $bm_sub(key2[1], key1[1]);\n if (dim >= 3) {\n sZ = key1[2];\n eZ = $bm_sub(key2[2], key1[2]);\n }\n }\n if (time < key1.time || time > key2.time) {\n return value;\n } else {\n val1 = inOutQuint(t, sX, eX, d, a, p, s);\n switch (dim) {\n case 1:\n return val1;\n break;\n case 2:\n val2 = inOutQuint(t, sY, eY, d, a, p, s);\n return [\n val1,\n val2\n ];\n break;\n case 3:\n val2 = inOutQuint(t, sY, eY, d, a, p, s);\n val3 = inOutQuint(t, sZ, eZ, d, a, p, s);\n return [\n val1,\n val2,\n val3\n ];\n break;\n default:\n return null;\n }\n }\n}\n$bm_rt = easeAndWizz() || value;"},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1304.175,813.34,0],"ix":2},"a":{"a":0,"k":[711.5,472,0],"ix":1},"s":{"a":0,"k":[310,310,100],"ix":6}},"ao":0,"w":1423,"h":944,"ip":119,"op":479,"st":119,"bm":0},{"ddd":0,"ind":4,"ty":0,"nm":"TALAPZAT","refId":"comp_6","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11,"x":"var $bm_rt;\nvar p = 0.8;\nvar a = 50;\nvar s = 1.70158;\nfunction inOutQuint(t, b, c, d, a, p) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction easeAndWizz() {\n var t, d, sX, eX, sY, eY, sZ, eZ, val1, val2, val2, val3;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n var dim = 1;\n try {\n key(1)[1].length;\n dim = 2;\n key(1)[2].length;\n dim = 3;\n } catch (e) {\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1[0];\n eX = $bm_sub(key2[0], key1[0]);\n if (dim >= 2) {\n sY = key1[1];\n eY = $bm_sub(key2[1], key1[1]);\n if (dim >= 3) {\n sZ = key1[2];\n eZ = $bm_sub(key2[2], key1[2]);\n }\n }\n if (time < key1.time || time > key2.time) {\n return value;\n } else {\n val1 = inOutQuint(t, sX, eX, d, a, p, s);\n switch (dim) {\n case 1:\n return val1;\n break;\n case 2:\n val2 = inOutQuint(t, sY, eY, d, a, p, s);\n return [\n val1,\n val2\n ];\n break;\n case 3:\n val2 = inOutQuint(t, sY, eY, d, a, p, s);\n val3 = inOutQuint(t, sZ, eZ, d, a, p, s);\n return [\n val1,\n val2,\n val3\n ];\n break;\n default:\n return null;\n }\n }\n}\n$bm_rt = easeAndWizz() || value;"},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1975,1556,0],"ix":2},"a":{"a":0,"k":[1317.152,1067.984,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.194,0.194,0.667],"y":[1,1,1]},"o":{"x":[0.238,0.238,0.333],"y":[0,0,0]},"t":267,"s":[67.5,67.5,100]},{"i":{"x":[0.833,0.833,0.833],"y":[1,1,1]},"o":{"x":[0.167,0.167,0.167],"y":[0,0,0]},"t":376,"s":[100,100,100]},{"i":{"x":[0.214,0.214,0.833],"y":[1,1,1]},"o":{"x":[0.487,0.487,0.167],"y":[0,0,0]},"t":487,"s":[100,100,100]},{"t":609,"s":[104,104,100]}],"ix":6}},"ao":0,"w":2637,"h":2020,"ip":0,"op":1200,"st":-121,"bm":0},{"ddd":0,"ind":5,"ty":0,"nm":"GEPEK_BAL_FENT_start","parent":4,"refId":"comp_7","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11,"x":"var $bm_rt;\nvar p = 0.8;\nvar a = 50;\nvar s = 1.70158;\nfunction inOutQuint(t, b, c, d, a, p) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction easeAndWizz() {\n var t, d, sX, eX, sY, eY, sZ, eZ, val1, val2, val2, val3;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n var dim = 1;\n try {\n key(1)[1].length;\n dim = 2;\n key(1)[2].length;\n dim = 3;\n } catch (e) {\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1[0];\n eX = $bm_sub(key2[0], key1[0]);\n if (dim >= 2) {\n sY = key1[1];\n eY = $bm_sub(key2[1], key1[1]);\n if (dim >= 3) {\n sZ = key1[2];\n eZ = $bm_sub(key2[2], key1[2]);\n }\n }\n if (time < key1.time || time > key2.time) {\n return value;\n } else {\n val1 = inOutQuint(t, sX, eX, d, a, p, s);\n switch (dim) {\n case 1:\n return val1;\n break;\n case 2:\n val2 = inOutQuint(t, sY, eY, d, a, p, s);\n return [\n val1,\n val2\n ];\n break;\n case 3:\n val2 = inOutQuint(t, sY, eY, d, a, p, s);\n val3 = inOutQuint(t, sZ, eZ, d, a, p, s);\n return [\n val1,\n val2,\n val3\n ];\n break;\n default:\n return null;\n }\n }\n}\n$bm_rt = easeAndWizz() || value;"},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1236.175,1647.34,0],"ix":2},"a":{"a":0,"k":[711.5,472,0],"ix":1},"s":{"a":0,"k":[310,310,100],"ix":6}},"ao":0,"w":1423,"h":944,"ip":119,"op":479,"st":119,"bm":0},{"ddd":0,"ind":6,"ty":0,"nm":"GEPEK_JOBB_FENT_start","parent":4,"refId":"comp_8","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11,"x":"var $bm_rt;\nvar p = 0.8;\nvar a = 50;\nvar s = 1.70158;\nfunction inOutQuint(t, b, c, d, a, p) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction easeAndWizz() {\n var t, d, sX, eX, sY, eY, sZ, eZ, val1, val2, val2, val3;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n var dim = 1;\n try {\n key(1)[1].length;\n dim = 2;\n key(1)[2].length;\n dim = 3;\n } catch (e) {\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1[0];\n eX = $bm_sub(key2[0], key1[0]);\n if (dim >= 2) {\n sY = key1[1];\n eY = $bm_sub(key2[1], key1[1]);\n if (dim >= 3) {\n sZ = key1[2];\n eZ = $bm_sub(key2[2], key1[2]);\n }\n }\n if (time < key1.time || time > key2.time) {\n return value;\n } else {\n val1 = inOutQuint(t, sX, eX, d, a, p, s);\n switch (dim) {\n case 1:\n return val1;\n break;\n case 2:\n val2 = inOutQuint(t, sY, eY, d, a, p, s);\n return [\n val1,\n val2\n ];\n break;\n case 3:\n val2 = inOutQuint(t, sY, eY, d, a, p, s);\n val3 = inOutQuint(t, sZ, eZ, d, a, p, s);\n return [\n val1,\n val2,\n val3\n ];\n break;\n default:\n return null;\n }\n }\n}\n$bm_rt = easeAndWizz() || value;"},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1324.175,1641.34,0],"ix":2},"a":{"a":0,"k":[711.5,472,0],"ix":1},"s":{"a":0,"k":[310,310,100],"ix":6}},"ao":0,"w":1423,"h":944,"ip":119,"op":479,"st":119,"bm":0}]},{"id":"comp_3","layers":[{"ddd":0,"ind":1,"ty":2,"nm":"Layer 28","parent":69,"refId":"image_0","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":4.8,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":11.999,"s":[100]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":179.999,"s":[100]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":209.999,"s":[70]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":419.999,"s":[70]},{"t":449.99921875,"s":[100]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":4.8,"s":[-582.489,-267.284,0],"to":[0,13.333,0],"ti":[0,-13.333,0]},{"t":64.8,"s":[-582.489,-187.284,0]}],"ix":2,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"a":{"a":0,"k":[93.749,70.986,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":4.8,"op":682,"st":4.8,"bm":0},{"ddd":0,"ind":2,"ty":2,"nm":"Layer 15","parent":69,"refId":"image_1","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":4.8,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":64.8,"s":[100]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":179.999,"s":[100]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":209.999,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":419.999,"s":[0]},{"t":449.99921875,"s":[100]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":4.8,"s":[-527.731,-227.541,0],"to":[0,13.333,0],"ti":[0,-13.333,0]},{"t":64.8,"s":[-527.731,-147.541,0]}],"ix":2,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"a":{"a":0,"k":[204.6,175.678,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":4.8,"op":682,"st":4.8,"bm":0},{"ddd":0,"ind":3,"ty":2,"nm":"Layer 20","parent":57,"refId":"image_2","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":431.999,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":450.999,"s":[100]},{"t":476.99921875,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[-268.281,-196.981,0],"ix":2},"a":{"a":0,"k":[265.32,200.999,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":432,"op":477,"st":431.8,"bm":0},{"ddd":0,"ind":4,"ty":2,"nm":"Layer 3","parent":57,"refId":"image_2","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":431.999,"s":[0]},{"t":450.99921875,"s":[100]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[-268.281,-196.981,0],"ix":2},"a":{"a":0,"k":[265.32,200.999,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":432,"op":682,"st":431.8,"bm":0},{"ddd":0,"ind":5,"ty":2,"nm":"Layer 21","parent":63,"refId":"image_3","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":439.999,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":458.999,"s":[100]},{"t":484.99921875,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[104.32,-422.461,0],"ix":2},"a":{"a":0,"k":[265.201,188.398,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":440,"op":485,"st":439.8,"bm":0},{"ddd":0,"ind":6,"ty":2,"nm":"Layer 4","parent":63,"refId":"image_3","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":439.999,"s":[0]},{"t":458.99921875,"s":[100]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[104.32,-422.461,0],"ix":2},"a":{"a":0,"k":[265.201,188.398,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":440,"op":682,"st":439.8,"bm":0},{"ddd":0,"ind":7,"ty":2,"nm":"Layer 22","parent":75,"refId":"image_4","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":447.999,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":466.999,"s":[100]},{"t":492.99921875,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[-81.801,-533.34,0],"ix":2},"a":{"a":0,"k":[265.32,183.84,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":448,"op":493,"st":447.8,"bm":0},{"ddd":0,"ind":8,"ty":2,"nm":"Layer 5","parent":75,"refId":"image_4","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":447.999,"s":[0]},{"t":466.99921875,"s":[100]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[-81.801,-533.34,0],"ix":2},"a":{"a":0,"k":[265.32,183.84,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":448,"op":682,"st":447.8,"bm":0},{"ddd":0,"ind":9,"ty":2,"nm":"Layer 23","parent":69,"refId":"image_5","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":455.999,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":474.999,"s":[100]},{"t":500.99921875,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[-454.521,-309.421,0],"ix":2},"a":{"a":0,"k":[265.32,194.879,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":456,"op":501,"st":455.8,"bm":0},{"ddd":0,"ind":10,"ty":2,"nm":"Layer 6","parent":69,"refId":"image_5","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":455.999,"s":[0]},{"t":474.99921875,"s":[100]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[-454.521,-309.421,0],"ix":2},"a":{"a":0,"k":[265.32,194.879,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":456,"op":682,"st":455.8,"bm":0},{"ddd":0,"ind":11,"ty":1,"nm":"Medium Purple Solid 1","parent":15,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":192,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":222,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":300,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":330,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":435,"s":[60]},{"t":465,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[0,6.699,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1569.875,877.676],[1237,1067.801],[1237,1150.551],[1312.5,1194.051],[1645.5,1002.801],[1645.5,920.801]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":109,"op":682,"st":-720,"bm":0},{"ddd":0,"ind":12,"ty":1,"nm":"Medium Purple Solid 1","parent":16,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":48,"s":[0]},{"t":95,"s":[60]}],"ix":11,"x":"var $bm_rt;\nvar p = 0.8;\nvar a = 50;\nvar s = 1.70158;\nfunction outQuint(t, b, c, d, a, p) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction easeAndWizz() {\n var t, d, sX, eX, sY, eY, sZ, eZ, val1, val2, val2, val3;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n var dim = 1;\n try {\n key(1)[1].length;\n dim = 2;\n key(1)[2].length;\n dim = 3;\n } catch (e) {\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1[0];\n eX = $bm_sub(key2[0], key1[0]);\n if (dim >= 2) {\n sY = key1[1];\n eY = $bm_sub(key2[1], key1[1]);\n if (dim >= 3) {\n sZ = key1[2];\n eZ = $bm_sub(key2[2], key1[2]);\n }\n }\n if (time < key1.time || time > key2.time) {\n return value;\n } else {\n val1 = outQuint(t, sX, eX, d, a, p, s);\n switch (dim) {\n case 1:\n return val1;\n break;\n case 2:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n return [\n val1,\n val2\n ];\n break;\n case 3:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n val3 = outQuint(t, sZ, eZ, d, a, p, s);\n return [\n val1,\n val2,\n val3\n ];\n break;\n default:\n return null;\n }\n }\n}\n$bm_rt = easeAndWizz() || value;"},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[64.189,118.825,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1569.875,877.676],[1237,1067.801],[1237,1150.551],[1312.5,1194.051],[1645.5,1002.801],[1645.5,920.801]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":48,"op":109,"st":-720,"bm":0},{"ddd":0,"ind":13,"ty":1,"nm":"Medium Purple Solid 1","parent":15,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":192,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":222,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":300,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":330,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":435,"s":[60]},{"t":465,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[0,6.699,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1569.875,877.676],[1237,1067.801],[1237,1150.551],[1312.5,1194.051],[1645.5,1002.801],[1645.5,920.801]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":109,"op":682,"st":-720,"bm":14},{"ddd":0,"ind":14,"ty":1,"nm":"Medium Purple Solid 1","parent":16,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":48,"s":[0]},{"t":95,"s":[60]}],"ix":11,"x":"var $bm_rt;\nvar p = 0.8;\nvar a = 50;\nvar s = 1.70158;\nfunction outQuint(t, b, c, d, a, p) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction easeAndWizz() {\n var t, d, sX, eX, sY, eY, sZ, eZ, val1, val2, val2, val3;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n var dim = 1;\n try {\n key(1)[1].length;\n dim = 2;\n key(1)[2].length;\n dim = 3;\n } catch (e) {\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1[0];\n eX = $bm_sub(key2[0], key1[0]);\n if (dim >= 2) {\n sY = key1[1];\n eY = $bm_sub(key2[1], key1[1]);\n if (dim >= 3) {\n sZ = key1[2];\n eZ = $bm_sub(key2[2], key1[2]);\n }\n }\n if (time < key1.time || time > key2.time) {\n return value;\n } else {\n val1 = outQuint(t, sX, eX, d, a, p, s);\n switch (dim) {\n case 1:\n return val1;\n break;\n case 2:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n return [\n val1,\n val2\n ];\n break;\n case 3:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n val3 = outQuint(t, sZ, eZ, d, a, p, s);\n return [\n val1,\n val2,\n val3\n ];\n break;\n default:\n return null;\n }\n }\n}\n$bm_rt = easeAndWizz() || value;"},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[64.189,118.825,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1569.875,877.676],[1237,1067.801],[1237,1150.551],[1312.5,1194.051],[1645.5,1002.801],[1645.5,920.801]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":48,"op":109,"st":-720,"bm":14},{"ddd":0,"ind":15,"ty":3,"nm":"Null 2","sr":1,"ks":{"o":{"a":0,"k":0,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.071,"y":1},"o":{"x":0.227,"y":0},"t":202,"s":[1976,1513,0],"to":[0,-4.333,0],"ti":[0,0,0]},{"i":{"x":0.035,"y":1},"o":{"x":0.214,"y":0},"t":222,"s":[1976,1487,0],"to":[0,0,0],"ti":[0,-4.333,0]},{"i":{"x":0.667,"y":0.667},"o":{"x":0.167,"y":0.167},"t":297,"s":[1976,1513,0],"to":[0,0,0],"ti":[0,0,0]},{"i":{"x":0.071,"y":1},"o":{"x":0.227,"y":0},"t":449,"s":[1976,1513,0],"to":[0,-4.333,0],"ti":[0,0,0]},{"i":{"x":0.035,"y":1},"o":{"x":0.214,"y":0},"t":469,"s":[1976,1487,0],"to":[0,0,0],"ti":[0,-4.333,0]},{"t":544,"s":[1976,1513,0]}],"ix":2},"a":{"a":0,"k":[0,0,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":202,"op":655,"st":22,"bm":0},{"ddd":0,"ind":16,"ty":2,"nm":"Layer 35","parent":15,"refId":"image_6","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":48,"s":[0]},{"t":55.19921875,"s":[100]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":48,"s":[141.319,-33.196,0],"to":[0,13.333,0],"ti":[0,-13.333,0]},{"t":108,"s":[141.319,46.804,0]}],"ix":2,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"a":{"a":0,"k":[205.509,158.929,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":48,"op":682,"st":48,"bm":0},{"ddd":0,"ind":17,"ty":1,"nm":"Medium Purple Solid 1","parent":21,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":308,"s":[60]},{"t":338,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[0,0,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1942.938,664.25],[1609.812,855.75],[1609.25,936.5],[1684.25,981.25],[2018.5,789.75],[2018.5,707.5]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":104,"op":682,"st":-720,"bm":0},{"ddd":0,"ind":18,"ty":1,"nm":"Medium Purple Solid 1","parent":22,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":43,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":90,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":308,"s":[60]},{"t":338,"s":[0]}],"ix":11,"x":"var $bm_rt;\nvar p = 0.8;\nvar a = 50;\nvar s = 1.70158;\nfunction outQuint(t, b, c, d, a, p) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction easeAndWizz() {\n var t, d, sX, eX, sY, eY, sZ, eZ, val1, val2, val2, val3;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n var dim = 1;\n try {\n key(1)[1].length;\n dim = 2;\n key(1)[2].length;\n dim = 3;\n } catch (e) {\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1[0];\n eX = $bm_sub(key2[0], key1[0]);\n if (dim >= 2) {\n sY = key1[1];\n eY = $bm_sub(key2[1], key1[1]);\n if (dim >= 3) {\n sZ = key1[2];\n eZ = $bm_sub(key2[2], key1[2]);\n }\n }\n if (time < key1.time || time > key2.time) {\n return value;\n } else {\n val1 = outQuint(t, sX, eX, d, a, p, s);\n switch (dim) {\n case 1:\n return val1;\n break;\n case 2:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n return [\n val1,\n val2\n ];\n break;\n case 3:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n val3 = outQuint(t, sZ, eZ, d, a, p, s);\n return [\n val1,\n val2,\n val3\n ];\n break;\n default:\n return null;\n }\n }\n}\n$bm_rt = easeAndWizz() || value;"},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[-309.481,330.779,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1942.938,664.25],[1609.812,855.75],[1609.25,936.5],[1684.25,981.25],[2018.5,789.75],[2018.5,707.5]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":43.2,"op":104,"st":-720,"bm":0},{"ddd":0,"ind":19,"ty":1,"nm":"Medium Purple Solid 1","parent":21,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":308,"s":[60]},{"t":338,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[0,0,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1942.938,664.25],[1609.812,855.75],[1609.25,936.5],[1684.25,981.25],[2018.5,789.75],[2018.5,707.5]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":104,"op":682,"st":-720,"bm":14},{"ddd":0,"ind":20,"ty":1,"nm":"Medium Purple Solid 1","parent":22,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":43,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":90,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":308,"s":[60]},{"t":338,"s":[0]}],"ix":11,"x":"var $bm_rt;\nvar p = 0.8;\nvar a = 50;\nvar s = 1.70158;\nfunction outQuint(t, b, c, d, a, p) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction easeAndWizz() {\n var t, d, sX, eX, sY, eY, sZ, eZ, val1, val2, val2, val3;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n var dim = 1;\n try {\n key(1)[1].length;\n dim = 2;\n key(1)[2].length;\n dim = 3;\n } catch (e) {\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1[0];\n eX = $bm_sub(key2[0], key1[0]);\n if (dim >= 2) {\n sY = key1[1];\n eY = $bm_sub(key2[1], key1[1]);\n if (dim >= 3) {\n sZ = key1[2];\n eZ = $bm_sub(key2[2], key1[2]);\n }\n }\n if (time < key1.time || time > key2.time) {\n return value;\n } else {\n val1 = outQuint(t, sX, eX, d, a, p, s);\n switch (dim) {\n case 1:\n return val1;\n break;\n case 2:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n return [\n val1,\n val2\n ];\n break;\n case 3:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n val3 = outQuint(t, sZ, eZ, d, a, p, s);\n return [\n val1,\n val2,\n val3\n ];\n break;\n default:\n return null;\n }\n }\n}\n$bm_rt = easeAndWizz() || value;"},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[-309.481,330.779,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1942.938,664.25],[1609.812,855.75],[1609.25,936.5],[1684.25,981.25],[2018.5,789.75],[2018.5,707.5]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":43.2,"op":104,"st":-720,"bm":14},{"ddd":0,"ind":21,"ty":3,"nm":"Null 2","sr":1,"ks":{"o":{"a":0,"k":0,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.071,"y":1},"o":{"x":0.227,"y":0},"t":318,"s":[1976,1513,0],"to":[0,-4.333,0],"ti":[0,0,0]},{"i":{"x":0.035,"y":1},"o":{"x":0.214,"y":0},"t":338,"s":[1976,1487,0],"to":[0,0,0],"ti":[0,-4.333,0]},{"i":{"x":0.667,"y":0.667},"o":{"x":0.167,"y":0.167},"t":413,"s":[1976,1513,0],"to":[0,0,0],"ti":[0,0,0]},{"i":{"x":0.071,"y":1},"o":{"x":0.227,"y":0},"t":443,"s":[1976,1513,0],"to":[0,-4.333,0],"ti":[0,0,0]},{"i":{"x":0.035,"y":1},"o":{"x":0.214,"y":0},"t":463,"s":[1976,1487,0],"to":[0,0,0],"ti":[0,-4.333,0]},{"t":538,"s":[1976,1513,0]}],"ix":2},"a":{"a":0,"k":[0,0,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":318,"op":665,"st":138,"bm":0},{"ddd":0,"ind":22,"ty":2,"nm":"Layer 34","parent":21,"refId":"image_7","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":43.2,"s":[0]},{"t":50.39921875,"s":[100]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":43.2,"s":[513.99,-252.85,0],"to":[0,13.333,0],"ti":[0,-13.333,0]},{"t":103.2,"s":[513.99,-172.85,0]}],"ix":2,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"a":{"a":0,"k":[204.509,157.929,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":43.2,"op":682,"st":43.2,"bm":0},{"ddd":0,"ind":23,"ty":1,"nm":"Medium Purple Solid 1","parent":27,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":188,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":218,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":300,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":330,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":427,"s":[60]},{"t":457,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[0,6.035,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1085.125,857.715],[976.875,919.09],[976.875,1002.715],[1198.5,1129.09],[1306.25,1066.215],[1306.246,984.09]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":99,"op":682,"st":-720,"bm":0},{"ddd":0,"ind":24,"ty":1,"nm":"Medium Purple Solid 1","parent":28,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":38,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":85,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":188,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":218,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":300,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":330,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":427,"s":[60]},{"t":457,"s":[0]}],"ix":11,"x":"var $bm_rt;\nvar p = 0.8;\nvar a = 50;\nvar s = 1.70158;\nfunction outQuint(t, b, c, d, a, p) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction easeAndWizz() {\n var t, d, sX, eX, sY, eY, sZ, eZ, val1, val2, val2, val3;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n var dim = 1;\n try {\n key(1)[1].length;\n dim = 2;\n key(1)[2].length;\n dim = 3;\n } catch (e) {\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1[0];\n eX = $bm_sub(key2[0], key1[0]);\n if (dim >= 2) {\n sY = key1[1];\n eY = $bm_sub(key2[1], key1[1]);\n if (dim >= 3) {\n sZ = key1[2];\n eZ = $bm_sub(key2[2], key1[2]);\n }\n }\n if (time < key1.time || time > key2.time) {\n return value;\n } else {\n val1 = outQuint(t, sX, eX, d, a, p, s);\n switch (dim) {\n case 1:\n return val1;\n break;\n case 2:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n return [\n val1,\n val2\n ];\n break;\n case 3:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n val3 = outQuint(t, sZ, eZ, d, a, p, s);\n return [\n val1,\n val2,\n val3\n ];\n break;\n default:\n return null;\n }\n }\n}\n$bm_rt = easeAndWizz() || value;"},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[323.825,138.587,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1085.125,857.715],[976.875,919.09],[976.875,1002.715],[1198.5,1129.09],[1306.25,1066.215],[1306.246,984.09]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":38.4,"op":99,"st":-720,"bm":0},{"ddd":0,"ind":25,"ty":1,"nm":"Medium Purple Solid 1","parent":27,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":188,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":218,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":300,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":330,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":427,"s":[60]},{"t":457,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[0,6.035,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1085.125,857.715],[976.875,919.09],[976.875,1002.715],[1198.5,1129.09],[1306.25,1066.215],[1306.246,984.09]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":99,"op":682,"st":-720,"bm":14},{"ddd":0,"ind":26,"ty":1,"nm":"Medium Purple Solid 1","parent":28,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":38,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":85,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":188,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":218,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":300,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":330,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":427,"s":[60]},{"t":457,"s":[0]}],"ix":11,"x":"var $bm_rt;\nvar p = 0.8;\nvar a = 50;\nvar s = 1.70158;\nfunction outQuint(t, b, c, d, a, p) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction easeAndWizz() {\n var t, d, sX, eX, sY, eY, sZ, eZ, val1, val2, val2, val3;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n var dim = 1;\n try {\n key(1)[1].length;\n dim = 2;\n key(1)[2].length;\n dim = 3;\n } catch (e) {\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1[0];\n eX = $bm_sub(key2[0], key1[0]);\n if (dim >= 2) {\n sY = key1[1];\n eY = $bm_sub(key2[1], key1[1]);\n if (dim >= 3) {\n sZ = key1[2];\n eZ = $bm_sub(key2[2], key1[2]);\n }\n }\n if (time < key1.time || time > key2.time) {\n return value;\n } else {\n val1 = outQuint(t, sX, eX, d, a, p, s);\n switch (dim) {\n case 1:\n return val1;\n break;\n case 2:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n return [\n val1,\n val2\n ];\n break;\n case 3:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n val3 = outQuint(t, sZ, eZ, d, a, p, s);\n return [\n val1,\n val2,\n val3\n ];\n break;\n default:\n return null;\n }\n }\n}\n$bm_rt = easeAndWizz() || value;"},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[323.825,138.587,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1085.125,857.715],[976.875,919.09],[976.875,1002.715],[1198.5,1129.09],[1306.25,1066.215],[1306.246,984.09]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":38.4,"op":99,"st":-720,"bm":14},{"ddd":0,"ind":27,"ty":3,"nm":"Null 2","sr":1,"ks":{"o":{"a":0,"k":0,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.071,"y":1},"o":{"x":0.227,"y":0},"t":198,"s":[1976,1513,0],"to":[0,-4.333,0],"ti":[0,0,0]},{"i":{"x":0.035,"y":1},"o":{"x":0.214,"y":0},"t":218,"s":[1976,1487,0],"to":[0,0,0],"ti":[0,-4.333,0]},{"i":{"x":0.667,"y":0.667},"o":{"x":0.167,"y":0.167},"t":293,"s":[1976,1513,0],"to":[0,0,0],"ti":[0,0,0]},{"i":{"x":0.071,"y":1},"o":{"x":0.227,"y":0},"t":437,"s":[1976,1513,0],"to":[0,-4.333,0],"ti":[0,0,0]},{"i":{"x":0.035,"y":1},"o":{"x":0.214,"y":0},"t":457,"s":[1976,1487,0],"to":[0,0,0],"ti":[0,-4.333,0]},{"t":532,"s":[1976,1513,0]}],"ix":2},"a":{"a":0,"k":[0,0,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":198,"op":589,"st":18,"bm":0},{"ddd":0,"ind":28,"ty":2,"nm":"Layer 33","parent":27,"refId":"image_8","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":38.4,"s":[0]},{"t":45.59921875,"s":[100]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":38.4,"s":[-158.323,-76.328,0],"to":[0,13.333,0],"ti":[0,-13.333,0]},{"t":98.4,"s":[-158.323,3.672,0]}],"ix":2,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"a":{"a":0,"k":[165.502,136.224,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":38.4,"op":682,"st":38.4,"bm":0},{"ddd":0,"ind":29,"ty":1,"nm":"Medium Purple Solid 1","parent":33,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":184,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":214,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":300,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":330,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":431,"s":[60]},{"t":461,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[0,0,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1588.37,718.75],[1255.246,909.5],[1255.25,992.125],[1347,1044.25],[1679.999,853.125],[1679.998,770.625]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":94,"op":682,"st":-720,"bm":0},{"ddd":0,"ind":30,"ty":1,"nm":"Medium Purple Solid 1","parent":34,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":34,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":81,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":184,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":214,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":300,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":330,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":431,"s":[60]},{"t":461,"s":[0]}],"ix":11,"x":"var $bm_rt;\nvar p = 0.8;\nvar a = 50;\nvar s = 1.70158;\nfunction outQuint(t, b, c, d, a, p) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction easeAndWizz() {\n var t, d, sX, eX, sY, eY, sZ, eZ, val1, val2, val2, val3;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n var dim = 1;\n try {\n key(1)[1].length;\n dim = 2;\n key(1)[2].length;\n dim = 3;\n } catch (e) {\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1[0];\n eX = $bm_sub(key2[0], key1[0]);\n if (dim >= 2) {\n sY = key1[1];\n eY = $bm_sub(key2[1], key1[1]);\n if (dim >= 3) {\n sZ = key1[2];\n eZ = $bm_sub(key2[2], key1[2]);\n }\n }\n if (time < key1.time || time > key2.time) {\n return value;\n } else {\n val1 = outQuint(t, sX, eX, d, a, p, s);\n switch (dim) {\n case 1:\n return val1;\n break;\n case 2:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n return [\n val1,\n val2\n ];\n break;\n case 3:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n val3 = outQuint(t, sZ, eZ, d, a, p, s);\n return [\n val1,\n val2,\n val3\n ];\n break;\n default:\n return null;\n }\n }\n}\n$bm_rt = easeAndWizz() || value;"},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[45.607,277.306,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1588.37,718.75],[1255.246,909.5],[1255.25,992.125],[1347,1044.25],[1679.999,853.125],[1679.998,770.625]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":33.6,"op":94,"st":-720,"bm":0},{"ddd":0,"ind":31,"ty":1,"nm":"Medium Purple Solid 1","parent":33,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":184,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":214,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":300,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":330,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":431,"s":[60]},{"t":461,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[0,0,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1588.37,718.75],[1255.246,909.5],[1255.25,992.125],[1347,1044.25],[1679.999,853.125],[1679.998,770.625]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":94,"op":682,"st":-720,"bm":14},{"ddd":0,"ind":32,"ty":1,"nm":"Medium Purple Solid 1","parent":34,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":34,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":81,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":184,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":214,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":300,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":330,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":431,"s":[60]},{"t":461,"s":[0]}],"ix":11,"x":"var $bm_rt;\nvar p = 0.8;\nvar a = 50;\nvar s = 1.70158;\nfunction outQuint(t, b, c, d, a, p) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction easeAndWizz() {\n var t, d, sX, eX, sY, eY, sZ, eZ, val1, val2, val2, val3;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n var dim = 1;\n try {\n key(1)[1].length;\n dim = 2;\n key(1)[2].length;\n dim = 3;\n } catch (e) {\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1[0];\n eX = $bm_sub(key2[0], key1[0]);\n if (dim >= 2) {\n sY = key1[1];\n eY = $bm_sub(key2[1], key1[1]);\n if (dim >= 3) {\n sZ = key1[2];\n eZ = $bm_sub(key2[2], key1[2]);\n }\n }\n if (time < key1.time || time > key2.time) {\n return value;\n } else {\n val1 = outQuint(t, sX, eX, d, a, p, s);\n switch (dim) {\n case 1:\n return val1;\n break;\n case 2:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n return [\n val1,\n val2\n ];\n break;\n case 3:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n val3 = outQuint(t, sZ, eZ, d, a, p, s);\n return [\n val1,\n val2,\n val3\n ];\n break;\n default:\n return null;\n }\n }\n}\n$bm_rt = easeAndWizz() || value;"},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[45.607,277.306,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1588.37,718.75],[1255.246,909.5],[1255.25,992.125],[1347,1044.25],[1679.999,853.125],[1679.998,770.625]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":33.6,"op":94,"st":-720,"bm":14},{"ddd":0,"ind":33,"ty":3,"nm":"Null 2","sr":1,"ks":{"o":{"a":0,"k":0,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.071,"y":1},"o":{"x":0.227,"y":0},"t":194,"s":[1976,1513,0],"to":[0,-4.333,0],"ti":[0,0,0]},{"i":{"x":0.035,"y":1},"o":{"x":0.214,"y":0},"t":214,"s":[1976,1487,0],"to":[0,0,0],"ti":[0,-4.333,0]},{"i":{"x":0.667,"y":0.667},"o":{"x":0.167,"y":0.167},"t":289,"s":[1976,1513,0],"to":[0,0,0],"ti":[0,0,0]},{"i":{"x":0.071,"y":1},"o":{"x":0.227,"y":0},"t":441,"s":[1976,1513,0],"to":[0,-4.333,0],"ti":[0,0,0]},{"i":{"x":0.035,"y":1},"o":{"x":0.214,"y":0},"t":461,"s":[1976,1487,0],"to":[0,0,0],"ti":[0,-4.333,0]},{"t":536,"s":[1976,1513,0]}],"ix":2},"a":{"a":0,"k":[0,0,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":194,"op":611,"st":14,"bm":0},{"ddd":0,"ind":34,"ty":2,"nm":"Layer 32","parent":33,"refId":"image_9","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":33.6,"s":[0]},{"t":40.79921875,"s":[100]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":33.6,"s":[167.622,-193.815,0],"to":[0,13.333,0],"ti":[0,-13.333,0]},{"t":93.6,"s":[167.622,-113.815,0]}],"ix":2,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"a":{"a":0,"k":[213.229,163.491,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":33.6,"op":682,"st":33.6,"bm":0},{"ddd":0,"ind":35,"ty":1,"nm":"Medium Purple Solid 1","parent":39,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":180,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":210,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":300,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":330,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":423,"s":[60]},{"t":453,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[0,0,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1385.999,685.75],[1125.5,835.25],[1125.5,917],[1217.5,969.5],[1478.5,819.5],[1478.5,737.75]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":89,"op":682,"st":-720,"bm":0},{"ddd":0,"ind":36,"ty":1,"nm":"Medium Purple Solid 1","parent":40,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":29,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":76,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":180,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":210,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":300,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":330,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":423,"s":[60]},{"t":453,"s":[0]}],"ix":11,"x":"var $bm_rt;\nvar p = 0.8;\nvar a = 50;\nvar s = 1.70158;\nfunction outQuint(t, b, c, d, a, p) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction easeAndWizz() {\n var t, d, sX, eX, sY, eY, sZ, eZ, val1, val2, val2, val3;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n var dim = 1;\n try {\n key(1)[1].length;\n dim = 2;\n key(1)[2].length;\n dim = 3;\n } catch (e) {\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1[0];\n eX = $bm_sub(key2[0], key1[0]);\n if (dim >= 2) {\n sY = key1[1];\n eY = $bm_sub(key2[1], key1[1]);\n if (dim >= 3) {\n sZ = key1[2];\n eZ = $bm_sub(key2[2], key1[2]);\n }\n }\n if (time < key1.time || time > key2.time) {\n return value;\n } else {\n val1 = outQuint(t, sX, eX, d, a, p, s);\n switch (dim) {\n case 1:\n return val1;\n break;\n case 2:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n return [\n val1,\n val2\n ];\n break;\n case 3:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n val3 = outQuint(t, sZ, eZ, d, a, p, s);\n return [\n val1,\n val2,\n val3\n ];\n break;\n default:\n return null;\n }\n }\n}\n$bm_rt = easeAndWizz() || value;"},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[175.861,310.596,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1385.999,685.75],[1125.5,835.25],[1125.5,917],[1217.5,969.5],[1478.5,819.5],[1478.5,737.75]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":28.8,"op":89,"st":-720,"bm":0},{"ddd":0,"ind":37,"ty":1,"nm":"Medium Purple Solid 1","parent":39,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":180,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":210,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":300,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":330,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":423,"s":[60]},{"t":453,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[0,0,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1385.999,685.75],[1125.5,835.25],[1125.5,917],[1217.5,969.5],[1478.5,819.5],[1478.5,737.75]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":89,"op":682,"st":-720,"bm":14},{"ddd":0,"ind":38,"ty":1,"nm":"Medium Purple Solid 1","parent":40,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":29,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":76,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":180,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":210,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":300,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":330,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":423,"s":[60]},{"t":453,"s":[0]}],"ix":11,"x":"var $bm_rt;\nvar p = 0.8;\nvar a = 50;\nvar s = 1.70158;\nfunction outQuint(t, b, c, d, a, p) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction easeAndWizz() {\n var t, d, sX, eX, sY, eY, sZ, eZ, val1, val2, val2, val3;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n var dim = 1;\n try {\n key(1)[1].length;\n dim = 2;\n key(1)[2].length;\n dim = 3;\n } catch (e) {\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1[0];\n eX = $bm_sub(key2[0], key1[0]);\n if (dim >= 2) {\n sY = key1[1];\n eY = $bm_sub(key2[1], key1[1]);\n if (dim >= 3) {\n sZ = key1[2];\n eZ = $bm_sub(key2[2], key1[2]);\n }\n }\n if (time < key1.time || time > key2.time) {\n return value;\n } else {\n val1 = outQuint(t, sX, eX, d, a, p, s);\n switch (dim) {\n case 1:\n return val1;\n break;\n case 2:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n return [\n val1,\n val2\n ];\n break;\n case 3:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n val3 = outQuint(t, sZ, eZ, d, a, p, s);\n return [\n val1,\n val2,\n val3\n ];\n break;\n default:\n return null;\n }\n }\n}\n$bm_rt = easeAndWizz() || value;"},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[175.861,310.596,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1385.999,685.75],[1125.5,835.25],[1125.5,917],[1217.5,969.5],[1478.5,819.5],[1478.5,737.75]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":28.8,"op":89,"st":-720,"bm":14},{"ddd":0,"ind":39,"ty":3,"nm":"Null 2","sr":1,"ks":{"o":{"a":0,"k":0,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.071,"y":1},"o":{"x":0.227,"y":0},"t":190,"s":[1976,1513,0],"to":[0,-4.333,0],"ti":[0,0,0]},{"i":{"x":0.035,"y":1},"o":{"x":0.214,"y":0},"t":210,"s":[1976,1487,0],"to":[0,0,0],"ti":[0,-4.333,0]},{"i":{"x":0.667,"y":0.667},"o":{"x":0.167,"y":0.167},"t":285,"s":[1976,1513,0],"to":[0,0,0],"ti":[0,0,0]},{"i":{"x":0.071,"y":1},"o":{"x":0.227,"y":0},"t":433,"s":[1976,1513,0],"to":[0,-4.333,0],"ti":[0,0,0]},{"i":{"x":0.035,"y":1},"o":{"x":0.214,"y":0},"t":453,"s":[1976,1487,0],"to":[0,0,0],"ti":[0,-4.333,0]},{"t":528,"s":[1976,1513,0]}],"ix":2},"a":{"a":0,"k":[0,0,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":190,"op":666,"st":10,"bm":0},{"ddd":0,"ind":40,"ty":2,"nm":"Layer 31","parent":39,"refId":"image_10","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":28.8,"s":[0]},{"t":35.99921875,"s":[100]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":28.8,"s":[1.815,-247.427,0],"to":[0,13.333,0],"ti":[0,-13.333,0]},{"t":88.8,"s":[1.815,-167.427,0]}],"ix":2,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"a":{"a":0,"k":[177.677,143.169,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":28.8,"op":682,"st":28.8,"bm":0},{"ddd":0,"ind":41,"ty":1,"nm":"Medium Purple Solid 1","parent":45,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":304,"s":[60]},{"t":334,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[0,0,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1813,590.25],[1628.125,696.25],[1628.125,778],[1718.5,830],[1904.5,723.5],[1904.5,643]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":85,"op":682,"st":-720,"bm":0},{"ddd":0,"ind":42,"ty":1,"nm":"Medium Purple Solid 1","parent":46,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":24,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":71,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":304,"s":[60]},{"t":334,"s":[0]}],"ix":11,"x":"var $bm_rt;\nvar p = 0.8;\nvar a = 50;\nvar s = 1.70158;\nfunction outQuint(t, b, c, d, a, p) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction easeAndWizz() {\n var t, d, sX, eX, sY, eY, sZ, eZ, val1, val2, val2, val3;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n var dim = 1;\n try {\n key(1)[1].length;\n dim = 2;\n key(1)[2].length;\n dim = 3;\n } catch (e) {\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1[0];\n eX = $bm_sub(key2[0], key1[0]);\n if (dim >= 2) {\n sY = key1[1];\n eY = $bm_sub(key2[1], key1[1]);\n if (dim >= 3) {\n sZ = key1[2];\n eZ = $bm_sub(key2[2], key1[2]);\n }\n }\n if (time < key1.time || time > key2.time) {\n return value;\n } else {\n val1 = outQuint(t, sX, eX, d, a, p, s);\n switch (dim) {\n case 1:\n return val1;\n break;\n case 2:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n return [\n val1,\n val2\n ];\n break;\n case 3:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n val3 = outQuint(t, sZ, eZ, d, a, p, s);\n return [\n val1,\n val2,\n val3\n ];\n break;\n default:\n return null;\n }\n }\n}\n$bm_rt = easeAndWizz() || value;"},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[-327.033,405.694,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1813,590.25],[1628.125,696.25],[1628.125,778],[1718.5,830],[1904.5,723.5],[1904.5,643]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":24,"op":85,"st":-720,"bm":0},{"ddd":0,"ind":43,"ty":1,"nm":"Medium Purple Solid 1","parent":45,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":304,"s":[60]},{"t":334,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[0,0,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1813,590.25],[1628.125,696.25],[1628.125,778],[1718.5,830],[1904.5,723.5],[1904.5,643]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":85,"op":682,"st":-720,"bm":14},{"ddd":0,"ind":44,"ty":1,"nm":"Medium Purple Solid 1","parent":46,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":24,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":71,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":304,"s":[60]},{"t":334,"s":[0]}],"ix":11,"x":"var $bm_rt;\nvar p = 0.8;\nvar a = 50;\nvar s = 1.70158;\nfunction outQuint(t, b, c, d, a, p) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction easeAndWizz() {\n var t, d, sX, eX, sY, eY, sZ, eZ, val1, val2, val2, val3;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n var dim = 1;\n try {\n key(1)[1].length;\n dim = 2;\n key(1)[2].length;\n dim = 3;\n } catch (e) {\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1[0];\n eX = $bm_sub(key2[0], key1[0]);\n if (dim >= 2) {\n sY = key1[1];\n eY = $bm_sub(key2[1], key1[1]);\n if (dim >= 3) {\n sZ = key1[2];\n eZ = $bm_sub(key2[2], key1[2]);\n }\n }\n if (time < key1.time || time > key2.time) {\n return value;\n } else {\n val1 = outQuint(t, sX, eX, d, a, p, s);\n switch (dim) {\n case 1:\n return val1;\n break;\n case 2:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n return [\n val1,\n val2\n ];\n break;\n case 3:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n val3 = outQuint(t, sZ, eZ, d, a, p, s);\n return [\n val1,\n val2,\n val3\n ];\n break;\n default:\n return null;\n }\n }\n}\n$bm_rt = easeAndWizz() || value;"},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[-327.033,405.694,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1813,590.25],[1628.125,696.25],[1628.125,778],[1718.5,830],[1904.5,723.5],[1904.5,643]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":24,"op":85,"st":-720,"bm":14},{"ddd":0,"ind":45,"ty":3,"nm":"Null 2","sr":1,"ks":{"o":{"a":0,"k":0,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.071,"y":1},"o":{"x":0.227,"y":0},"t":314,"s":[1976,1513,0],"to":[0,-4.333,0],"ti":[0,0,0]},{"i":{"x":0.035,"y":1},"o":{"x":0.214,"y":0},"t":334,"s":[1976,1487,0],"to":[0,0,0],"ti":[0,-4.333,0]},{"i":{"x":0.667,"y":0.667},"o":{"x":0.167,"y":0.167},"t":409,"s":[1976,1513,0],"to":[0,0,0],"ti":[0,0,0]},{"i":{"x":0.071,"y":1},"o":{"x":0.227,"y":0},"t":439,"s":[1976,1513,0],"to":[0,-4.333,0],"ti":[0,0,0]},{"i":{"x":0.035,"y":1},"o":{"x":0.214,"y":0},"t":459,"s":[1976,1487,0],"to":[0,0,0],"ti":[0,-4.333,0]},{"t":534,"s":[1976,1513,0]}],"ix":2},"a":{"a":0,"k":[0,0,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":314,"op":655,"st":134,"bm":0},{"ddd":0,"ind":46,"ty":2,"nm":"Layer 30","parent":45,"refId":"image_11","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":24,"s":[0]},{"t":31.19921875,"s":[100]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":24,"s":[466.278,-364.478,0],"to":[0,13.333,0],"ti":[0,-13.333,0]},{"t":84,"s":[466.278,-284.478,0]}],"ix":2,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"a":{"a":0,"k":[139.244,121.216,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":24,"op":682,"st":24,"bm":0},{"ddd":0,"ind":47,"ty":1,"nm":"Medium Purple Solid 1","parent":51,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":300,"s":[60]},{"t":330,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[0,0,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1683,516.5],[1425.5,663.312],[1425.5,745],[1517,798],[1775,649.5],[1775,568]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":80,"op":682,"st":-720,"bm":0},{"ddd":0,"ind":48,"ty":1,"nm":"Medium Purple Solid 1","parent":52,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":19,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":66,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":300,"s":[60]},{"t":330,"s":[0]}],"ix":11,"x":"var $bm_rt;\nvar p = 0.8;\nvar a = 50;\nvar s = 1.70158;\nfunction outQuint(t, b, c, d, a, p) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction easeAndWizz() {\n var t, d, sX, eX, sY, eY, sZ, eZ, val1, val2, val2, val3;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n var dim = 1;\n try {\n key(1)[1].length;\n dim = 2;\n key(1)[2].length;\n dim = 3;\n } catch (e) {\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1[0];\n eX = $bm_sub(key2[0], key1[0]);\n if (dim >= 2) {\n sY = key1[1];\n eY = $bm_sub(key2[1], key1[1]);\n if (dim >= 3) {\n sZ = key1[2];\n eZ = $bm_sub(key2[2], key1[2]);\n }\n }\n if (time < key1.time || time > key2.time) {\n return value;\n } else {\n val1 = outQuint(t, sX, eX, d, a, p, s);\n switch (dim) {\n case 1:\n return val1;\n break;\n case 2:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n return [\n val1,\n val2\n ];\n break;\n case 3:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n val3 = outQuint(t, sZ, eZ, d, a, p, s);\n return [\n val1,\n val2,\n val3\n ];\n break;\n default:\n return null;\n }\n }\n}\n$bm_rt = easeAndWizz() || value;"},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[-124.808,480.121,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1683,516.5],[1425.5,663.312],[1425.5,745],[1517,798],[1775,649.5],[1775,568]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":19.2,"op":80,"st":-720,"bm":0},{"ddd":0,"ind":49,"ty":1,"nm":"Medium Purple Solid 1","parent":51,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":300,"s":[60]},{"t":330,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[0,0,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1683,516.5],[1425.5,663.312],[1425.5,745],[1517,798],[1775,649.5],[1775,568]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":80,"op":682,"st":-720,"bm":14},{"ddd":0,"ind":50,"ty":1,"nm":"Medium Purple Solid 1","parent":52,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":19,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":66,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":300,"s":[60]},{"t":330,"s":[0]}],"ix":11,"x":"var $bm_rt;\nvar p = 0.8;\nvar a = 50;\nvar s = 1.70158;\nfunction outQuint(t, b, c, d, a, p) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction easeAndWizz() {\n var t, d, sX, eX, sY, eY, sZ, eZ, val1, val2, val2, val3;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n var dim = 1;\n try {\n key(1)[1].length;\n dim = 2;\n key(1)[2].length;\n dim = 3;\n } catch (e) {\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1[0];\n eX = $bm_sub(key2[0], key1[0]);\n if (dim >= 2) {\n sY = key1[1];\n eY = $bm_sub(key2[1], key1[1]);\n if (dim >= 3) {\n sZ = key1[2];\n eZ = $bm_sub(key2[2], key1[2]);\n }\n }\n if (time < key1.time || time > key2.time) {\n return value;\n } else {\n val1 = outQuint(t, sX, eX, d, a, p, s);\n switch (dim) {\n case 1:\n return val1;\n break;\n case 2:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n return [\n val1,\n val2\n ];\n break;\n case 3:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n val3 = outQuint(t, sZ, eZ, d, a, p, s);\n return [\n val1,\n val2,\n val3\n ];\n break;\n default:\n return null;\n }\n }\n}\n$bm_rt = easeAndWizz() || value;"},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[-124.808,480.121,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1683,516.5],[1425.5,663.312],[1425.5,745],[1517,798],[1775,649.5],[1775,568]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":19.2,"op":80,"st":-720,"bm":14},{"ddd":0,"ind":51,"ty":3,"nm":"Null 2","sr":1,"ks":{"o":{"a":0,"k":0,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.071,"y":1},"o":{"x":0.227,"y":0},"t":310,"s":[1976,1513,0],"to":[0,-4.333,0],"ti":[0,0,0]},{"i":{"x":0.035,"y":1},"o":{"x":0.214,"y":0},"t":330,"s":[1976,1487,0],"to":[0,0,0],"ti":[0,-4.333,0]},{"i":{"x":0.667,"y":0.667},"o":{"x":0.167,"y":0.167},"t":405,"s":[1976,1513,0],"to":[0,0,0],"ti":[0,0,0]},{"i":{"x":0.071,"y":1},"o":{"x":0.227,"y":0},"t":435,"s":[1976,1513,0],"to":[0,-4.333,0],"ti":[0,0,0]},{"i":{"x":0.035,"y":1},"o":{"x":0.214,"y":0},"t":455,"s":[1976,1487,0],"to":[0,0,0],"ti":[0,-4.333,0]},{"t":530,"s":[1976,1513,0]}],"ix":2},"a":{"a":0,"k":[0,0,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":310,"op":639,"st":130,"bm":0},{"ddd":0,"ind":52,"ty":2,"nm":"Layer 29","parent":51,"refId":"image_12","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":19.2,"s":[0]},{"t":26.39921875,"s":[100]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":19.2,"s":[300.042,-418.339,0],"to":[0,13.333,0],"ti":[0,-13.333,0]},{"t":79.2,"s":[300.042,-338.339,0]}],"ix":2,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"a":{"a":0,"k":[175.234,141.782,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":19.2,"op":682,"st":19.2,"bm":0},{"ddd":0,"ind":53,"ty":1,"nm":"Medium Purple Solid 1","parent":57,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":180,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":210,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":420,"s":[60]},{"t":450,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[0,0,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1124,622.5],[791.25,813.5],[791.25,895.25],[939,980],[1272,788.5],[1272,708]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":75,"op":682,"st":-720,"bm":0},{"ddd":0,"ind":54,"ty":1,"nm":"Medium Purple Solid 1","parent":58,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":180,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":210,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":420,"s":[60]},{"t":450,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[509.959,373.555,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1124,622.5],[791.25,813.5],[791.25,895.25],[939,980],[1272,788.5],[1272,708]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":14.4,"op":75,"st":-720,"bm":0},{"ddd":0,"ind":55,"ty":1,"nm":"Medium Purple Solid 1","parent":57,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":180,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":210,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":420,"s":[60]},{"t":450,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[0,0,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1124,622.5],[791.25,813.5],[791.25,895.25],[939,980],[1272,788.5],[1272,708]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":75,"op":682,"st":-720,"bm":14},{"ddd":0,"ind":56,"ty":1,"nm":"Medium Purple Solid 1","parent":58,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":180,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":210,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":420,"s":[60]},{"t":450,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[509.959,373.555,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1124,622.5],[791.25,813.5],[791.25,895.25],[939,980],[1272,788.5],[1272,708]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":14.4,"op":75,"st":-720,"bm":14},{"ddd":0,"ind":57,"ty":3,"nm":"Null 2","sr":1,"ks":{"o":{"a":0,"k":0,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.071,"y":1},"o":{"x":0.227,"y":0},"t":430,"s":[1976,1513,0],"to":[0,-4.333,0],"ti":[0,0,0]},{"i":{"x":0.035,"y":1},"o":{"x":0.214,"y":0},"t":450,"s":[1976,1487,0],"to":[0,0,0],"ti":[0,-4.333,0]},{"t":525,"s":[1976,1513,0]}],"ix":2},"a":{"a":0,"k":[0,0,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":430,"op":525,"st":250,"bm":0},{"ddd":0,"ind":58,"ty":2,"nm":"Layer 27","parent":57,"refId":"image_13","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":14.4,"s":[0]},{"t":21.59921875,"s":[100]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":14.4,"s":[-268.347,-273.846,0],"to":[0,13.333,0],"ti":[0,-13.333,0]},{"t":74.4,"s":[-268.347,-193.846,0]}],"ix":2,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"a":{"a":0,"k":[241.613,179.71,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":14.4,"op":682,"st":14.4,"bm":0},{"ddd":0,"ind":59,"ty":1,"nm":"Medium Purple Solid 1","parent":63,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":180,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":210,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":424,"s":[60]},{"t":454,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[0,0,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1497.5,410],[1164,600.438],[1164,682],[1312,766.5],[1644.5,576],[1644.5,494.5]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":70,"op":682,"st":-720,"bm":0},{"ddd":0,"ind":60,"ty":1,"nm":"Medium Purple Solid 1","parent":64,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":180,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":210,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":424,"s":[60]},{"t":454,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[137.339,586.469,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1497.5,410],[1164,600.438],[1164,682],[1312,766.5],[1644.5,576],[1644.5,494.5]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":10,"op":70,"st":-720,"bm":0},{"ddd":0,"ind":61,"ty":1,"nm":"Medium Purple Solid 1","parent":63,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":180,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":210,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":424,"s":[60]},{"t":454,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[0,0,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1497.5,410],[1164,600.438],[1164,682],[1312,766.5],[1644.5,576],[1644.5,494.5]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":70,"op":682,"st":-720,"bm":14},{"ddd":0,"ind":62,"ty":1,"nm":"Medium Purple Solid 1","parent":64,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":180,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":210,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":424,"s":[60]},{"t":454,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[137.339,586.469,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1497.5,410],[1164,600.438],[1164,682],[1312,766.5],[1644.5,576],[1644.5,494.5]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":10,"op":70,"st":-720,"bm":14},{"ddd":0,"ind":63,"ty":3,"nm":"Null 2","sr":1,"ks":{"o":{"a":0,"k":0,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.071,"y":1},"o":{"x":0.227,"y":0},"t":434,"s":[1976,1513,0],"to":[0,-4.333,0],"ti":[0,0,0]},{"i":{"x":0.035,"y":1},"o":{"x":0.214,"y":0},"t":454,"s":[1976,1487,0],"to":[0,0,0],"ti":[0,-4.333,0]},{"t":529,"s":[1976,1513,0]}],"ix":2},"a":{"a":0,"k":[0,0,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":434,"op":529,"st":254,"bm":0},{"ddd":0,"ind":64,"ty":2,"nm":"Layer 26","parent":63,"refId":"image_14","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":9.6,"s":[0]},{"t":16.79921875,"s":[100]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":9.6,"s":[104.274,-486.759,0],"to":[0,13.333,0],"ti":[0,-13.333,0]},{"t":69.6,"s":[104.274,-406.759,0]}],"ix":2,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"a":{"a":0,"k":[241.613,179.71,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":9.6,"op":682,"st":9.6,"bm":0},{"ddd":0,"ind":65,"ty":1,"nm":"Medium Purple Solid 1","parent":69,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":180,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":210,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":432,"s":[60]},{"t":462,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[0,0,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[937.5,516.5],[605,707],[605,789],[753,873],[1086.5,682.5],[1086,601]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":65,"op":682,"st":-720,"bm":0},{"ddd":0,"ind":66,"ty":1,"nm":"Medium Purple Solid 1","parent":70,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":180,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":210,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":432,"s":[60]},{"t":462,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[696.094,479.914,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[937.5,516.5],[605,707],[605,789],[753,873],[1086.5,682.5],[1086,601]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":4.8,"op":65,"st":-720,"bm":0},{"ddd":0,"ind":67,"ty":1,"nm":"Medium Purple Solid 1","parent":69,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":180,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":210,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":432,"s":[60]},{"t":462,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[0,0,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[937.5,516.5],[605,707],[605,789],[753,873],[1086.5,682.5],[1086,601]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":65,"op":682,"st":-720,"bm":14},{"ddd":0,"ind":68,"ty":1,"nm":"Medium Purple Solid 1","parent":70,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":180,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":210,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":432,"s":[60]},{"t":462,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[696.094,479.914,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[937.5,516.5],[605,707],[605,789],[753,873],[1086.5,682.5],[1086,601]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":4.8,"op":65,"st":-720,"bm":14},{"ddd":0,"ind":69,"ty":3,"nm":"Null 2","sr":1,"ks":{"o":{"a":0,"k":0,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.071,"y":1},"o":{"x":0.227,"y":0},"t":442,"s":[1976,1513,0],"to":[0,-4.333,0],"ti":[0,0,0]},{"i":{"x":0.035,"y":1},"o":{"x":0.214,"y":0},"t":462,"s":[1976,1487,0],"to":[0,0,0],"ti":[0,-4.333,0]},{"t":537,"s":[1976,1513,0]}],"ix":2},"a":{"a":0,"k":[0,0,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":442,"op":537,"st":262,"bm":0},{"ddd":0,"ind":70,"ty":2,"nm":"Layer 25","parent":69,"refId":"image_15","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":4.8,"s":[0]},{"t":11.99921875,"s":[100]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":4.8,"s":[-454.481,-380.204,0],"to":[0,13.333,0],"ti":[0,-13.333,0]},{"t":64.8,"s":[-454.481,-300.204,0]}],"ix":2,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"a":{"a":0,"k":[241.613,179.71,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":4.8,"op":682,"st":4.8,"bm":0},{"ddd":0,"ind":71,"ty":1,"nm":"Medium Purple Solid 1","parent":75,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":180,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":210,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":428,"s":[60]},{"t":458,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[0,0,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1310,302.5],[977.5,493],[977.5,576],[1125.5,660.5],[1458.5,470],[1458.5,388.5]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":61,"op":682,"st":-720,"bm":0},{"ddd":0,"ind":72,"ty":1,"nm":"Medium Purple Solid 1","parent":76,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":180,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":210,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":428,"s":[60]},{"t":458,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[323.473,692.827,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1310,302.5],[977.5,493],[977.5,576],[1125.5,660.5],[1458.5,470],[1458.5,388.5]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":0,"op":61,"st":-720,"bm":0},{"ddd":0,"ind":73,"ty":1,"nm":"Medium Purple Solid 1","parent":75,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":180,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":210,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":428,"s":[60]},{"t":458,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[0,0,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1310,302.5],[977.5,493],[977.5,576],[1125.5,660.5],[1458.5,470],[1458.5,388.5]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":61,"op":682,"st":-720,"bm":14},{"ddd":0,"ind":74,"ty":1,"nm":"Medium Purple Solid 1","parent":76,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":180,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":210,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":428,"s":[60]},{"t":458,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[323.473,692.827,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1310,302.5],[977.5,493],[977.5,576],[1125.5,660.5],[1458.5,470],[1458.5,388.5]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":0,"op":61,"st":-720,"bm":14},{"ddd":0,"ind":75,"ty":3,"nm":"Null 2","sr":1,"ks":{"o":{"a":0,"k":0,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.071,"y":1},"o":{"x":0.227,"y":0},"t":438,"s":[1976,1513,0],"to":[0,-4.333,0],"ti":[0,0,0]},{"i":{"x":0.035,"y":1},"o":{"x":0.214,"y":0},"t":458,"s":[1976,1487,0],"to":[0,0,0],"ti":[0,-4.333,0]},{"t":533,"s":[1976,1513,0]}],"ix":2},"a":{"a":0,"k":[0,0,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":438,"op":533,"st":258,"bm":0},{"ddd":0,"ind":76,"ty":2,"nm":"Layer 24","parent":75,"refId":"image_16","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":0,"s":[0]},{"t":7.19921875,"s":[100]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":0,"s":[-81.861,-593.118,0],"to":[0,13.333,0],"ti":[0,-13.333,0]},{"t":60,"s":[-81.861,-513.118,0]}],"ix":2,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"a":{"a":0,"k":[241.613,179.71,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":0,"op":682,"st":0,"bm":0}]},{"id":"comp_4","layers":[{"ddd":0,"ind":1,"ty":2,"nm":"Layer 47","refId":"image_17","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1014.207,772.438,0],"ix":2},"a":{"a":0,"k":[26.116,23.56,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":205.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":265.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":386.999,"s":[100,100,100]},{"t":446.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":205.8,"op":26440.2,"st":205.8,"bm":0},{"ddd":0,"ind":2,"ty":2,"nm":"Layer 67","refId":"image_18","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1038.181,791.054,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":198.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":258.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":388,"s":[100,100,100]},{"t":448.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":198.6,"op":26440.2,"st":198.6,"bm":0},{"ddd":0,"ind":3,"ty":2,"nm":"Layer 84","refId":"image_19","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1103.911,739.116,0],"ix":2},"a":{"a":0,"k":[19.583,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":201,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":261,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":389,"s":[100,100,100]},{"t":449,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":201,"op":26440.2,"st":201,"bm":0},{"ddd":0,"ind":4,"ty":2,"nm":"Layer 97","refId":"image_20","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1071.337,766.826,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":196.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":256.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":390.001,"s":[100,100,100]},{"t":450.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":196.2,"op":26440.2,"st":196.2,"bm":0},{"ddd":0,"ind":5,"ty":2,"nm":"Layer 48","refId":"image_21","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[989.759,757.887,0],"ix":2},"a":{"a":0,"k":[26.116,23.56,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":193.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":253.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":390.999,"s":[100,100,100]},{"t":450.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":193.8,"op":26440.2,"st":193.8,"bm":0},{"ddd":0,"ind":6,"ty":2,"nm":"Layer 74","refId":"image_22","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1126.62,708.041,0],"ix":2},"a":{"a":0,"k":[19.583,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":191.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":251.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":392,"s":[100,100,100]},{"t":451.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":191.4,"op":26440.2,"st":191.4,"bm":0},{"ddd":0,"ind":7,"ty":2,"nm":"Layer 85","refId":"image_23","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1084.147,728.843,0],"ix":2},"a":{"a":0,"k":[19.583,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":186.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":246.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":393,"s":[100,100,100]},{"t":453.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":186.6,"op":26440.2,"st":186.6,"bm":0},{"ddd":0,"ind":8,"ty":2,"nm":"Layer 96","refId":"image_24","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[952.005,786.03,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":189,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":249,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":394,"s":[100,100,100]},{"t":454,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":189,"op":26440.2,"st":189,"bm":0},{"ddd":0,"ind":9,"ty":2,"nm":"Layer 98","refId":"image_25","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1041.342,750.325,0],"ix":2},"a":{"a":0,"k":[29.439,17.643,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":184.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":244.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":395.001,"s":[100,100,100]},{"t":455.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":184.2,"op":26440.2,"st":184.2,"bm":0},{"ddd":0,"ind":10,"ty":2,"nm":"Layer 40","refId":"image_26","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1060.01,707.034,0],"ix":2},"a":{"a":0,"k":[26.116,23.56,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":181.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":241.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":395.999,"s":[100,100,100]},{"t":455.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":181.8,"op":26440.2,"st":181.8,"bm":0},{"ddd":0,"ind":11,"ty":2,"nm":"Layer 54","refId":"image_27","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1103.046,686.818,0],"ix":2},"a":{"a":0,"k":[26.116,23.56,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":179.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":239.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":397,"s":[100,100,100]},{"t":456.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":179.4,"op":26440.2,"st":179.4,"bm":0},{"ddd":0,"ind":12,"ty":2,"nm":"Layer 68","refId":"image_28","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[969.224,752.884,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":174.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":234.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":398,"s":[100,100,100]},{"t":458.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":174.6,"op":26440.2,"st":174.6,"bm":0},{"ddd":0,"ind":13,"ty":2,"nm":"Layer 73","refId":"image_29","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1122.156,665.64,0],"ix":2},"a":{"a":0,"k":[19.583,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":177,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":237,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":399,"s":[100,100,100]},{"t":459,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":177,"op":26440.2,"st":177,"bm":0},{"ddd":0,"ind":14,"ty":2,"nm":"Layer 89","refId":"image_30","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1016.013,735.613,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":172.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":232.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":400.001,"s":[100,100,100]},{"t":460.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":172.2,"op":26440.2,"st":172.2,"bm":0},{"ddd":0,"ind":15,"ty":2,"nm":"Layer 15","refId":"image_31","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[841.527,814.787,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":179.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":239.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":401,"s":[100,100,100]},{"t":460.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":179.4,"op":26440.2,"st":179.4,"bm":0},{"ddd":0,"ind":16,"ty":2,"nm":"Layer 44","refId":"image_32","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[886.671,788.924,0],"ix":2},"a":{"a":0,"k":[26.116,23.56,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":174.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":234.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":402,"s":[100,100,100]},{"t":462.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":174.6,"op":26440.2,"st":174.6,"bm":0},{"ddd":0,"ind":17,"ty":2,"nm":"Layer 57","refId":"image_33","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[928.562,772.385,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":177,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":237,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":403,"s":[100,100,100]},{"t":463,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":177,"op":26440.2,"st":177,"bm":0},{"ddd":0,"ind":18,"ty":2,"nm":"Layer 58","refId":"image_34","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1100.921,646.437,0],"ix":2},"a":{"a":0,"k":[26.116,23.56,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":169.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":229.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":403.999,"s":[100,100,100]},{"t":463.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":169.8,"op":26440.2,"st":169.8,"bm":0},{"ddd":0,"ind":19,"ty":2,"nm":"Layer 59","refId":"image_35","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[989.195,715.014,0],"ix":2},"a":{"a":0,"k":[26.117,23.56,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":172.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":232.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":405.001,"s":[100,100,100]},{"t":465.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":172.2,"op":26440.2,"st":172.2,"bm":0},{"ddd":0,"ind":20,"ty":2,"nm":"Layer 69","refId":"image_36","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[953.927,743.573,0],"ix":2},"a":{"a":0,"k":[19.583,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":167.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":227.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":406,"s":[100,100,100]},{"t":465.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":167.4,"op":26440.2,"st":167.4,"bm":0},{"ddd":0,"ind":21,"ty":2,"nm":"Layer 75","refId":"image_37","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1075.636,680.219,0],"ix":2},"a":{"a":0,"k":[19.583,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":165,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":225,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":407,"s":[100,100,100]},{"t":467,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":165,"op":26440.2,"st":165,"bm":0},{"ddd":0,"ind":22,"ty":2,"nm":"Layer 104","refId":"image_38","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1030.893,697.174,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":160.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":220.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":408.001,"s":[100,100,100]},{"t":468.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":160.2,"op":26440.2,"st":160.2,"bm":0},{"ddd":0,"ind":23,"ty":2,"nm":"Layer 11","refId":"image_39","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[819.846,793.365,0],"ix":2},"a":{"a":0,"k":[26.116,23.56,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":160.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":220.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":409.001,"s":[100,100,100]},{"t":469.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":160.2,"op":26440.2,"st":160.2,"bm":0},{"ddd":0,"ind":24,"ty":2,"nm":"Layer 35","refId":"image_40","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[865.473,784.156,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":162.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":222.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":410,"s":[100,100,100]},{"t":470.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":162.6,"op":26440.2,"st":162.6,"bm":0},{"ddd":0,"ind":25,"ty":2,"nm":"Layer 70","refId":"image_41","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[937.174,734.062,0],"ix":2},"a":{"a":0,"k":[19.583,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":153,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":213,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":411,"s":[100,100,100]},{"t":471,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":153,"op":26440.2,"st":153,"bm":0},{"ddd":0,"ind":26,"ty":2,"nm":"Layer 86","refId":"image_42","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1031.9,651.822,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":155.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":215.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":412,"s":[100,100,100]},{"t":471.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":155.4,"op":26440.2,"st":155.4,"bm":0},{"ddd":0,"ind":27,"ty":2,"nm":"Layer 92","refId":"image_43","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1073.398,636.204,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":150.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":210.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":413,"s":[100,100,100]},{"t":473.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":150.6,"op":26440.2,"st":150.6,"bm":0},{"ddd":0,"ind":28,"ty":2,"nm":"Layer 99","refId":"image_44","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[903.471,757.664,0],"ix":2},"a":{"a":0,"k":[29.44,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":157.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":217.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":413.999,"s":[100,100,100]},{"t":473.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":157.8,"op":26440.2,"st":157.8,"bm":0},{"ddd":0,"ind":29,"ty":2,"nm":"Layer 101","refId":"image_45","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[961.112,704.457,0],"ix":2},"a":{"a":0,"k":[29.44,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":148.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":208.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":415.001,"s":[100,100,100]},{"t":475.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":148.2,"op":26440.2,"st":148.2,"bm":0},{"ddd":0,"ind":30,"ty":2,"nm":"Layer 16","refId":"image_46","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[796.793,787.388,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":39,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":99,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":416,"s":[100,100,100]},{"t":476,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":39,"op":26326.2,"st":39,"bm":0},{"ddd":0,"ind":31,"ty":2,"nm":"Layer 36","refId":"image_47","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[839.302,770.919,0],"ix":2},"a":{"a":0,"k":[29.44,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":36.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":96.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":417,"s":[100,100,100]},{"t":477.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":36.6,"op":26326.2,"st":36.6,"bm":0},{"ddd":0,"ind":32,"ty":2,"nm":"Layer 45","refId":"image_48","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[915.826,713.8,0],"ix":2},"a":{"a":0,"k":[26.116,23.559,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":34.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":94.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":418.001,"s":[100,100,100]},{"t":478.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":34.2,"op":26326.2,"st":34.2,"bm":0},{"ddd":0,"ind":33,"ty":2,"nm":"Layer 53","refId":"image_49","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1004.101,667.64,0],"ix":2},"a":{"a":0,"k":[20.113,29.402,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":31.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":91.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":418.999,"s":[100,100,100]},{"t":478.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":31.8,"op":26326.2,"st":31.8,"bm":0},{"ddd":0,"ind":34,"ty":2,"nm":"Layer 55","refId":"image_50","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1054.288,657.799,0],"ix":2},"a":{"a":0,"k":[26.116,23.56,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":24.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":84.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":420,"s":[100,100,100]},{"t":480.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":24.6,"op":26326.2,"st":24.6,"bm":0},{"ddd":0,"ind":35,"ty":2,"nm":"Layer 91","refId":"image_51","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[937.33,691.566,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":27,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":87,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":421,"s":[100,100,100]},{"t":481,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":27,"op":26326.2,"st":27,"bm":0},{"ddd":0,"ind":36,"ty":2,"nm":"Layer 94","refId":"image_52","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1056.352,625.378,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":29.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":89.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":422,"s":[100,100,100]},{"t":481.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":29.4,"op":26326.2,"st":29.4,"bm":0},{"ddd":0,"ind":37,"ty":2,"nm":"Layer 100","refId":"image_53","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[873.766,741.701,0],"ix":2},"a":{"a":0,"k":[29.44,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":22.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":82.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":423.001,"s":[100,100,100]},{"t":483.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":22.2,"op":26326.2,"st":22.2,"bm":0},{"ddd":0,"ind":38,"ty":2,"nm":"Layer 2","refId":"image_54","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[849.802,715.083,0],"ix":2},"a":{"a":0,"k":[20.112,29.403,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":22.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":82.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":424.001,"s":[100,100,100]},{"t":484.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":22.2,"op":26326.2,"st":22.2,"bm":0},{"ddd":0,"ind":39,"ty":2,"nm":"Layer 18","refId":"image_55","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[771.579,774.578,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":24.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":84.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":425,"s":[100,100,100]},{"t":485.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":24.6,"op":26326.2,"st":24.6,"bm":0},{"ddd":0,"ind":40,"ty":2,"nm":"Layer 37","refId":"image_56","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[811.562,752.333,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":27,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":87,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":426,"s":[100,100,100]},{"t":486,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":27,"op":26326.2,"st":27,"bm":0},{"ddd":0,"ind":41,"ty":2,"nm":"Layer 46","refId":"image_57","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[891.659,697.475,0],"ix":2},"a":{"a":0,"k":[26.116,23.56,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":19.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":79.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":426.999,"s":[100,100,100]},{"t":486.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":19.8,"op":26326.2,"st":19.8,"bm":0},{"ddd":0,"ind":42,"ty":2,"nm":"Layer 65","refId":"image_58","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[962.318,655.209,0],"ix":2},"a":{"a":0,"k":[26.116,23.56,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":15,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":75,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":428,"s":[100,100,100]},{"t":488,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":15,"op":26326.2,"st":15,"bm":0},{"ddd":0,"ind":43,"ty":2,"nm":"Layer 90","refId":"image_59","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[920.925,681.368,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":17.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":77.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":429,"s":[100,100,100]},{"t":488.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":17.4,"op":26326.2,"st":17.4,"bm":0},{"ddd":0,"ind":44,"ty":2,"nm":"Layer 93","refId":"image_60","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1037.729,615.623,0],"ix":2},"a":{"a":0,"k":[19.583,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":12.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":72.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":430,"s":[100,100,100]},{"t":490.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":12.6,"op":26326.2,"st":12.6,"bm":0},{"ddd":0,"ind":45,"ty":2,"nm":"Layer 109","refId":"image_61","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1004.025,641.008,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":10.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":70.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":431.001,"s":[100,100,100]},{"t":491.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":10.2,"op":26326.2,"st":10.2,"bm":0},{"ddd":0,"ind":46,"ty":2,"nm":"Layer 597","refId":"image_62","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[865.89,827.197,0],"ix":2},"a":{"a":0,"k":[117.976,67.243,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":0,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[5.586,-11.954],[-17.914,4.546],[-8.914,-1.954],[7.586,-9.454]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":55,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[5.586,-11.954],[-17.914,4.546],[40.898,30.499],[57.398,22.999]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":130,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[5.586,-11.954],[-17.914,4.546],[40.898,30.499],[57.398,22.999]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":185.801,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[5.586,-11.954],[-17.914,4.546],[84.086,58.546],[100.586,51.046]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":403,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[5.586,-11.954],[-17.914,4.546],[84.086,58.546],[100.586,51.046]],"c":true}]},{"t":463,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[5.586,-11.954],[-17.914,4.546],[-8.914,-1.954],[7.586,-9.454]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":0,"op":26347.2,"st":0,"bm":0},{"ddd":0,"ind":47,"ty":2,"nm":"Layer 598","refId":"image_63","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[914.198,812.923,0],"ix":2},"a":{"a":0,"k":[130.207,74.192,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":4.8,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[10.509,-13.732],[-15.491,3.768],[-10.991,2.768],[10.009,-8.732]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":58.999,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[10.509,-13.732],[-15.491,3.768],[38.949,31.979],[59.949,20.479]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":133.999,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[10.509,-13.732],[-15.491,3.768],[38.949,31.979],[59.949,20.479]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":190.601,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[10.509,-13.732],[-15.491,3.768],[95.009,64.768],[116.009,53.268]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":400.999,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[10.509,-13.732],[-15.491,3.768],[95.009,64.768],[116.009,53.268]],"c":true}]},{"t":460.99921875,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[10.509,-13.732],[-15.491,3.768],[-10.991,2.768],[10.009,-8.732]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":4.8,"op":26347.2,"st":4.8,"bm":0},{"ddd":0,"ind":48,"ty":2,"nm":"Layer 599","refId":"image_64","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1086.878,729.771,0],"ix":2},"a":{"a":0,"k":[144.146,82.111,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":9.6,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[2.268,-10.66],[-22.732,2.34],[-12.732,0.84],[6.268,-7.66]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":63,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[2.268,-10.66],[-22.732,2.34],[50.344,36.318],[69.344,27.818]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":138,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[2.268,-10.66],[-22.732,2.34],[50.344,36.318],[69.344,27.818]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":195.401,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[2.268,-10.66],[-22.732,2.34],[149.768,95.34],[168.768,86.84]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":398,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[2.268,-10.66],[-22.732,2.34],[149.768,95.34],[168.768,86.84]],"c":true}]},{"t":458.000390625,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[2.268,-10.66],[-22.732,2.34],[-12.732,0.84],[6.268,-7.66]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":9.6,"op":26347.2,"st":9.6,"bm":0},{"ddd":0,"ind":49,"ty":2,"nm":"Layer 600","refId":"image_65","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1125.157,707.768,0],"ix":2},"a":{"a":0,"k":[145.795,83.048,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":14.4,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-0.362,-12.221],[-21.862,3.279],[-10.862,3.279],[8.638,-9.721]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":67,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-0.362,-12.221],[-21.862,3.279],[62.987,44.803],[82.487,31.803]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":142,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-0.362,-12.221],[-21.862,3.279],[62.987,44.803],[82.487,31.803]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":200.201,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-0.362,-12.221],[-21.862,3.279],[138.138,88.779],[157.638,75.779]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":396,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-0.362,-12.221],[-21.862,3.279],[138.138,88.779],[157.638,75.779]],"c":true}]},{"t":455.999609375,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-0.362,-12.221],[-21.862,3.279],[-10.862,3.279],[8.638,-9.721]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":14.4,"op":26347.2,"st":14.4,"bm":0},{"ddd":0,"ind":50,"ty":2,"nm":"Layer 601","refId":"image_66","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1163.333,686.76,0],"ix":2},"a":{"a":0,"k":[144.088,82.078,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":19.2,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[9.755,-15.183],[-22.245,5.317],[-9.745,-2.683],[12.755,-15.683]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":71.001,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[9.755,-15.183],[-22.245,5.317],[29.203,23.158],[51.703,10.158]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":146.001,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[9.755,-15.183],[-22.245,5.317],[29.203,23.158],[51.703,10.158]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":205.001,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[9.755,-15.183],[-22.245,5.317],[94.255,66.317],[116.755,53.317]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":394.001,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[9.755,-15.183],[-22.245,5.317],[94.255,66.317],[116.755,53.317]],"c":true}]},{"t":454.00078125,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[9.755,-15.183],[-22.245,5.317],[-9.745,-2.683],[12.755,-15.683]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":19.2,"op":26347.2,"st":19.2,"bm":0},{"ddd":0,"ind":51,"ty":2,"nm":"Layer 602","refId":"image_67","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1042.7,750.809,0],"ix":2},"a":{"a":0,"k":[141.258,80.47,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":21.6,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[5.059,-13.839],[-19.441,6.161],[-14.941,2.661],[11.059,-15.839]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":75,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[5.059,-13.839],[-19.441,6.161],[23.919,30.255],[49.919,11.755]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":150,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[5.059,-13.839],[-19.441,6.161],[23.919,30.255],[49.919,11.755]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":207.401,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[5.059,-13.839],[-19.441,6.161],[159.059,106.161],[185.059,87.661]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":391,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[5.059,-13.839],[-19.441,6.161],[159.059,106.161],[185.059,87.661]],"c":true}]},{"t":451.000390625,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[5.059,-13.839],[-19.441,6.161],[-14.941,2.661],[11.059,-15.839]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":21.6,"op":26347.2,"st":21.6,"bm":0},{"ddd":0,"ind":52,"ty":2,"nm":"Layer 603","refId":"image_68","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[970.013,795.755,0],"ix":2},"a":{"a":0,"k":[142.75,81.318,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":26.4,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-0.263,-13.937],[-24.763,1.563],[-16.763,3.063],[12.237,-10.437]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":79,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-0.263,-13.937],[-24.763,1.563],[30.15,31.776],[59.15,18.276]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":154,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-0.263,-13.937],[-24.763,1.563],[30.15,31.776],[59.15,18.276]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":212.201,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-0.263,-13.937],[-24.763,1.563],[111.737,78.063],[140.737,64.563]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":389,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-0.263,-13.937],[-24.763,1.563],[111.737,78.063],[140.737,64.563]],"c":true}]},{"t":448.999609375,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-0.263,-13.937],[-24.763,1.563],[-16.763,3.063],[12.237,-10.437]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":26.4,"op":26347.2,"st":26.4,"bm":0},{"ddd":0,"ind":53,"ty":2,"nm":"Layer 610","refId":"image_69","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1008.173,774.403,0],"ix":2},"a":{"a":0,"k":[144.751,82.455,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":31.2,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[10.579,-19.448],[-21.921,3.552],[-13.921,2.552],[12.079,-13.448]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":83.001,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[10.579,-19.448],[-21.921,3.552],[39.875,36.109],[65.875,20.109]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":158.001,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[10.579,-19.448],[-21.921,3.552],[39.875,36.109],[65.875,20.109]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":217.001,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[10.579,-19.448],[-21.921,3.552],[160.579,109.052],[186.579,93.052]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":387.001,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[10.579,-19.448],[-21.921,3.552],[160.579,109.052],[186.579,93.052]],"c":true}]},{"t":447.00078125,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[10.579,-19.448],[-21.921,3.552],[-13.921,2.552],[12.079,-13.448]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":31.2,"op":26347.2,"st":31.2,"bm":0}]},{"id":"comp_5","layers":[{"ddd":0,"ind":1,"ty":2,"nm":"Layer 185","refId":"image_70","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[429.817,769.14,0],"ix":2},"a":{"a":0,"k":[26.116,23.56,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":200.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":260.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":386.999,"s":[100,100,100]},{"t":447.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":200.8,"op":26447.2,"st":200.8,"bm":0},{"ddd":0,"ind":2,"ty":2,"nm":"Layer 206","refId":"image_71","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[377.343,760.145,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":203.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":263.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":388.001,"s":[100,100,100]},{"t":449.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":203.2,"op":26447.2,"st":203.2,"bm":0},{"ddd":0,"ind":3,"ty":2,"nm":"Layer 210","refId":"image_72","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[399.096,746.202,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":198.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":258.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":389,"s":[100,100,100]},{"t":449.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":198.4,"op":26447.2,"st":198.4,"bm":0},{"ddd":0,"ind":4,"ty":2,"nm":"Layer 229","refId":"image_73","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[345.055,725.413,0],"ix":2},"a":{"a":0,"k":[26.117,23.56,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":196,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":256,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":390,"s":[100,100,100]},{"t":451,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":196,"op":26447.2,"st":196,"bm":0},{"ddd":0,"ind":5,"ty":2,"nm":"Layer 177","refId":"image_74","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[474.696,794.418,0],"ix":2},"a":{"a":0,"k":[19.583,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":193.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":253.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":391,"s":[100,100,100]},{"t":452.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":193.6,"op":26447.2,"st":193.6,"bm":0},{"ddd":0,"ind":6,"ty":2,"nm":"Layer 181","refId":"image_75","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[518.123,815.197,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":191.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":251.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":392.001,"s":[100,100,100]},{"t":453.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":191.2,"op":26447.2,"st":191.2,"bm":0},{"ddd":0,"ind":7,"ty":2,"nm":"Layer 186","refId":"image_76","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[453.65,753.147,0],"ix":2},"a":{"a":0,"k":[26.116,23.559,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":186.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":246.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":392,"s":[100,100,100]},{"t":452.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":186.4,"op":26447.2,"st":186.4,"bm":0},{"ddd":0,"ind":8,"ty":2,"nm":"Layer 232","refId":"image_77","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[375.048,714.719,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":188.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":248.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":392.999,"s":[100,100,100]},{"t":453.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":188.8,"op":26447.2,"st":188.8,"bm":0},{"ddd":0,"ind":9,"ty":2,"nm":"Layer 392","refId":"image_78","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[329.184,692.392,0],"ix":2},"a":{"a":0,"k":[29.439,17.643,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":184,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":244,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":394,"s":[100,100,100]},{"t":455,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":184,"op":26447.2,"st":184,"bm":0},{"ddd":0,"ind":10,"ty":2,"nm":"Layer 169","refId":"image_79","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[543.694,801.276,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":186.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":246.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":395,"s":[100,100,100]},{"t":455.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":186.4,"op":26447.2,"st":186.4,"bm":0},{"ddd":0,"ind":11,"ty":2,"nm":"Layer 174","refId":"image_80","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[498.269,773.196,0],"ix":2},"a":{"a":0,"k":[26.116,23.56,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":184,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":244,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":396,"s":[100,100,100]},{"t":457,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":184,"op":26447.2,"st":184,"bm":0},{"ddd":0,"ind":12,"ty":2,"nm":"Layer 207","refId":"image_81","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[424.785,733.541,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":172,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":232,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":397,"s":[100,100,100]},{"t":458,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":172,"op":26447.2,"st":172,"bm":0},{"ddd":0,"ind":13,"ty":2,"nm":"Layer 230","refId":"image_82","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[398.434,700.863,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":174.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":234.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":398,"s":[100,100,100]},{"t":458.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":174.4,"op":26447.2,"st":174.4,"bm":0},{"ddd":0,"ind":14,"ty":2,"nm":"Layer 252","refId":"image_83","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[352.627,678.746,0],"ix":2},"a":{"a":0,"k":[19.583,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":179.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":239.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":399.001,"s":[100,100,100]},{"t":460.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":179.2,"op":26447.2,"st":179.2,"bm":0},{"ddd":0,"ind":15,"ty":2,"nm":"Layer 348","refId":"image_84","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[316.62,656.917,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":176.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":236.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":399.999,"s":[100,100,100]},{"t":460.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":176.8,"op":26447.2,"st":176.8,"bm":0},{"ddd":0,"ind":16,"ty":2,"nm":"Layer 349","refId":"image_85","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[335.036,646.077,0],"ix":2},"a":{"a":0,"k":[19.583,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":181.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":241.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":401,"s":[100,100,100]},{"t":462.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":181.6,"op":26447.2,"st":181.6,"bm":0},{"ddd":0,"ind":17,"ty":2,"nm":"Layer 163","refId":"image_86","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[610.346,804.052,0],"ix":2},"a":{"a":0,"k":[26.116,23.559,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":172,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":232,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":402,"s":[100,100,100]},{"t":463,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":172,"op":26447.2,"st":172,"bm":0},{"ddd":0,"ind":18,"ty":2,"nm":"Layer 170","refId":"image_87","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[562.184,791.003,0],"ix":2},"a":{"a":0,"k":[19.582,11.758,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":164.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":224.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":402.999,"s":[100,100,100]},{"t":463.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":164.8,"op":26447.2,"st":164.8,"bm":0},{"ddd":0,"ind":19,"ty":2,"nm":"Layer 178","refId":"image_88","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[522.943,767.964,0],"ix":2},"a":{"a":0,"k":[19.583,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":169.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":229.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":404,"s":[100,100,100]},{"t":465.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":169.6,"op":26447.2,"st":169.6,"bm":0},{"ddd":0,"ind":20,"ty":2,"nm":"Layer 187","refId":"image_89","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[472.173,734.574,0],"ix":2},"a":{"a":0,"k":[20.521,29.119,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":167.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":227.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":405.001,"s":[100,100,100]},{"t":466.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":167.2,"op":26447.2,"st":167.2,"bm":0},{"ddd":0,"ind":21,"ty":2,"nm":"Layer 211","refId":"image_90","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[448.48,718.577,0],"ix":2},"a":{"a":0,"k":[19.583,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":160,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":220,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":406,"s":[100,100,100]},{"t":467,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":160,"op":26447.2,"st":160,"bm":0},{"ddd":0,"ind":22,"ty":2,"nm":"Layer 216","refId":"image_91","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[376.648,658.493,0],"ix":2},"a":{"a":0,"k":[26.116,23.56,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":162.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":222.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":407,"s":[100,100,100]},{"t":467.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":162.4,"op":26447.2,"st":162.4,"bm":0},{"ddd":0,"ind":23,"ty":2,"nm":"Layer 166","refId":"image_92","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[585.758,771.348,0],"ix":2},"a":{"a":0,"k":[26.117,23.56,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":51.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":111.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":407.999,"s":[100,100,100]},{"t":468.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":51.8,"op":26334.2,"st":51.8,"bm":0},{"ddd":0,"ind":24,"ty":2,"nm":"Layer 175","refId":"image_93","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[543.608,745.543,0],"ix":2},"a":{"a":0,"k":[26.116,23.56,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":47,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":107,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":409,"s":[100,100,100]},{"t":470,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":47,"op":26334.2,"st":47,"bm":0},{"ddd":0,"ind":25,"ty":2,"nm":"Layer 188","refId":"image_94","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[506.449,725.413,0],"ix":2},"a":{"a":0,"k":[26.116,23.56,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":44.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":104.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":410,"s":[100,100,100]},{"t":471.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":44.6,"op":26334.2,"st":44.6,"bm":0},{"ddd":0,"ind":26,"ty":2,"nm":"Layer 200","refId":"image_95","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[422.006,679.641,0],"ix":2},"a":{"a":0,"k":[26.117,23.56,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":42.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":102.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":411.001,"s":[100,100,100]},{"t":472.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":42.2,"op":26334.2,"st":42.2,"bm":0},{"ddd":0,"ind":27,"ty":2,"nm":"Layer 212","refId":"image_96","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[466.969,708.304,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":49.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":109.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":412,"s":[100,100,100]},{"t":472.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":49.4,"op":26334.2,"st":49.4,"bm":0},{"ddd":0,"ind":28,"ty":2,"nm":"Layer 222","refId":"image_97","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[362.304,625.479,0],"ix":2},"a":{"a":0,"k":[26.117,23.56,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":37.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":97.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":413,"s":[100,100,100]},{"t":473.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":37.4,"op":26334.2,"st":37.4,"bm":0},{"ddd":0,"ind":29,"ty":2,"nm":"Layer 253","refId":"image_98","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[399.774,652.321,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":39.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":99.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":413.999,"s":[100,100,100]},{"t":474.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":39.8,"op":26334.2,"st":39.8,"bm":0},{"ddd":0,"ind":30,"ty":2,"nm":"Layer 264","refId":"image_99","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[638.429,793.495,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":35,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":95,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":415,"s":[100,100,100]},{"t":476,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":35,"op":26334.2,"st":35,"bm":0},{"ddd":0,"ind":31,"ty":2,"nm":"Layer 167","refId":"image_100","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[610.591,756.322,0],"ix":2},"a":{"a":0,"k":[26.116,23.56,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":36.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":96.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":416,"s":[100,100,100]},{"t":476.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":36.4,"op":26333.2,"st":36.4,"bm":0},{"ddd":0,"ind":32,"ty":2,"nm":"Layer 179","refId":"image_101","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[565.996,740.592,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":34,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":94,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":417,"s":[100,100,100]},{"t":478,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":34,"op":26333.2,"st":34,"bm":0},{"ddd":0,"ind":33,"ty":2,"nm":"Layer 190","refId":"image_102","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[536.441,716.049,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":31.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":91.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":418,"s":[100,100,100]},{"t":479.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":31.6,"op":26333.2,"st":31.6,"bm":0},{"ddd":0,"ind":34,"ty":2,"nm":"Layer 208","refId":"image_103","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[492.274,689.688,0],"ix":2},"a":{"a":0,"k":[26.116,23.56,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":26.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":86.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":418.999,"s":[100,100,100]},{"t":479.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":26.8,"op":26333.2,"st":26.8,"bm":0},{"ddd":0,"ind":35,"ty":2,"nm":"Layer 231","refId":"image_104","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[449.417,673.041,0],"ix":2},"a":{"a":0,"k":[19.582,11.758,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":29.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":89.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":420.001,"s":[100,100,100]},{"t":481.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":29.2,"op":26333.2,"st":29.2,"bm":0},{"ddd":0,"ind":36,"ty":2,"nm":"Layer 254","refId":"image_105","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[416.82,641.494,0],"ix":2},"a":{"a":0,"k":[19.583,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":24.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":84.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":421,"s":[100,100,100]},{"t":481.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":24.4,"op":26333.2,"st":24.4,"bm":0},{"ddd":0,"ind":37,"ty":2,"nm":"Layer 260","refId":"image_106","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[662.212,780.603,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":22,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":82,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":422,"s":[100,100,100]},{"t":483,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":22,"op":26333.2,"st":22,"bm":0},{"ddd":0,"ind":38,"ty":2,"nm":"Layer 168","refId":"image_107","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[635.901,741.855,0],"ix":2},"a":{"a":0,"k":[26.116,23.56,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":26.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":86.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":422.999,"s":[100,100,100]},{"t":483.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":26.8,"op":26333.2,"st":26.8,"bm":0},{"ddd":0,"ind":39,"ty":2,"nm":"Layer 183","refId":"image_108","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[594.897,728.41,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":24.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":84.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":424,"s":[100,100,100]},{"t":484.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":24.4,"op":26333.2,"st":24.4,"bm":0},{"ddd":0,"ind":40,"ty":2,"nm":"Layer 189","refId":"image_109","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[559.827,702.193,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":19.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":79.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":425,"s":[100,100,100]},{"t":486.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":19.6,"op":26333.2,"st":19.6,"bm":0},{"ddd":0,"ind":41,"ty":2,"nm":"Layer 209","refId":"image_110","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[516.108,673.695,0],"ix":2},"a":{"a":0,"k":[26.116,23.559,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":17.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":77.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":426.001,"s":[100,100,100]},{"t":487.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":17.2,"op":26333.2,"st":17.2,"bm":0},{"ddd":0,"ind":42,"ty":2,"nm":"Layer 228","refId":"image_111","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[470.765,650.621,0],"ix":2},"a":{"a":0,"k":[26.116,23.559,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":22,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":82,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":427,"s":[100,100,100]},{"t":488,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":22,"op":26333.2,"st":22,"bm":0},{"ddd":0,"ind":43,"ty":2,"nm":"Layer 255","refId":"image_112","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[434.391,630.825,0],"ix":2},"a":{"a":0,"k":[19.583,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":14.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":74.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":427.999,"s":[100,100,100]},{"t":488.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":14.8,"op":26333.2,"st":14.8,"bm":0},{"ddd":0,"ind":44,"ty":2,"nm":"Layer 261","refId":"image_113","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[679.281,770.849,0],"ix":2},"a":{"a":0,"k":[19.583,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":12.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":72.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":429,"s":[100,100,100]},{"t":489.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":12.4,"op":26333.2,"st":12.4,"bm":0},{"ddd":0,"ind":45,"ty":2,"nm":"Layer 389","refId":"image_114","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[392.6,613.256,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":10,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":70,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":431,"s":[100,100,100]},{"t":491,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":10,"op":26333.2,"st":10,"bm":0},{"ddd":0,"ind":46,"ty":2,"nm":"Layer 233","refId":"image_115","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[356.839,725.052,0],"ix":2},"a":{"a":0,"k":[143.483,81.734,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":0,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[283.143,-13.818],[276.143,-12.818],[294.643,-0.818],[300.643,7.182]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":76,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[283.143,-13.818],[200.861,36.746],[219.361,48.746],[300.643,7.182]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":150,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[283.143,-13.818],[200.861,36.746],[219.361,48.746],[300.643,7.182]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":208,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[283.143,-13.818],[120.643,83.682],[139.143,95.682],[300.643,7.182]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":402,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[283.143,-13.818],[120.643,83.682],[139.143,95.682],[300.643,7.182]],"c":true}]},{"t":452,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[283.143,-13.818],[276.143,-12.818],[294.643,-0.818],[300.643,7.182]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":0,"op":26347.2,"st":0,"bm":0},{"ddd":0,"ind":47,"ty":2,"nm":"Layer 265","refId":"image_116","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[572.335,831.045,0],"ix":2},"a":{"a":0,"k":[125.766,71.668,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":4.8,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[239.931,-7.876],[236.431,-11.376],[261.931,0.624],[269.431,1.624]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":79.999,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[239.931,-7.876],[178.922,26.979],[204.422,38.979],[269.431,1.624]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":153.999,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[239.931,-7.876],[178.922,26.979],[204.422,38.979],[269.431,1.624]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":212.8,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[239.931,-7.876],[146.931,48.124],[172.431,60.124],[269.431,1.624]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":399.999,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[239.931,-7.876],[146.931,48.124],[172.431,60.124],[269.431,1.624]],"c":true}]},{"t":449.99921875,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[239.931,-7.876],[236.431,-11.376],[261.931,0.624],[269.431,1.624]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":4.8,"op":26347.2,"st":4.8,"bm":0},{"ddd":0,"ind":48,"ty":2,"nm":"Layer 390","refId":"image_117","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[295.743,667.852,0],"ix":2},"a":{"a":0,"k":[122.024,69.543,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":9.6,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[241.281,-13.31],[242.781,-8.81],[261.781,-0.31],[260.281,1.69]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":84,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[241.281,-13.31],[173.789,30.212],[192.789,38.712],[260.281,1.69]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":158,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[241.281,-13.31],[173.789,30.212],[192.789,38.712],[260.281,1.69]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":217.6,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[241.281,-13.31],[133.281,54.69],[152.281,63.19],[260.281,1.69]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":397,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[241.281,-13.31],[133.281,54.69],[152.281,63.19],[260.281,1.69]],"c":true}]},{"t":447.000390625,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[241.281,-13.31],[242.781,-8.81],[261.781,-0.31],[260.281,1.69]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":9.6,"op":26347.2,"st":9.6,"bm":0},{"ddd":0,"ind":49,"ty":2,"nm":"Layer 434","refId":"image_118","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[428.54,775.356,0],"ix":2},"a":{"a":0,"k":[148.699,84.698,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":14.4,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[292.16,-10.658],[288.16,-11.658],[315.66,-0.158],[314.66,-0.658]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":88,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[292.16,-10.658],[211.623,35.655],[239.123,47.155],[314.66,-0.658]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":162,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[292.16,-10.658],[211.623,35.655],[239.123,47.155],[314.66,-0.658]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":222.4,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[292.16,-10.658],[130.16,83.842],[157.66,95.342],[314.66,-0.658]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":395,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[292.16,-10.658],[130.16,83.842],[157.66,95.342],[314.66,-0.658]],"c":true}]},{"t":444.999609375,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[292.16,-10.658],[288.16,-11.658],[315.66,-0.158],[314.66,-0.658]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":14.4,"op":26347.2,"st":14.4,"bm":0},{"ddd":0,"ind":50,"ty":2,"nm":"Layer 435","refId":"image_119","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[387.748,752.299,0],"ix":2},"a":{"a":0,"k":[148.699,84.698,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":19.2,"s":[{"i":[[0,0],[0,0],[0,0],[-0.5,1.5]],"o":[[0,0],[0,0],[0,0],[0.5,-1.5]],"v":[[288.451,-9.102],[279.951,-10.102],[309.951,2.898],[317.951,5.398]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":92.001,"s":[{"i":[[0,0],[0,0],[0,0],[-0.5,1.5]],"o":[[0,0],[0,0],[0,0],[0.5,-1.5]],"v":[[288.451,-9.102],[207.335,33.305],[237.335,46.305],[317.951,5.398]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":166.001,"s":[{"i":[[0,0],[0,0],[0,0],[-0.5,1.5]],"o":[[0,0],[0,0],[0,0],[0.5,-1.5]],"v":[[288.451,-9.102],[207.335,33.305],[237.335,46.305],[317.951,5.398]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":227.2,"s":[{"i":[[0,0],[0,0],[0,0],[-0.5,1.5]],"o":[[0,0],[0,0],[0,0],[0.5,-1.5]],"v":[[288.451,-9.102],[114.951,87.898],[144.951,100.898],[317.951,5.398]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":393.001,"s":[{"i":[[0,0],[0,0],[0,0],[-0.5,1.5]],"o":[[0,0],[0,0],[0,0],[0.5,-1.5]],"v":[[288.451,-9.102],[114.951,87.898],[144.951,100.898],[317.951,5.398]],"c":true}]},{"t":443.00078125,"s":[{"i":[[0,0],[0,0],[0,0],[-0.5,1.5]],"o":[[0,0],[0,0],[0,0],[0.5,-1.5]],"v":[[288.451,-9.102],[279.951,-10.102],[309.951,2.898],[317.951,5.398]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":19.2,"op":26347.2,"st":19.2,"bm":0},{"ddd":0,"ind":51,"ty":2,"nm":"Layer 436","refId":"image_120","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[305.227,705.497,0],"ix":2},"a":{"a":0,"k":[148.699,84.698,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":24,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[298.972,-13.299],[291.972,-10.299],[323.472,3.201],[315.972,1.201]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":96,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[298.972,-13.299],[223.85,26.746],[255.35,40.246],[315.972,1.201]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":170,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[298.972,-13.299],[223.85,26.746],[255.35,40.246],[315.972,1.201]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":232,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[298.972,-13.299],[159.472,65.201],[190.972,78.701],[315.972,1.201]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":391,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[298.972,-13.299],[159.472,65.201],[190.972,78.701],[315.972,1.201]],"c":true}]},{"t":441,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[298.972,-13.299],[291.972,-10.299],[323.472,3.201],[315.972,1.201]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":24,"op":26347.2,"st":24,"bm":0},{"ddd":0,"ind":52,"ty":2,"nm":"Layer 437","refId":"image_121","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[480.952,791.18,0],"ix":2},"a":{"a":0,"k":[137.454,78.309,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":28.8,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[276.001,-11.871],[265.001,-9.371],[288.001,2.129],[294.001,-2.371]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":99.999,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[276.001,-11.871],[191.817,32.987],[214.817,44.487],[294.001,-2.371]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":173.999,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[276.001,-11.871],[191.817,32.987],[214.817,44.487],[294.001,-2.371]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":236.8,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[276.001,-11.871],[121.001,75.629],[144.001,87.129],[294.001,-2.371]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":388.999,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[276.001,-11.871],[121.001,75.629],[144.001,87.129],[294.001,-2.371]],"c":true}]},{"t":438.99921875,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[276.001,-11.871],[265.001,-9.371],[288.001,2.129],[294.001,-2.371]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":28.8,"op":26347.2,"st":28.8,"bm":0},{"ddd":0,"ind":53,"ty":2,"nm":"Layer 438","refId":"image_122","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[528.696,809.85,0],"ix":2},"a":{"a":0,"k":[130.068,74.112,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":33.6,"s":[{"i":[[0,0],[0,0],[0,0],[0.5,1.5]],"o":[[0,0],[0,0],[0,0],[-0.5,-1.5]],"v":[[264.372,-11.237],[245.372,-9.737],[276.372,4.763],[284.872,2.763]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":104,"s":[{"i":[[0,0],[0,0],[0,0],[0.5,1.5]],"o":[[0,0],[0,0],[0,0],[-0.5,-1.5]],"v":[[264.372,-11.237],[165.809,35.926],[196.809,50.426],[284.872,2.763]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":178,"s":[{"i":[[0,0],[0,0],[0,0],[0.5,1.5]],"o":[[0,0],[0,0],[0,0],[-0.5,-1.5]],"v":[[264.372,-11.237],[165.809,35.926],[196.809,50.426],[284.872,2.763]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":241.6,"s":[{"i":[[0,0],[0,0],[0,0],[0.5,1.5]],"o":[[0,0],[0,0],[0,0],[-0.5,-1.5]],"v":[[264.372,-11.237],[103.372,73.763],[134.372,88.263],[284.872,2.763]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":387,"s":[{"i":[[0,0],[0,0],[0,0],[0.5,1.5]],"o":[[0,0],[0,0],[0,0],[-0.5,-1.5]],"v":[[264.372,-11.237],[103.372,73.763],[134.372,88.263],[284.872,2.763]],"c":true}]},{"t":437.000390625,"s":[{"i":[[0,0],[0,0],[0,0],[0.5,1.5]],"o":[[0,0],[0,0],[0,0],[-0.5,-1.5]],"v":[[264.372,-11.237],[245.372,-9.737],[276.372,4.763],[284.872,2.763]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":33.6,"op":26347.2,"st":33.6,"bm":0}]},{"id":"comp_6","layers":[{"ddd":0,"ind":2,"ty":2,"nm":"typo 2","refId":"image_123","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":600,"s":[0]},{"t":720,"s":[100]}],"ix":11,"x":"var $bm_rt;\nfunction inOutQuint(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(inOutQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":600,"s":[1552.364,1394.68,0],"to":[0,-10,0],"ti":[0,10,0]},{"t":720,"s":[1552.364,1334.68,0]}],"ix":2,"x":"var $bm_rt;\nfunction inOutQuint(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(inOutQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"a":{"a":0,"k":[208.844,137.23,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6,"x":"var $bm_rt;\nfunction inOutQuint(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(inOutQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":600,"op":26347.2,"st":0,"bm":0},{"ddd":0,"ind":3,"ty":2,"nm":"logo 2","refId":"image_124","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":600,"s":[729.473,1090.309,0],"to":[20.583,-4.5,0],"ti":[-20.583,4.5,0]},{"t":720,"s":[852.973,1063.309,0]}],"ix":2,"x":"var $bm_rt;\nfunction inOutQuint(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(inOutQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"a":{"a":0,"k":[135.487,75.087,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":600,"s":[73,73,100]},{"t":720,"s":[100,100,100]}],"ix":6,"x":"var $bm_rt;\nfunction inOutQuint(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(inOutQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":360,"op":26347.2,"st":0,"bm":0},{"ddd":0,"ind":4,"ty":4,"nm":"Layer 26 Outlines 2","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[2026.608,1507.469,0],"ix":2},"a":{"a":0,"k":[353.016,244.895,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":240,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-237.359,-238.27],[-237.127,-175.587],[-352.248,-109.855],[-352.48,-172.87]],"c":true}]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":360,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[417.641,-206.77],[417.873,-144.087],[-352.707,296.145],[-352.939,233.13]],"c":true}]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":600,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[417.641,-206.77],[417.873,-144.087],[-352.707,296.145],[-352.939,233.13]],"c":true}]},{"t":720,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[352.766,-244.645],[352.766,-159.462],[-352.766,244.645],[-352.766,159.13]],"c":true}]}],"ix":2,"x":"var $bm_rt;\nfunction inOutQuint(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(inOutQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"nm":"Path 2","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"gf","o":{"a":0,"k":100,"ix":10},"r":1,"bm":0,"g":{"p":5,"k":{"a":0,"k":[0,0.584,0.212,0.953,0.23,0.533,0.19,0.965,0.46,0.482,0.169,0.976,0.73,0.42,0.147,0.888,1,0.357,0.125,0.8],"ix":9}},"s":{"a":0,"k":[307,0],"ix":5},"e":{"a":0,"k":[-417,0],"ix":6},"t":1,"nm":"Gradient Fill 1","mn":"ADBE Vector Graphic - G-Fill","hd":false},{"ty":"fl","c":{"a":0,"k":[0.5,0.5,0.5,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false}],"ip":360,"op":26347.2,"st":0,"bm":0},{"ddd":0,"ind":5,"ty":4,"nm":"Layer 27 Outlines 2","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1321.311,1507.397,0],"ix":2},"a":{"a":0,"k":[354.03,245.467,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":240,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[238.47,-238.967],[238.47,-175.283],[353.842,-109.533],[353.842,-172.548]],"c":true}]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":360,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-421.53,-206.967],[-421.53,-143.283],[353.842,297.467],[353.842,234.452]],"c":true}]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":600,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-421.53,-206.967],[-421.53,-143.283],[353.842,297.467],[353.842,234.452]],"c":true}]},{"t":720,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-353.78,-245.217],[-353.78,-160.033],[353.78,245.217],[353.78,159.703]],"c":true}]}],"ix":2,"x":"var $bm_rt;\nfunction inOutQuint(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(inOutQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"nm":"Path 2","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"gf","o":{"a":0,"k":100,"ix":10},"r":1,"bm":0,"g":{"p":3,"k":{"a":0,"k":[0,0.502,0.18,0.957,0.5,0.737,0.28,0.906,1,0.973,0.38,0.855],"ix":9}},"s":{"a":0,"k":[345,0],"ix":5},"e":{"a":0,"k":[-398,0],"ix":6},"t":1,"nm":"Gradient Fill 1","mn":"ADBE Vector Graphic - G-Fill","hd":false},{"ty":"fl","c":{"a":0,"k":[0.5,0.5,0.5,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false}],"ip":360,"op":26347.2,"st":0,"bm":0},{"ddd":0,"ind":6,"ty":4,"nm":"Layer 28 Outlines 4","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1320.202,1016.923,0],"ix":2},"a":{"a":0,"k":[706.796,405.176,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":240,"s":[15,15,100]},{"t":360,"s":[100,100,100]}],"ix":6,"x":"var $bm_rt;\nfunction inOutQuint(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(inOutQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"shapes":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":600,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-68,442.996],[707.186,884.603],[1477.717,444.265],[705.781,0.25]],"c":true}]},{"t":720,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[0.25,405.183],[707.811,810.103],[1413.342,406.328],[705.781,0.25]],"c":true}]}],"ix":2,"x":"var $bm_rt;\nfunction inOutQuint(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(inOutQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"nm":"Path 2","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"gf","o":{"a":0,"k":100,"ix":10},"r":1,"bm":0,"g":{"p":3,"k":{"a":0,"k":[0,0.502,0.18,0.957,0.5,0.737,0.28,0.906,1,0.973,0.38,0.855],"ix":9}},"s":{"a":0,"k":[0,0],"ix":5},"e":{"a":0,"k":[1204,0],"ix":6},"t":1,"nm":"Gradient Fill 1","mn":"ADBE Vector Graphic - G-Fill","hd":false},{"ty":"fl","c":{"a":0,"k":[0.5,0.5,0.5,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false}],"ip":360,"op":26347.2,"st":0,"bm":0},{"ddd":0,"ind":7,"ty":4,"nm":"Layer 30 Outlines 2","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1742.009,1381.271,0],"ix":2},"a":{"a":0,"k":[421.589,270.947,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":600,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[446.839,-216.543],[391.445,-255.697],[-421.269,212.224],[-421.096,281.197]],"c":true}]},{"t":720,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[421.339,-216.543],[345.445,-270.697],[-421.338,172.724],[-421.339,270.697]],"c":true}]}],"ix":2,"x":"var $bm_rt;\nfunction inOutQuint(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(inOutQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[0.878431432387,0.847058883368,0.87450986376,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[421.589,270.947],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":2,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false}],"ip":360,"op":26347.2,"st":0,"bm":0},{"ddd":0,"ind":8,"ty":4,"nm":"Layer 31 Outlines 2","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[888.695,1375.613,0],"ix":2},"a":{"a":0,"k":[432.226,276.604,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":600,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[432.121,218.382],[-403.583,-259.854],[-457.476,-221.198],[432.231,287.855]],"c":true}]},{"t":720,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[431.976,178.382],[-356.083,-276.354],[-431.976,-222.198],[431.975,276.355]],"c":true}]}],"ix":2,"x":"var $bm_rt;\nfunction inOutQuint(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(inOutQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[0.784313785329,0.768627510819,0.803921628466,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[432.226,276.604],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":2,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false}],"ip":360,"op":26347.2,"st":0,"bm":0},{"ddd":0,"ind":9,"ty":4,"nm":"Layer 32 Outlines 2","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[872.729,1427.92,0],"ix":2},"a":{"a":0,"k":[448.19,274.755,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":600,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[447.877,252.982],[-464.94,-271.755],[-464.841,-250.233],[447.919,276.005]],"c":true}]},{"t":720,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[447.94,242.482],[-447.94,-274.505],[-447.94,-242.483],[447.94,274.505]],"c":true}]}],"ix":2,"x":"var $bm_rt;\nfunction inOutQuint(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(inOutQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[0.784313785329,0.768627510819,0.803921628466,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[448.19,274.755],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":2,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false}],"ip":360,"op":26347.2,"st":0,"bm":0},{"ddd":0,"ind":10,"ty":4,"nm":"Layer 34 Outlines 2","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1757.973,1433.577,0],"ix":2},"a":{"a":0,"k":[437.554,269.098,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":600,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[454.527,-268.848],[-437.21,247.45],[-437.314,270.098],[454.304,-246.325]],"c":true}]},{"t":720,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[437.304,-268.848],[-437.304,236.825],[-437.304,268.848],[437.304,-236.825]],"c":true}]}],"ix":2,"x":"var $bm_rt;\nfunction inOutQuint(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(inOutQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[0.878431432387,0.847058883368,0.87450986376,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[437.554,269.098],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":2,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false}],"ip":360,"op":26347.2,"st":0,"bm":0},{"ddd":0,"ind":11,"ty":4,"nm":"Layer 33 Outlines 2","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1310.033,1159.179,0],"ix":2},"a":{"a":0,"k":[885.494,511.472,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":600,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[901.744,6.049],[1.269,-514.222],[-901.994,-2.514],[10.562,522.222]],"c":true}]},{"t":720,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[885.244,5.549],[-9.731,-511.222],[-885.244,-5.764],[10.636,511.222]],"c":true}]}],"ix":2,"x":"var $bm_rt;\nfunction inOutQuint(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(inOutQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[0.976470648074,0.964705942191,0.980392216701,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[885.494,511.473],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":2,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false}],"ip":360,"op":26347.2,"st":0,"bm":0},{"ddd":0,"ind":12,"ty":2,"nm":"logo","parent":13,"refId":"image_124","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":265,"s":[0]},{"t":319,"s":[100]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":240,"s":[-88.441,590.817,0],"to":[34.085,-18.709,0],"ti":[-34.085,18.709,0]},{"t":359,"s":[116.066,478.563,0]}],"ix":2,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"a":{"a":0,"k":[135.487,75.087,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":600,"s":[73,73,100]},{"t":720,"s":[100,100,100]}],"ix":6,"x":"var $bm_rt;\nfunction inOutQuint(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(inOutQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":240,"op":360,"st":0,"bm":0},{"ddd":0,"ind":13,"ty":3,"nm":"Layer 28 Outlines","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1320.202,1016.923,0],"ix":2},"a":{"a":0,"k":[706.796,405.176,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":240,"s":[10,10,100]},{"t":360,"s":[100,100,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":240,"op":360,"st":0,"bm":0},{"ddd":0,"ind":14,"ty":4,"nm":"Layer 26 Outlines","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[2026.608,1507.469,0],"ix":2},"a":{"a":0,"k":[353.016,244.895,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":240,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-276.234,-241.27],[-276.002,-178.587],[-352.886,-134.543],[-353.119,-197.557]],"c":true}]},{"t":360,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[417.641,-206.77],[417.873,-144.087],[-352.707,296.145],[-352.939,233.13]],"c":true}]}],"ix":2,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"nm":"Path 2","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"gf","o":{"a":0,"k":100,"ix":10},"r":1,"bm":0,"g":{"p":5,"k":{"a":0,"k":[0,0.584,0.212,0.953,0.23,0.533,0.19,0.965,0.46,0.482,0.169,0.976,0.73,0.42,0.147,0.888,1,0.357,0.125,0.8],"ix":9}},"s":{"a":0,"k":[307,0],"ix":5},"e":{"a":0,"k":[-417,0],"ix":6},"t":1,"nm":"Gradient Fill 1","mn":"ADBE Vector Graphic - G-Fill","hd":false},{"ty":"fl","c":{"a":0,"k":[0.5,0.5,0.5,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false}],"ip":240,"op":360,"st":0,"bm":0},{"ddd":0,"ind":15,"ty":4,"nm":"Layer 27 Outlines","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1321.311,1507.397,0],"ix":2},"a":{"a":0,"k":[354.03,245.467,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":240,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[275.533,-241.092],[275.532,-177.408],[353.215,-133.533],[353.215,-196.548]],"c":true}]},{"t":360,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-421.53,-206.967],[-421.53,-143.283],[353.842,297.467],[353.842,234.452]],"c":true}]}],"ix":2,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"nm":"Path 2","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"gf","o":{"a":0,"k":100,"ix":10},"r":1,"bm":0,"g":{"p":3,"k":{"a":0,"k":[0,0.502,0.18,0.957,0.5,0.737,0.28,0.906,1,0.973,0.38,0.855],"ix":9}},"s":{"a":0,"k":[345,0],"ix":5},"e":{"a":0,"k":[-398,0],"ix":6},"t":1,"nm":"Gradient Fill 1","mn":"ADBE Vector Graphic - G-Fill","hd":false},{"ty":"fl","c":{"a":0,"k":[0.5,0.5,0.5,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false}],"ip":240,"op":360,"st":0,"bm":0},{"ddd":0,"ind":16,"ty":4,"nm":"Layer 28 Outlines 12","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1320.202,1016.923,0],"ix":2},"a":{"a":0,"k":[706.796,405.176,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":240,"s":[10,10,100]},{"t":360,"s":[100,100,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"shapes":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-68,442.996],[707.186,884.603],[1477.717,444.265],[705.781,0.25]],"c":true},"ix":2,"x":"var $bm_rt;\nfunction inOutQuint(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(inOutQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"nm":"Path 2","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"gf","o":{"a":0,"k":100,"ix":10},"r":1,"bm":0,"g":{"p":3,"k":{"a":0,"k":[0,0.502,0.18,0.957,0.5,0.737,0.28,0.906,1,0.973,0.38,0.855],"ix":9}},"s":{"a":0,"k":[0,0],"ix":5},"e":{"a":0,"k":[1204,0],"ix":6},"t":1,"nm":"Gradient Fill 1","mn":"ADBE Vector Graphic - G-Fill","hd":false},{"ty":"fl","c":{"a":0,"k":[0.5,0.5,0.5,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false}],"ip":240,"op":360,"st":0,"bm":0},{"ddd":0,"ind":17,"ty":4,"nm":"Layer 30 Outlines","parent":21,"sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1317.47,733.564,0],"ix":2},"a":{"a":0,"k":[421.589,270.947,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":600,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[446.839,-216.543],[391.445,-255.697],[-421.269,212.224],[-421.096,281.197]],"c":true}]},{"t":720,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[421.339,-216.543],[345.445,-270.697],[-421.338,172.724],[-421.339,270.697]],"c":true}]}],"ix":2,"x":"var $bm_rt;\nfunction inOutQuint(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(inOutQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[0.878431432387,0.847058883368,0.87450986376,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[421.589,270.947],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":2,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false}],"ip":240,"op":360,"st":0,"bm":0},{"ddd":0,"ind":18,"ty":4,"nm":"Layer 31 Outlines","parent":21,"sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[464.156,727.907,0],"ix":2},"a":{"a":0,"k":[432.226,276.604,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":600,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[432.121,218.382],[-403.583,-259.854],[-457.476,-221.198],[432.231,287.855]],"c":true}]},{"t":720,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[431.976,178.382],[-356.083,-276.354],[-431.976,-222.198],[431.975,276.355]],"c":true}]}],"ix":2,"x":"var $bm_rt;\nfunction inOutQuint(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(inOutQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[0.784313785329,0.768627510819,0.803921628466,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[432.226,276.604],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":2,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false}],"ip":240,"op":360,"st":0,"bm":0},{"ddd":0,"ind":19,"ty":4,"nm":"Layer 32 Outlines","parent":21,"sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[448.19,780.213,0],"ix":2},"a":{"a":0,"k":[448.19,274.755,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":600,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[447.877,252.982],[-464.94,-271.755],[-464.841,-250.233],[447.919,276.005]],"c":true}]},{"t":720,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[447.94,242.482],[-447.94,-274.505],[-447.94,-242.483],[447.94,274.505]],"c":true}]}],"ix":2,"x":"var $bm_rt;\nfunction inOutQuint(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(inOutQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[0.784313785329,0.768627510819,0.803921628466,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[448.19,274.755],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":2,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false}],"ip":240,"op":360,"st":0,"bm":0},{"ddd":0,"ind":20,"ty":4,"nm":"Layer 34 Outlines","parent":21,"sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1333.434,785.87,0],"ix":2},"a":{"a":0,"k":[437.554,269.098,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":600,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[454.527,-268.848],[-437.21,247.45],[-437.314,270.098],[454.304,-246.325]],"c":true}]},{"t":720,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[437.304,-268.848],[-437.304,236.825],[-437.304,268.848],[437.304,-236.825]],"c":true}]}],"ix":2,"x":"var $bm_rt;\nfunction inOutQuint(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(inOutQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[0.878431432387,0.847058883368,0.87450986376,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[437.554,269.098],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":2,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false}],"ip":240,"op":360,"st":0,"bm":0},{"ddd":0,"ind":21,"ty":4,"nm":"Layer 33 Outlines","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":240,"s":[1318.033,1099.179,0],"to":[-1.333,10,0],"ti":[1.333,-10,0]},{"t":360,"s":[1310.033,1159.179,0]}],"ix":2,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"a":{"a":0,"k":[885.494,511.472,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":240,"s":[22,22,100]},{"t":360,"s":[100,100,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":600,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[901.744,6.049],[1.269,-514.222],[-901.994,-2.514],[10.562,522.222]],"c":true}]},{"t":720,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[885.244,5.549],[-9.731,-511.222],[-885.244,-5.764],[10.636,511.222]],"c":true}]}],"ix":2,"x":"var $bm_rt;\nfunction inOutQuint(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(inOutQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[0.976470648074,0.964705942191,0.980392216701,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[885.494,511.473],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":2,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false}],"ip":240,"op":360,"st":0,"bm":0},{"ddd":0,"ind":22,"ty":4,"nm":"Layer 28 Outlines 6","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":240,"s":[1318.202,1095.923,0],"to":[0,15.333,0],"ti":[0,-15.333,0]},{"t":360,"s":[1318.202,1187.923,0]}],"ix":2,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"a":{"a":0,"k":[706.796,405.176,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":240,"s":[60,60,100]},{"t":360,"s":[135,135,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"shapes":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[705.781,0.25],[0.25,405.183],[707.811,810.103],[1413.342,406.328]],"c":true},"ix":2},"nm":"Path 2","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"rd","nm":"Round Corners 1","r":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":296,"s":[0]},{"t":360,"s":[20]}],"ix":1},"ix":2,"mn":"ADBE Vector Filter - RC","hd":false},{"ty":"st","c":{"a":0,"k":[0.972549079446,0.380392186782,0.854902020623,1],"ix":3},"o":{"a":0,"k":100,"ix":4},"w":{"a":1,"k":[{"i":{"x":[0],"y":[1]},"o":{"x":[0.009],"y":[0.474]},"t":240,"s":[130]},{"i":{"x":[0.667],"y":[1]},"o":{"x":[0.167],"y":[0]},"t":360,"s":[4]},{"i":{"x":[0.46],"y":[1]},"o":{"x":[0.573],"y":[0]},"t":600,"s":[4]},{"t":720,"s":[8]}],"ix":5},"lc":1,"lj":1,"ml":4,"bm":0,"nm":"Stroke 1","mn":"ADBE Vector Graphic - Stroke","hd":false}],"ip":240,"op":26347,"st":0,"bm":0}]},{"id":"comp_7","layers":[{"ddd":0,"ind":1,"ty":2,"nm":"Layer 155","refId":"image_125","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[468.307,256.669,0],"ix":2},"a":{"a":0,"k":[20.113,29.402,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":10.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":72,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":421,"s":[100,100,100]},{"t":489.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":10.6,"op":26336.2,"st":10.6,"bm":0},{"ddd":0,"ind":2,"ty":2,"nm":"Layer 224","refId":"image_126","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[548.891,213.769,0],"ix":2},"a":{"a":0,"k":[20.113,29.402,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":15.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":76.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":420,"s":[100,100,100]},{"t":487.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":15.4,"op":26336.2,"st":15.4,"bm":0},{"ddd":0,"ind":3,"ty":2,"nm":"Layer 239","refId":"image_127","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[583.07,194.141,0],"ix":2},"a":{"a":0,"k":[26.258,29.411,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":13,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":74.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":419,"s":[100,100,100]},{"t":487,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":13,"op":26336.2,"st":13,"bm":0},{"ddd":0,"ind":4,"ty":2,"nm":"Layer 311","refId":"image_128","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[504.251,249.517,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":17.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":79.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":417.999,"s":[100,100,100]},{"t":485.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":17.8,"op":26336.2,"st":17.8,"bm":0},{"ddd":0,"ind":5,"ty":2,"nm":"Layer 315","refId":"image_129","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[619.201,172.145,0],"ix":2},"a":{"a":0,"k":[26.258,29.411,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":20.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":81.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":417.001,"s":[100,100,100]},{"t":485.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":20.2,"op":26336.2,"st":20.2,"bm":0},{"ddd":0,"ind":6,"ty":2,"nm":"Layer 339","refId":"image_130","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[698.894,144.574,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":22.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":84,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":416,"s":[100,100,100]},{"t":484.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":22.6,"op":26336.2,"st":22.6,"bm":0},{"ddd":0,"ind":7,"ty":2,"nm":"Layer 415","refId":"image_131","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[424.167,295.258,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":27.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":88.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":415,"s":[100,100,100]},{"t":482.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":27.4,"op":26336.2,"st":27.4,"bm":0},{"ddd":0,"ind":8,"ty":2,"nm":"Layer 424","refId":"image_132","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[660.845,166.785,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":25,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":86.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":414,"s":[100,100,100]},{"t":482,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":25,"op":26336.2,"st":25,"bm":0},{"ddd":0,"ind":9,"ty":2,"nm":"Layer 156","refId":"image_133","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[443.477,242.923,0],"ix":2},"a":{"a":0,"k":[20.113,29.402,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":22.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":84,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":413,"s":[100,100,100]},{"t":481.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":22.6,"op":26336.2,"st":22.6,"bm":0},{"ddd":0,"ind":10,"ty":2,"nm":"Layer 225","refId":"image_134","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[519.969,216.12,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":29.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":91.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":411.999,"s":[100,100,100]},{"t":479.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":29.8,"op":26336.2,"st":29.8,"bm":0},{"ddd":0,"ind":11,"ty":2,"nm":"Layer 240","refId":"image_135","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[552.076,188.315,0],"ix":2},"a":{"a":0,"k":[29.44,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":32.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":93.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":411.001,"s":[100,100,100]},{"t":479.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":32.2,"op":26336.2,"st":32.2,"bm":0},{"ddd":0,"ind":12,"ty":2,"nm":"Layer 310","refId":"image_136","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[479.164,237.304,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":25,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":86.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":410,"s":[100,100,100]},{"t":478,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":25,"op":26336.2,"st":25,"bm":0},{"ddd":0,"ind":13,"ty":2,"nm":"Layer 316","refId":"image_137","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[593.929,156.184,0],"ix":2},"a":{"a":0,"k":[26.257,29.411,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":27.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":88.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":409,"s":[100,100,100]},{"t":476.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":27.4,"op":26336.2,"st":27.4,"bm":0},{"ddd":0,"ind":14,"ty":2,"nm":"Layer 338","refId":"image_138","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[681.824,135.374,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":34.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":96,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":408,"s":[100,100,100]},{"t":476.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":34.6,"op":26336.2,"st":34.6,"bm":0},{"ddd":0,"ind":15,"ty":2,"nm":"Layer 414","refId":"image_139","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[395.519,277.997,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":149,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":210.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":407,"s":[100,100,100]},{"t":475,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":149,"op":26448.2,"st":149,"bm":0},{"ddd":0,"ind":16,"ty":2,"nm":"Layer 429","refId":"image_140","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[639.975,153.176,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":39.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":100.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":406,"s":[100,100,100]},{"t":473.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":39.4,"op":26336.2,"st":39.4,"bm":0},{"ddd":0,"ind":17,"ty":2,"nm":"Layer 158","refId":"image_141","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[413.808,230.488,0],"ix":2},"a":{"a":0,"k":[26.258,29.411,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":34.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":96,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":405,"s":[100,100,100]},{"t":473.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":34.6,"op":26336.2,"st":34.6,"bm":0},{"ddd":0,"ind":18,"ty":2,"nm":"Layer 223","refId":"image_142","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[490.776,186.116,0],"ix":2},"a":{"a":0,"k":[26.258,29.411,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":41.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":103.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":403.999,"s":[100,100,100]},{"t":471.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":41.8,"op":26336.2,"st":41.8,"bm":0},{"ddd":0,"ind":19,"ty":2,"nm":"Layer 243","refId":"image_143","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[521.37,172.572,0],"ix":2},"a":{"a":0,"k":[29.44,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":46.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":108,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":403,"s":[100,100,100]},{"t":471.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":46.6,"op":26336.2,"st":46.6,"bm":0},{"ddd":0,"ind":20,"ty":2,"nm":"Layer 309","refId":"image_144","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[464.387,227.52,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":44.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":105.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":402.001,"s":[100,100,100]},{"t":470.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":44.2,"op":26336.2,"st":44.2,"bm":0},{"ddd":0,"ind":21,"ty":2,"nm":"Layer 317","refId":"image_145","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[527.449,134.825,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":150,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":211.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":401,"s":[100,100,100]},{"t":469,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":150,"op":26437.2,"st":150,"bm":0},{"ddd":0,"ind":22,"ty":2,"nm":"Layer 340","refId":"image_146","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[659.45,109.295,0],"ix":2},"a":{"a":0,"k":[26.257,29.411,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":148.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":210.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":399.999,"s":[100,100,100]},{"t":467.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":148.8,"op":26431.2,"st":148.8,"bm":0},{"ddd":0,"ind":23,"ty":2,"nm":"Layer 428","refId":"image_147","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[613.372,135.884,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":51.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":112.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":399,"s":[100,100,100]},{"t":466.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":51.4,"op":26336.2,"st":51.4,"bm":0},{"ddd":0,"ind":24,"ty":2,"nm":"Layer 308","refId":"image_148","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[446.801,216.851,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":147.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":209,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":398,"s":[100,100,100]},{"t":466.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":147.6,"op":26437.2,"st":147.6,"bm":0},{"ddd":0,"ind":25,"ty":2,"nm":"Layer 319","refId":"image_149","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[559.816,150.342,0],"ix":2},"a":{"a":0,"k":[29.439,17.643,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":152.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":213.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":397,"s":[100,100,100]},{"t":464.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":152.4,"op":26437.2,"st":152.4,"bm":0},{"ddd":0,"ind":26,"ty":2,"nm":"Layer 432","refId":"image_150","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[371.111,265.858,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":150,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":211.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":396,"s":[100,100,100]},{"t":464,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":150,"op":26437.2,"st":150,"bm":0},{"ddd":0,"ind":27,"ty":2,"nm":"Layer 241","refId":"image_151","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[493.256,143.384,0],"ix":2},"a":{"a":0,"k":[26.257,29.411,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":159.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":221,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":395,"s":[100,100,100]},{"t":463.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":159.6,"op":26437.2,"st":159.6,"bm":0},{"ddd":0,"ind":28,"ty":2,"nm":"Layer 426","refId":"image_152","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[584.995,120.366,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":162,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":223.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":394,"s":[100,100,100]},{"t":462,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":162,"op":26437.2,"st":162,"bm":0},{"ddd":0,"ind":29,"ty":2,"nm":"Layer 427","refId":"image_153","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[623.681,98.64,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":166.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":228.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":392.999,"s":[100,100,100]},{"t":460.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":166.8,"op":26437.2,"st":166.8,"bm":0},{"ddd":0,"ind":30,"ty":2,"nm":"Layer 475","refId":"image_154","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[421.119,191.706,0],"ix":2},"a":{"a":0,"k":[26.257,29.411,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":164.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":225.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":392,"s":[100,100,100]},{"t":459.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":164.4,"op":26437.2,"st":164.4,"bm":0},{"ddd":0,"ind":31,"ty":2,"nm":"Layer 480","refId":"image_155","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[452.827,176.683,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":169.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":230.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":391.001,"s":[100,100,100]},{"t":459.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":169.2,"op":26437.2,"st":169.2,"bm":0},{"ddd":0,"ind":32,"ty":2,"nm":"Layer 312","refId":"image_156","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[506.001,122.221,0],"ix":2},"a":{"a":0,"k":[19.583,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":171.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":233,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":390,"s":[100,100,100]},{"t":458.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":171.6,"op":26437.2,"st":171.6,"bm":0},{"ddd":0,"ind":33,"ty":2,"nm":"Layer 337","refId":"image_157","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[598.467,86.379,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":176.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":237.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":389,"s":[100,100,100]},{"t":456.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":176.4,"op":26437.2,"st":176.4,"bm":0},{"ddd":0,"ind":34,"ty":2,"nm":"Layer 479","refId":"image_158","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[426.223,159.39,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":174,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":235.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":388,"s":[100,100,100]},{"t":456,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":174,"op":26437.2,"st":174,"bm":0},{"ddd":0,"ind":35,"ty":2,"nm":"Layer 242","refId":"image_159","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[460.445,124.318,0],"ix":2},"a":{"a":0,"k":[26.258,29.411,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":181.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":242.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":387.001,"s":[100,100,100]},{"t":455.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":181.2,"op":26437.2,"st":181.2,"bm":0},{"ddd":0,"ind":36,"ty":2,"nm":"Layer 320","refId":"image_160","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[532.689,139.603,0],"ix":2},"a":{"a":0,"k":[114.158,65.073,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":0,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[237.969,127.971],[222.969,137.971],[225.969,142.471],[249.469,129.471]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":74,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[174.668,89.165],[159.668,99.165],[225.969,142.471],[249.469,129.471]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":130,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[174.668,89.165],[159.668,99.165],[225.969,142.471],[249.469,129.471]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":196,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[93.469,44.971],[78.469,54.971],[225.969,142.471],[249.469,129.471]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":382,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[93.469,44.971],[78.469,54.971],[225.969,142.471],[249.469,129.471]],"c":true}]},{"t":461,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[237.969,127.971],[222.969,137.971],[225.969,142.471],[249.469,129.471]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":0,"op":26347.2,"st":0,"bm":0},{"ddd":0,"ind":37,"ty":2,"nm":"Layer 472","refId":"image_161","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[324.282,240.952,0],"ix":2},"a":{"a":0,"k":[126.652,72.172,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":4.8,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[261.87,143.72],[245.87,150.22],[243.87,157.22],[264.87,142.22]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":77.999,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[223.869,120.965],[207.869,127.465],[243.87,157.22],[264.87,142.22]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":133.999,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[223.869,120.965],[207.869,127.465],[243.87,157.22],[264.87,142.22]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":200.8,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[178.37,93.72],[162.37,100.22],[243.87,157.22],[264.87,142.22]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":379.999,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[178.37,93.72],[162.37,100.22],[243.87,157.22],[264.87,142.22]],"c":true}]},{"t":458.99921875,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[261.87,143.72],[245.87,150.22],[243.87,157.22],[264.87,142.22]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":4.8,"op":26347.2,"st":4.8,"bm":0},{"ddd":0,"ind":38,"ty":2,"nm":"Layer 488","refId":"image_162","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[445.637,172.895,0],"ix":2},"a":{"a":0,"k":[144.527,82.327,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":9.6,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[306.89,156.432],[271.89,177.432],[281.889,176.932],[309.389,157.432]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":82,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[204.185,95.524],[169.185,116.524],[281.889,176.932],[309.389,157.432]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":138,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[204.185,95.524],[169.185,116.524],[281.889,176.932],[309.389,157.432]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":205.6,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[136.889,61.432],[101.889,82.432],[281.889,176.932],[309.389,157.432]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":378,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[136.889,61.432],[101.889,82.432],[281.889,176.932],[309.389,157.432]],"c":true}]},{"t":457.000390625,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[306.89,156.432],[271.89,177.432],[281.889,176.932],[309.389,157.432]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":9.6,"op":26347.2,"st":9.6,"bm":0},{"ddd":0,"ind":39,"ty":2,"nm":"Layer 491","refId":"image_163","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[393.169,189.422,0],"ix":2},"a":{"a":0,"k":[134.723,76.757,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":14.4,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[282.554,148.836],[263.554,162.336],[263.054,166.836],[285.554,148.836]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":86,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[213.256,107.25],[194.256,120.75],[263.054,166.836],[285.554,148.836]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":142,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[213.256,107.25],[194.256,120.75],[263.054,166.836],[285.554,148.836]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":210.4,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[168.554,85.836],[149.554,99.336],[263.054,166.836],[285.554,148.836]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":376,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[168.554,85.836],[149.554,99.336],[263.054,166.836],[285.554,148.836]],"c":true}]},{"t":454.999609375,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[282.554,148.836],[263.554,162.336],[263.054,166.836],[285.554,148.836]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":14.4,"op":26347.2,"st":14.4,"bm":0},{"ddd":0,"ind":40,"ty":2,"nm":"Layer 493","refId":"image_164","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[567.498,115.45,0],"ix":2},"a":{"a":0,"k":[115.447,65.806,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":19.2,"s":[{"i":[[0,0],[-2.5,0],[0,0],[0,0]],"o":[[0,0],[2.5,0],[0,0],[0,0]],"v":[[248.449,131.856],[225.949,142.356],[229.449,146.356],[243.949,132.356]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":90.001,"s":[{"i":[[0,0],[-2.5,0],[0,0],[0,0]],"o":[[0,0],[2.5,0],[0,0],[0,0]],"v":[[167.85,79.931],[145.351,90.431],[229.449,146.356],[243.949,132.356]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":146.001,"s":[{"i":[[0,0],[-2.5,0],[0,0],[0,0]],"o":[[0,0],[2.5,0],[0,0],[0,0]],"v":[[167.85,79.931],[145.351,90.431],[229.449,146.356],[243.949,132.356]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":215.2,"s":[{"i":[[0,0],[-2.5,0],[0,0],[0,0]],"o":[[0,0],[2.5,0],[0,0],[0,0]],"v":[[139.449,67.856],[116.949,78.356],[229.449,146.356],[243.949,132.356]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":374.001,"s":[{"i":[[0,0],[-2.5,0],[0,0],[0,0]],"o":[[0,0],[2.5,0],[0,0],[0,0]],"v":[[139.449,67.856],[116.949,78.356],[229.449,146.356],[243.949,132.356]],"c":true}]},{"t":453.00078125,"s":[{"i":[[0,0],[-2.5,0],[0,0],[0,0]],"o":[[0,0],[2.5,0],[0,0],[0,0]],"v":[[248.449,131.856],[225.949,142.356],[229.449,146.356],[243.949,132.356]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":19.2,"op":26347.2,"st":19.2,"bm":0},{"ddd":0,"ind":41,"ty":2,"nm":"Layer 494","refId":"image_165","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[649.649,117.22,0],"ix":2},"a":{"a":0,"k":[70.14,40.065,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":24,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[151.491,80.345],[130.491,90.845],[136.991,93.845],[154.491,74.845]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":94,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[107.027,53.38],[86.027,63.88],[136.991,93.845],[154.491,74.845]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":150,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[107.027,53.38],[86.027,63.88],[136.991,93.845],[154.491,74.845]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":220,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[26.991,4.845],[5.991,15.345],[136.991,93.845],[154.491,74.845]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":372,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[26.991,4.845],[5.991,15.345],[136.991,93.845],[154.491,74.845]],"c":true}]},{"t":451,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[151.491,80.345],[130.491,90.845],[136.991,93.845],[154.491,74.845]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":24,"op":26347.2,"st":24,"bm":0},{"ddd":0,"ind":42,"ty":2,"nm":"Layer 496","refId":"image_166","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[361.095,213.88,0],"ix":2},"a":{"a":0,"k":[136.297,77.651,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":28.8,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[293.702,149.771],[271.702,162.771],[268.202,165.771],[295.202,148.771]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":97.999,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[200.435,99.306],[178.435,112.306],[268.202,165.771],[295.202,148.771]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":153.999,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[200.435,99.306],[178.435,112.306],[268.202,165.771],[295.202,148.771]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":224.8,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[196.702,98.771],[174.702,111.771],[268.202,165.771],[295.202,148.771]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":369.999,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[196.702,98.771],[174.702,111.771],[268.202,165.771],[295.202,148.771]],"c":true}]},{"t":448.99921875,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[293.702,149.771],[271.702,162.771],[268.202,165.771],[295.202,148.771]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":28.8,"op":26347.2,"st":28.8,"bm":0},{"ddd":0,"ind":43,"ty":2,"nm":"Layer 500","refId":"image_167","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[480.791,149.618,0],"ix":2},"a":{"a":0,"k":[132.43,75.454,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":33.6,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[285.139,144.087],[259.639,160.087],[259.139,159.837],[281.139,147.337]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":102,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[188.137,88.196],[162.637,104.196],[259.139,159.837],[281.139,147.337]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":158,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[188.137,88.196],[162.637,104.196],[259.139,159.837],[281.139,147.337]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":229.6,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[119.639,50.337],[94.139,66.337],[259.139,159.837],[281.139,147.337]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":368,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[119.639,50.337],[94.139,66.337],[259.139,159.837],[281.139,147.337]],"c":true}]},{"t":447.000390625,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[285.139,144.087],[259.639,160.087],[259.139,159.837],[281.139,147.337]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":33.6,"op":26347.2,"st":33.6,"bm":0}]},{"id":"comp_8","layers":[{"ddd":0,"ind":1,"ty":2,"nm":"Layer 513","refId":"image_168","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1010.817,276.908,0],"ix":2},"a":{"a":0,"k":[26.257,29.411,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":10.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":70.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":422,"s":[100,100,100]},{"t":481.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":10.4,"op":26331.2,"st":10.4,"bm":0},{"ddd":0,"ind":2,"ty":2,"nm":"Layer 520","refId":"image_169","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[974.047,256.181,0],"ix":2},"a":{"a":0,"k":[26.286,29.426,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":22.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":82.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":421,"s":[100,100,100]},{"t":480.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":22.4,"op":26331.2,"st":22.4,"bm":0},{"ddd":0,"ind":3,"ty":2,"nm":"Layer 525","refId":"image_170","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[936.766,234.611,0],"ix":2},"a":{"a":0,"k":[26.285,29.427,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":15.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":75.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":420.001,"s":[100,100,100]},{"t":480.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":15.2,"op":26331.2,"st":15.2,"bm":0},{"ddd":0,"ind":4,"ty":2,"nm":"Layer 526","refId":"image_171","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[865.799,193.514,0],"ix":2},"a":{"a":0,"k":[20.073,29.461,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":17.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":77.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":419,"s":[100,100,100]},{"t":479.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":17.6,"op":26331.2,"st":17.6,"bm":0},{"ddd":0,"ind":5,"ty":2,"nm":"Layer 532","refId":"image_172","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[901.717,226.814,0],"ix":2},"a":{"a":0,"k":[29.43,17.662,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":20,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":80,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":418,"s":[100,100,100]},{"t":478,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":20,"op":26331.2,"st":20,"bm":0},{"ddd":0,"ind":6,"ty":2,"nm":"Layer 557","refId":"image_173","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[759.667,133.534,0],"ix":2},"a":{"a":0,"k":[26.286,29.427,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":15.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":75.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":417.001,"s":[100,100,100]},{"t":477.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":15.2,"op":26331.2,"st":15.2,"bm":0},{"ddd":0,"ind":7,"ty":2,"nm":"Layer 561","refId":"image_174","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[825.734,189.588,0],"ix":2},"a":{"a":0,"k":[19.57,11.778,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":24.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":84.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":415.999,"s":[100,100,100]},{"t":475.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":24.8,"op":26331.2,"st":24.8,"bm":0},{"ddd":0,"ind":8,"ty":2,"nm":"Layer 563","refId":"image_175","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[797.418,166.824,0],"ix":2},"a":{"a":0,"k":[29.431,17.662,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":20,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":80,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":415,"s":[100,100,100]},{"t":475,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":20,"op":26331.2,"st":20,"bm":0},{"ddd":0,"ind":9,"ty":2,"nm":"Layer 514","refId":"image_176","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1042.329,257.711,0],"ix":2},"a":{"a":0,"k":[26.258,29.411,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":22.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":82.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":414,"s":[100,100,100]},{"t":473.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":22.4,"op":26331.2,"st":22.4,"bm":0},{"ddd":0,"ind":10,"ty":2,"nm":"Layer 527","refId":"image_177","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[887.356,181.722,0],"ix":2},"a":{"a":0,"k":[20.074,29.461,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":24.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":84.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":412.999,"s":[100,100,100]},{"t":472.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":24.8,"op":26331.2,"st":24.8,"bm":0},{"ddd":0,"ind":11,"ty":2,"nm":"Layer 529","refId":"image_178","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[927.925,209.946,0],"ix":2},"a":{"a":0,"k":[29.43,17.662,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":27.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":87.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":412.001,"s":[100,100,100]},{"t":472.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":27.2,"op":26331.2,"st":27.2,"bm":0},{"ddd":0,"ind":12,"ty":2,"nm":"Layer 540","refId":"image_179","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[966.465,215.865,0],"ix":2},"a":{"a":0,"k":[26.285,29.427,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":29.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":89.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":411,"s":[100,100,100]},{"t":471.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":29.6,"op":26331.2,"st":29.6,"bm":0},{"ddd":0,"ind":13,"ty":2,"nm":"Layer 547","refId":"image_180","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[998.96,257.729,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":32,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":92,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":410,"s":[100,100,100]},{"t":470,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":32,"op":26331.2,"st":32,"bm":0},{"ddd":0,"ind":14,"ty":2,"nm":"Layer 559","refId":"image_181","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[842.839,180.03,0],"ix":2},"a":{"a":0,"k":[19.571,11.778,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":34.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":94.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":409,"s":[100,100,100]},{"t":468.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":34.4,"op":26331.2,"st":34.4,"bm":0},{"ddd":0,"ind":15,"ty":2,"nm":"Layer 560","refId":"image_182","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[821.236,153.767,0],"ix":2},"a":{"a":0,"k":[19.571,11.778,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":36.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":96.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":407.999,"s":[100,100,100]},{"t":467.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":36.8,"op":26331.2,"st":36.8,"bm":0},{"ddd":0,"ind":16,"ty":2,"nm":"Layer 583","refId":"image_183","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[786.849,133.88,0],"ix":2},"a":{"a":0,"k":[19.582,11.758,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":39.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":99.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":407.001,"s":[100,100,100]},{"t":467.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":39.2,"op":26331.2,"st":39.2,"bm":0},{"ddd":0,"ind":17,"ty":2,"nm":"Layer 528","refId":"image_184","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[904.878,167.364,0],"ix":2},"a":{"a":0,"k":[20.073,29.46,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":34.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":94.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":406,"s":[100,100,100]},{"t":465.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":34.4,"op":26331.2,"st":34.4,"bm":0},{"ddd":0,"ind":18,"ty":2,"nm":"Layer 548","refId":"image_185","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1015.52,246.009,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":46.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":106.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":405,"s":[100,100,100]},{"t":464.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":46.4,"op":26331.2,"st":46.4,"bm":0},{"ddd":0,"ind":19,"ty":2,"nm":"Layer 556","refId":"image_186","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[841.676,126.892,0],"ix":2},"a":{"a":0,"k":[26.285,29.426,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":41.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":101.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":404,"s":[100,100,100]},{"t":464.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":41.6,"op":26331.2,"st":41.6,"bm":0},{"ddd":0,"ind":20,"ty":2,"nm":"Layer 558","refId":"image_187","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[860.673,169.84,0],"ix":2},"a":{"a":0,"k":[19.571,11.778,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":39.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":99.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":403.001,"s":[100,100,100]},{"t":463.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":39.2,"op":26331.2,"st":39.2,"bm":0},{"ddd":0,"ind":21,"ty":2,"nm":"Layer 562","refId":"image_188","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[806.23,118.871,0],"ix":2},"a":{"a":0,"k":[29.43,17.662,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":150,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":210,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":402,"s":[100,100,100]},{"t":462,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":150,"op":26437.2,"st":150,"bm":0},{"ddd":0,"ind":22,"ty":2,"nm":"Layer 517","refId":"image_189","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1074.537,253.008,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":148.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":208.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":401,"s":[100,100,100]},{"t":460.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":148.4,"op":26433.2,"st":148.4,"bm":0},{"ddd":0,"ind":23,"ty":2,"nm":"Layer 541","refId":"image_190","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[993.98,200.324,0],"ix":2},"a":{"a":0,"k":[26.285,29.427,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":153.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":213.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":400.001,"s":[100,100,100]},{"t":460.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":153.2,"op":26433.2,"st":153.2,"bm":0},{"ddd":0,"ind":24,"ty":2,"nm":"Layer 542","refId":"image_191","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[953.435,196.921,0],"ix":2},"a":{"a":0,"k":[19.57,11.778,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":150.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":210.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":398.999,"s":[100,100,100]},{"t":458.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":150.8,"op":26433.2,"st":150.8,"bm":0},{"ddd":0,"ind":25,"ty":2,"nm":"Layer 549","refId":"image_192","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1030.43,236.107,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":155.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":215.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":398,"s":[100,100,100]},{"t":458.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":155.6,"op":26433.2,"st":155.6,"bm":0},{"ddd":0,"ind":26,"ty":2,"nm":"Layer 564","refId":"image_193","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[880.623,143.859,0],"ix":2},"a":{"a":0,"k":[26.285,29.426,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":158,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":218,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":397,"s":[100,100,100]},{"t":457,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":158,"op":26433.2,"st":158,"bm":0},{"ddd":0,"ind":27,"ty":2,"nm":"Layer 531","refId":"image_194","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1054.848,222.295,0],"ix":2},"a":{"a":0,"k":[29.43,17.662,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":160.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":220.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":396,"s":[100,100,100]},{"t":455.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":160.4,"op":26433.2,"st":160.4,"bm":0},{"ddd":0,"ind":28,"ty":2,"nm":"Layer 538","refId":"image_195","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[934.348,172.44,0],"ix":2},"a":{"a":0,"k":[19.571,11.778,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":167.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":227.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":395,"s":[100,100,100]},{"t":455.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":167.6,"op":26433.2,"st":167.6,"bm":0},{"ddd":0,"ind":29,"ty":2,"nm":"Layer 543","refId":"image_196","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[969.74,186.73,0],"ix":2},"a":{"a":0,"k":[19.57,11.778,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":165.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":225.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":394.001,"s":[100,100,100]},{"t":454.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":165.2,"op":26433.2,"st":165.2,"bm":0},{"ddd":0,"ind":30,"ty":2,"nm":"Layer 565","refId":"image_197","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[910.715,140.758,0],"ix":2},"a":{"a":0,"k":[19.571,11.778,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":162.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":222.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":392.999,"s":[100,100,100]},{"t":452.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":162.8,"op":26433.2,"st":162.8,"bm":0},{"ddd":0,"ind":31,"ty":2,"nm":"Layer 574","refId":"image_198","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[874.917,106.952,0],"ix":2},"a":{"a":0,"k":[26.285,29.426,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":170,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":230,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":392,"s":[100,100,100]},{"t":452,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":170,"op":26433.2,"st":170,"bm":0},{"ddd":0,"ind":32,"ty":2,"nm":"Layer 524","refId":"image_199","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[954.088,146.049,0],"ix":2},"a":{"a":0,"k":[26.285,29.426,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":172.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":232.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":391,"s":[100,100,100]},{"t":450.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":172.4,"op":26433.2,"st":172.4,"bm":0},{"ddd":0,"ind":33,"ty":2,"nm":"Layer 544","refId":"image_200","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[987.328,176.597,0],"ix":2},"a":{"a":0,"k":[19.57,11.778,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":177.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":237.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":390.001,"s":[100,100,100]},{"t":450.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":177.2,"op":26433.2,"st":177.2,"bm":0},{"ddd":0,"ind":34,"ty":2,"nm":"Layer 545","refId":"image_201","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1017.328,200.084,0],"ix":2},"a":{"a":0,"k":[19.571,11.778,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":174.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":234.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":388.999,"s":[100,100,100]},{"t":448.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":174.8,"op":26433.2,"st":174.8,"bm":0},{"ddd":0,"ind":35,"ty":2,"nm":"Layer 505","refId":"image_202","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1035.554,172.627,0],"ix":2},"a":{"a":0,"k":[20.113,29.402,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":184.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":244.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":388,"s":[100,100,100]},{"t":447.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":184.4,"op":26433.2,"st":184.4,"bm":0},{"ddd":0,"ind":36,"ty":2,"nm":"Layer 533","refId":"image_203","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[981.616,128.989,0],"ix":2},"a":{"a":0,"k":[20.113,29.402,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":189.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":249.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":387.001,"s":[100,100,100]},{"t":447.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":189.2,"op":26433.2,"st":189.2,"bm":0},{"ddd":0,"ind":37,"ty":2,"nm":"Layer 539","refId":"image_204","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[976.333,149.047,0],"ix":2},"a":{"a":0,"k":[136.586,77.259,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":0,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-18.247,150.212],[-18.747,151.212],[0.753,165.712],[6.253,162.212]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":83,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[57.577,105.22],[-18.747,151.212],[0.753,165.712],[82.077,117.22]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":131,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[57.577,105.22],[-18.747,151.212],[0.753,165.712],[82.077,117.22]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":207,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[124.753,67.212],[-18.747,151.212],[0.753,165.712],[149.253,79.212]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":385,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[124.753,67.212],[-18.747,151.212],[0.753,165.712],[149.253,79.212]],"c":true}]},{"t":475,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-18.247,150.212],[-18.747,151.212],[0.753,165.712],[6.253,162.212]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":0,"op":26347.2,"st":0,"bm":0},{"ddd":0,"ind":38,"ty":2,"nm":"Layer 546","refId":"image_205","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1039.392,188.758,0],"ix":2},"a":{"a":0,"k":[149.099,84.316,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":4.8,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-17.793,163.558],[-17.293,168.058],[-1.793,177.058],[1.707,176.058]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":87.999,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[70.237,114.918],[-17.293,168.058],[-1.793,177.058],[89.737,127.418]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":134.999,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[70.237,114.918],[-17.293,168.058],[-1.793,177.058],[89.737,127.418]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":211.8,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[138.707,74.558],[-17.293,168.058],[-1.793,177.058],[158.207,87.058]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":382.999,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[138.707,74.558],[-17.293,168.058],[-1.793,177.058],[158.207,87.058]],"c":true}]},{"t":472.99921875,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-17.793,163.558],[-17.293,168.058],[-1.793,177.058],[1.707,176.058]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":4.8,"op":26347.2,"st":4.8,"bm":0},{"ddd":0,"ind":39,"ty":2,"nm":"Layer 567","refId":"image_206","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[936.171,128.945,0],"ix":2},"a":{"a":0,"k":[134.85,76.28,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":9.6,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-6.82,152.835],[-18.82,152.335],[-8.32,167.835],[3.68,159.835]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":92,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[54.818,113.396],[-18.82,152.335],[-8.32,167.835],[65.318,120.396]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":139,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[54.818,113.396],[-18.82,152.335],[-8.32,167.835],[65.318,120.396]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":216.6,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[107.68,83.835],[-18.82,152.335],[-8.32,167.835],[118.18,90.835]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":381,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[107.68,83.835],[-18.82,152.335],[-8.32,167.835],[118.18,90.835]],"c":true}]},{"t":471.000390625,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-6.82,152.835],[-18.82,152.335],[-8.32,167.835],[3.68,159.835]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":9.6,"op":26347.2,"st":9.6,"bm":0},{"ddd":0,"ind":40,"ty":2,"nm":"Layer 568","refId":"image_207","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1089.515,204.749,0],"ix":2},"a":{"a":0,"k":[161.05,91.057,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":14.4,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-14.465,182.309],[-14.965,178.309],[-1.965,194.809],[4.535,188.309]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":96,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[78.371,128.446],[-14.965,178.309],[-1.965,194.809],[97.371,134.446]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":143,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[78.371,128.446],[-14.965,178.309],[-1.965,194.809],[97.371,134.446]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":221.4,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[123.535,101.809],[-14.965,178.309],[-1.965,194.809],[142.535,107.809]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":379,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[123.535,101.809],[-14.965,178.309],[-1.965,194.809],[142.535,107.809]],"c":true}]},{"t":468.999609375,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-14.465,182.309],[-14.965,178.309],[-1.965,194.809],[4.535,188.309]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":14.4,"op":26347.2,"st":14.4,"bm":0},{"ddd":0,"ind":41,"ty":2,"nm":"Layer 573","refId":"image_208","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1004.908,170.093,0],"ix":2},"a":{"a":0,"k":[157.72,89.18,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":19.2,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[8.812,162.087],[3.312,162.587],[28.812,174.087],[25.312,173.087]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":100.001,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[72.737,125.751],[3.312,162.587],[28.812,174.087],[89.237,136.751]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":147.001,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[72.737,125.751],[3.312,162.587],[28.812,174.087],[89.237,136.751]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":226.2,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[134.312,91.087],[3.312,162.587],[28.812,174.087],[150.812,102.087]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":377.001,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[134.312,91.087],[3.312,162.587],[28.812,174.087],[150.812,102.087]],"c":true}]},{"t":467.00078125,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[8.812,162.087],[3.312,162.587],[28.812,174.087],[25.312,173.087]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":19.2,"op":26347.2,"st":19.2,"bm":0},{"ddd":0,"ind":42,"ty":2,"nm":"Layer 578","refId":"image_209","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[860.776,130.456,0],"ix":2},"a":{"a":0,"k":[151.315,85.566,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":24,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[32.039,137.11],[32.539,135.61],[55.039,145.61],[54.539,145.11]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":104,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[120.465,91.541],[32.539,135.61],[55.039,145.61],[142.965,99.541]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":151,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[120.465,91.541],[32.539,135.61],[55.039,145.61],[142.965,99.541]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":231,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[158.039,67.11],[32.539,135.61],[55.039,145.61],[180.539,75.11]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":375,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[158.039,67.11],[32.539,135.61],[55.039,145.61],[180.539,75.11]],"c":true}]},{"t":465,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[32.039,137.11],[32.539,135.61],[55.039,145.61],[54.539,145.11]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":24,"op":26347.2,"st":24,"bm":0},{"ddd":0,"ind":43,"ty":2,"nm":"Layer 586","refId":"image_210","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[849.966,98.054,0],"ix":2},"a":{"a":0,"k":[116.902,66.156,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":28.8,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-14.064,129.602],[-14.064,128.602],[5.436,141.102],[2.936,139.602]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":107.999,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[42.817,96.484],[-14.064,128.602],[5.436,141.102],[59.817,106.484]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":154.999,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[42.817,96.484],[-14.064,128.602],[5.436,141.102],[59.817,106.484]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":235.8,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[72.936,79.102],[-14.064,128.602],[5.436,141.102],[89.936,89.102]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":372.999,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[72.936,79.102],[-14.064,128.602],[5.436,141.102],[89.936,89.102]],"c":true}]},{"t":462.99921875,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-14.064,129.602],[-14.064,128.602],[5.436,141.102],[2.936,139.602]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":28.8,"op":26347.2,"st":28.8,"bm":0},{"ddd":0,"ind":44,"ty":2,"nm":"Layer 596","refId":"image_211","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1132.082,219.623,0],"ix":2},"a":{"a":0,"k":[150.511,85.727,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":33.6,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-11.571,167.104],[-11.071,169.104],[7.429,181.104],[3.929,177.104]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":112,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[54.984,133.212],[-11.071,169.104],[7.429,181.104],[70.484,143.212]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":159,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[54.984,133.212],[-11.071,169.104],[7.429,181.104],[70.484,143.212]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":240.6,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[87.929,112.604],[-11.071,169.104],[7.429,181.104],[103.429,122.604]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":371,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[87.929,112.604],[-11.071,169.104],[7.429,181.104],[103.429,122.604]],"c":true}]},{"t":461.000390625,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-11.571,167.104],[-11.071,169.104],[7.429,181.104],[3.929,177.104]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":33.6,"op":26347.2,"st":33.6,"bm":0}]}],"layers":[{"ddd":0,"ind":3,"ty":0,"nm":"MAIN_ANIM _CROP_RENDER","refId":"comp_0","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[700,506,0],"ix":2},"a":{"a":0,"k":[960,600,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"w":1920,"h":1200,"ip":0,"op":585,"st":-420,"bm":0}],"markers":[]} \ No newline at end of file +{"v":"4.8.0","meta":{"g":"LottieFiles AE 3.5.3","a":"","k":"","d":"","tc":""},"fr":60,"ip":0,"op":585,"w":1180,"h":904,"nm":"MAIN_ANIM _CROP_RENDER_LOTTIE_P02-P05","ddd":0,"assets":[{"id":"image_0","w":188,"h":142,"u":"","p":"","e":1},{"id":"image_1","w":410,"h":352,"u":"","p":"","e":1},{"id":"image_2","w":531,"h":402,"u":"","p":"","e":1},{"id":"image_3","w":531,"h":377,"u":"","p":"","e":1},{"id":"image_4","w":531,"h":368,"u":"","p":"","e":1},{"id":"image_5","w":531,"h":390,"u":"","p":"","e":1},{"id":"image_6","w":412,"h":318,"u":"","p":"","e":1},{"id":"image_7","w":410,"h":316,"u":"","p":"","e":1},{"id":"image_8","w":332,"h":273,"u":"","p":"","e":1},{"id":"image_9","w":427,"h":327,"u":"","p":"","e":1},{"id":"image_10","w":356,"h":287,"u":"","p":"","e":1},{"id":"image_11","w":279,"h":243,"u":"","p":"","e":1},{"id":"image_12","w":351,"h":284,"u":"","p":"","e":1},{"id":"image_13","w":484,"h":360,"u":"","p":"","e":1},{"id":"image_14","w":484,"h":360,"u":"","p":"","e":1},{"id":"image_15","w":484,"h":360,"u":"","p":"","e":1},{"id":"image_16","w":484,"h":360,"u":"","p":"","e":1},{"id":"image_17","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_18","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_19","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_20","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_21","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_22","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_23","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_24","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_25","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_26","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_27","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_28","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_29","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_30","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_31","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_32","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_33","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_34","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_35","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_36","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_37","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_38","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_39","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_40","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_41","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_42","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_43","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_44","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_45","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_46","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_47","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_48","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_49","w":41,"h":59,"u":"","p":"","e":1},{"id":"image_50","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_51","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_52","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_53","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_54","w":41,"h":59,"u":"","p":"","e":1},{"id":"image_55","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_56","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_57","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_58","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_59","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_60","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_61","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_62","w":236,"h":135,"u":"","p":"","e":1},{"id":"image_63","w":261,"h":149,"u":"","p":"","e":1},{"id":"image_64","w":289,"h":165,"u":"","p":"","e":1},{"id":"image_65","w":292,"h":167,"u":"","p":"","e":1},{"id":"image_66","w":289,"h":165,"u":"","p":"","e":1},{"id":"image_67","w":283,"h":161,"u":"","p":"","e":1},{"id":"image_68","w":286,"h":163,"u":"","p":"","e":1},{"id":"image_69","w":290,"h":165,"u":"","p":"","e":1},{"id":"image_70","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_71","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_72","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_73","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_74","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_75","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_76","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_77","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_78","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_79","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_80","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_81","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_82","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_83","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_84","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_85","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_86","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_87","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_88","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_89","w":42,"h":59,"u":"","p":"","e":1},{"id":"image_90","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_91","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_92","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_93","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_94","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_95","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_96","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_97","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_98","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_99","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_100","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_101","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_102","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_103","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_104","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_105","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_106","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_107","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_108","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_109","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_110","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_111","w":53,"h":48,"u":"","p":"","e":1},{"id":"image_112","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_113","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_114","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_115","w":287,"h":164,"u":"","p":"","e":1},{"id":"image_116","w":252,"h":144,"u":"","p":"","e":1},{"id":"image_117","w":245,"h":140,"u":"","p":"","e":1},{"id":"image_118","w":298,"h":170,"u":"","p":"","e":1},{"id":"image_119","w":298,"h":170,"u":"","p":"","e":1},{"id":"image_120","w":298,"h":170,"u":"","p":"","e":1},{"id":"image_121","w":275,"h":157,"u":"","p":"","e":1},{"id":"image_122","w":261,"h":149,"u":"","p":"","e":1},{"id":"image_123","w":418,"h":275,"u":"","p":"","e":1},{"id":"image_124","w":271,"h":151,"u":"","p":"","e":1},{"id":"image_125","w":41,"h":59,"u":"","p":"","e":1},{"id":"image_126","w":41,"h":59,"u":"","p":"","e":1},{"id":"image_127","w":53,"h":59,"u":"","p":"","e":1},{"id":"image_128","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_129","w":53,"h":59,"u":"","p":"","e":1},{"id":"image_130","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_131","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_132","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_133","w":41,"h":59,"u":"","p":"","e":1},{"id":"image_134","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_135","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_136","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_137","w":53,"h":59,"u":"","p":"","e":1},{"id":"image_138","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_139","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_140","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_141","w":53,"h":59,"u":"","p":"","e":1},{"id":"image_142","w":53,"h":59,"u":"","p":"","e":1},{"id":"image_143","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_144","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_145","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_146","w":53,"h":59,"u":"","p":"","e":1},{"id":"image_147","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_148","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_149","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_150","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_151","w":53,"h":59,"u":"","p":"","e":1},{"id":"image_152","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_153","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_154","w":53,"h":59,"u":"","p":"","e":1},{"id":"image_155","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_156","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_157","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_158","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_159","w":53,"h":59,"u":"","p":"","e":1},{"id":"image_160","w":229,"h":131,"u":"","p":"","e":1},{"id":"image_161","w":254,"h":145,"u":"","p":"","e":1},{"id":"image_162","w":290,"h":165,"u":"","p":"","e":1},{"id":"image_163","w":270,"h":154,"u":"","p":"","e":1},{"id":"image_164","w":231,"h":132,"u":"","p":"","e":1},{"id":"image_165","w":141,"h":81,"u":"","p":"","e":1},{"id":"image_166","w":273,"h":156,"u":"","p":"","e":1},{"id":"image_167","w":265,"h":151,"u":"","p":"","e":1},{"id":"image_168","w":53,"h":59,"u":"","p":"","e":1},{"id":"image_169","w":53,"h":59,"u":"","p":"","e":1},{"id":"image_170","w":53,"h":59,"u":"","p":"","e":1},{"id":"image_171","w":41,"h":59,"u":"","p":"","e":1},{"id":"image_172","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_173","w":53,"h":59,"u":"","p":"","e":1},{"id":"image_174","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_175","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_176","w":53,"h":59,"u":"","p":"","e":1},{"id":"image_177","w":41,"h":59,"u":"","p":"","e":1},{"id":"image_178","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_179","w":53,"h":59,"u":"","p":"","e":1},{"id":"image_180","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_181","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_182","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_183","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_184","w":41,"h":59,"u":"","p":"","e":1},{"id":"image_185","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_186","w":53,"h":59,"u":"","p":"","e":1},{"id":"image_187","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_188","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_189","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_190","w":53,"h":59,"u":"","p":"","e":1},{"id":"image_191","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_192","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_193","w":53,"h":59,"u":"","p":"","e":1},{"id":"image_194","w":59,"h":36,"u":"","p":"","e":1},{"id":"image_195","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_196","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_197","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_198","w":53,"h":59,"u":"","p":"","e":1},{"id":"image_199","w":53,"h":59,"u":"","p":"","e":1},{"id":"image_200","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_201","w":40,"h":24,"u":"","p":"","e":1},{"id":"image_202","w":41,"h":59,"u":"","p":"","e":1},{"id":"image_203","w":41,"h":59,"u":"","p":"","e":1},{"id":"image_204","w":274,"h":155,"u":"","p":"","e":1},{"id":"image_205","w":299,"h":169,"u":"","p":"","e":1},{"id":"image_206","w":270,"h":153,"u":"","p":"","e":1},{"id":"image_207","w":323,"h":183,"u":"","p":"","e":1},{"id":"image_208","w":316,"h":179,"u":"","p":"","e":1},{"id":"image_209","w":303,"h":172,"u":"","p":"","e":1},{"id":"image_210","w":234,"h":133,"u":"","p":"","e":1},{"id":"image_211","w":302,"h":172,"u":"","p":"","e":1},{"id":"comp_0","layers":[{"ddd":0,"ind":1,"ty":0,"nm":"MAIN_ANIM _CROP","refId":"comp_1","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[960,600,0],"ix":2},"a":{"a":0,"k":[1580,1029.5,0],"ix":1},"s":{"a":0,"k":[58.281,58.281,100],"ix":6}},"ao":0,"w":3160,"h":2059,"ip":0,"op":1141,"st":-59,"bm":0}]},{"id":"comp_1","layers":[{"ddd":0,"ind":1,"ty":0,"nm":"MAIN_ANIM","refId":"comp_2","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.282,"y":1},"o":{"x":0.445,"y":0},"t":487,"s":[1580,917,0],"to":[0,16.667,0],"ti":[0,-16.667,0]},{"t":609,"s":[1580,1017,0]}],"ix":2},"a":{"a":0,"k":[1976,1513,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"w":3952,"h":3026,"ip":0,"op":1200,"st":0,"bm":0}]},{"id":"comp_2","layers":[{"ddd":0,"ind":1,"ty":0,"nm":"BLOCKS","parent":4,"refId":"comp_3","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1318.152,1024.984,0],"ix":2},"a":{"a":0,"k":[1976,1513,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"w":3952,"h":3026,"ip":518,"op":1200,"st":518,"bm":0},{"ddd":0,"ind":2,"ty":0,"nm":"GEPEK_JOBB_LENT_start","parent":4,"refId":"comp_4","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11,"x":"var $bm_rt;\nvar p = 0.8;\nvar a = 50;\nvar s = 1.70158;\nfunction inOutQuint(t, b, c, d, a, p) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction easeAndWizz() {\n var t, d, sX, eX, sY, eY, sZ, eZ, val1, val2, val2, val3;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n var dim = 1;\n try {\n key(1)[1].length;\n dim = 2;\n key(1)[2].length;\n dim = 3;\n } catch (e) {\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1[0];\n eX = $bm_sub(key2[0], key1[0]);\n if (dim >= 2) {\n sY = key1[1];\n eY = $bm_sub(key2[1], key1[1]);\n if (dim >= 3) {\n sZ = key1[2];\n eZ = $bm_sub(key2[2], key1[2]);\n }\n }\n if (time < key1.time || time > key2.time) {\n return value;\n } else {\n val1 = inOutQuint(t, sX, eX, d, a, p, s);\n switch (dim) {\n case 1:\n return val1;\n break;\n case 2:\n val2 = inOutQuint(t, sY, eY, d, a, p, s);\n return [\n val1,\n val2\n ];\n break;\n case 3:\n val2 = inOutQuint(t, sY, eY, d, a, p, s);\n val3 = inOutQuint(t, sZ, eZ, d, a, p, s);\n return [\n val1,\n val2,\n val3\n ];\n break;\n default:\n return null;\n }\n }\n}\n$bm_rt = easeAndWizz() || value;"},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1272.175,805.34,0],"ix":2},"a":{"a":0,"k":[711.5,472,0],"ix":1},"s":{"a":0,"k":[310,310,100],"ix":6}},"ao":0,"w":1423,"h":944,"ip":119,"op":479,"st":119,"bm":0},{"ddd":0,"ind":3,"ty":0,"nm":"GEPEK_BAL_LENT_start","parent":4,"refId":"comp_5","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11,"x":"var $bm_rt;\nvar p = 0.8;\nvar a = 50;\nvar s = 1.70158;\nfunction inOutQuint(t, b, c, d, a, p) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction easeAndWizz() {\n var t, d, sX, eX, sY, eY, sZ, eZ, val1, val2, val2, val3;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n var dim = 1;\n try {\n key(1)[1].length;\n dim = 2;\n key(1)[2].length;\n dim = 3;\n } catch (e) {\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1[0];\n eX = $bm_sub(key2[0], key1[0]);\n if (dim >= 2) {\n sY = key1[1];\n eY = $bm_sub(key2[1], key1[1]);\n if (dim >= 3) {\n sZ = key1[2];\n eZ = $bm_sub(key2[2], key1[2]);\n }\n }\n if (time < key1.time || time > key2.time) {\n return value;\n } else {\n val1 = inOutQuint(t, sX, eX, d, a, p, s);\n switch (dim) {\n case 1:\n return val1;\n break;\n case 2:\n val2 = inOutQuint(t, sY, eY, d, a, p, s);\n return [\n val1,\n val2\n ];\n break;\n case 3:\n val2 = inOutQuint(t, sY, eY, d, a, p, s);\n val3 = inOutQuint(t, sZ, eZ, d, a, p, s);\n return [\n val1,\n val2,\n val3\n ];\n break;\n default:\n return null;\n }\n }\n}\n$bm_rt = easeAndWizz() || value;"},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1304.175,813.34,0],"ix":2},"a":{"a":0,"k":[711.5,472,0],"ix":1},"s":{"a":0,"k":[310,310,100],"ix":6}},"ao":0,"w":1423,"h":944,"ip":119,"op":479,"st":119,"bm":0},{"ddd":0,"ind":4,"ty":0,"nm":"TALAPZAT","refId":"comp_6","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11,"x":"var $bm_rt;\nvar p = 0.8;\nvar a = 50;\nvar s = 1.70158;\nfunction inOutQuint(t, b, c, d, a, p) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction easeAndWizz() {\n var t, d, sX, eX, sY, eY, sZ, eZ, val1, val2, val2, val3;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n var dim = 1;\n try {\n key(1)[1].length;\n dim = 2;\n key(1)[2].length;\n dim = 3;\n } catch (e) {\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1[0];\n eX = $bm_sub(key2[0], key1[0]);\n if (dim >= 2) {\n sY = key1[1];\n eY = $bm_sub(key2[1], key1[1]);\n if (dim >= 3) {\n sZ = key1[2];\n eZ = $bm_sub(key2[2], key1[2]);\n }\n }\n if (time < key1.time || time > key2.time) {\n return value;\n } else {\n val1 = inOutQuint(t, sX, eX, d, a, p, s);\n switch (dim) {\n case 1:\n return val1;\n break;\n case 2:\n val2 = inOutQuint(t, sY, eY, d, a, p, s);\n return [\n val1,\n val2\n ];\n break;\n case 3:\n val2 = inOutQuint(t, sY, eY, d, a, p, s);\n val3 = inOutQuint(t, sZ, eZ, d, a, p, s);\n return [\n val1,\n val2,\n val3\n ];\n break;\n default:\n return null;\n }\n }\n}\n$bm_rt = easeAndWizz() || value;"},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1975,1556,0],"ix":2},"a":{"a":0,"k":[1317.152,1067.984,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.194,0.194,0.667],"y":[1,1,1]},"o":{"x":[0.238,0.238,0.333],"y":[0,0,0]},"t":267,"s":[67.5,67.5,100]},{"i":{"x":[0.833,0.833,0.833],"y":[1,1,1]},"o":{"x":[0.167,0.167,0.167],"y":[0,0,0]},"t":376,"s":[100,100,100]},{"i":{"x":[0.214,0.214,0.833],"y":[1,1,1]},"o":{"x":[0.487,0.487,0.167],"y":[0,0,0]},"t":487,"s":[100,100,100]},{"t":609,"s":[104,104,100]}],"ix":6}},"ao":0,"w":2637,"h":2020,"ip":0,"op":1200,"st":-121,"bm":0},{"ddd":0,"ind":5,"ty":0,"nm":"GEPEK_BAL_FENT_start","parent":4,"refId":"comp_7","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11,"x":"var $bm_rt;\nvar p = 0.8;\nvar a = 50;\nvar s = 1.70158;\nfunction inOutQuint(t, b, c, d, a, p) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction easeAndWizz() {\n var t, d, sX, eX, sY, eY, sZ, eZ, val1, val2, val2, val3;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n var dim = 1;\n try {\n key(1)[1].length;\n dim = 2;\n key(1)[2].length;\n dim = 3;\n } catch (e) {\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1[0];\n eX = $bm_sub(key2[0], key1[0]);\n if (dim >= 2) {\n sY = key1[1];\n eY = $bm_sub(key2[1], key1[1]);\n if (dim >= 3) {\n sZ = key1[2];\n eZ = $bm_sub(key2[2], key1[2]);\n }\n }\n if (time < key1.time || time > key2.time) {\n return value;\n } else {\n val1 = inOutQuint(t, sX, eX, d, a, p, s);\n switch (dim) {\n case 1:\n return val1;\n break;\n case 2:\n val2 = inOutQuint(t, sY, eY, d, a, p, s);\n return [\n val1,\n val2\n ];\n break;\n case 3:\n val2 = inOutQuint(t, sY, eY, d, a, p, s);\n val3 = inOutQuint(t, sZ, eZ, d, a, p, s);\n return [\n val1,\n val2,\n val3\n ];\n break;\n default:\n return null;\n }\n }\n}\n$bm_rt = easeAndWizz() || value;"},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1236.175,1647.34,0],"ix":2},"a":{"a":0,"k":[711.5,472,0],"ix":1},"s":{"a":0,"k":[310,310,100],"ix":6}},"ao":0,"w":1423,"h":944,"ip":119,"op":479,"st":119,"bm":0},{"ddd":0,"ind":6,"ty":0,"nm":"GEPEK_JOBB_FENT_start","parent":4,"refId":"comp_8","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11,"x":"var $bm_rt;\nvar p = 0.8;\nvar a = 50;\nvar s = 1.70158;\nfunction inOutQuint(t, b, c, d, a, p) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction easeAndWizz() {\n var t, d, sX, eX, sY, eY, sZ, eZ, val1, val2, val2, val3;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n var dim = 1;\n try {\n key(1)[1].length;\n dim = 2;\n key(1)[2].length;\n dim = 3;\n } catch (e) {\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1[0];\n eX = $bm_sub(key2[0], key1[0]);\n if (dim >= 2) {\n sY = key1[1];\n eY = $bm_sub(key2[1], key1[1]);\n if (dim >= 3) {\n sZ = key1[2];\n eZ = $bm_sub(key2[2], key1[2]);\n }\n }\n if (time < key1.time || time > key2.time) {\n return value;\n } else {\n val1 = inOutQuint(t, sX, eX, d, a, p, s);\n switch (dim) {\n case 1:\n return val1;\n break;\n case 2:\n val2 = inOutQuint(t, sY, eY, d, a, p, s);\n return [\n val1,\n val2\n ];\n break;\n case 3:\n val2 = inOutQuint(t, sY, eY, d, a, p, s);\n val3 = inOutQuint(t, sZ, eZ, d, a, p, s);\n return [\n val1,\n val2,\n val3\n ];\n break;\n default:\n return null;\n }\n }\n}\n$bm_rt = easeAndWizz() || value;"},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1324.175,1641.34,0],"ix":2},"a":{"a":0,"k":[711.5,472,0],"ix":1},"s":{"a":0,"k":[310,310,100],"ix":6}},"ao":0,"w":1423,"h":944,"ip":119,"op":479,"st":119,"bm":0}]},{"id":"comp_3","layers":[{"ddd":0,"ind":1,"ty":2,"nm":"Layer 28","parent":69,"refId":"image_0","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":4.8,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":11.999,"s":[100]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":179.999,"s":[100]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":209.999,"s":[70]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":419.999,"s":[70]},{"t":449.99921875,"s":[100]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":4.8,"s":[-582.489,-267.284,0],"to":[0,13.333,0],"ti":[0,-13.333,0]},{"t":64.8,"s":[-582.489,-187.284,0]}],"ix":2,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"a":{"a":0,"k":[93.749,70.986,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":4.8,"op":682,"st":4.8,"bm":0},{"ddd":0,"ind":2,"ty":2,"nm":"Layer 15","parent":69,"refId":"image_1","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":4.8,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":64.8,"s":[100]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":179.999,"s":[100]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":209.999,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":419.999,"s":[0]},{"t":449.99921875,"s":[100]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":4.8,"s":[-527.731,-227.541,0],"to":[0,13.333,0],"ti":[0,-13.333,0]},{"t":64.8,"s":[-527.731,-147.541,0]}],"ix":2,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"a":{"a":0,"k":[204.6,175.678,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":4.8,"op":682,"st":4.8,"bm":0},{"ddd":0,"ind":3,"ty":2,"nm":"Layer 20","parent":57,"refId":"image_2","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":431.999,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":450.999,"s":[100]},{"t":476.99921875,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[-268.281,-196.981,0],"ix":2},"a":{"a":0,"k":[265.32,200.999,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":432,"op":477,"st":431.8,"bm":0},{"ddd":0,"ind":4,"ty":2,"nm":"Layer 3","parent":57,"refId":"image_2","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":431.999,"s":[0]},{"t":450.99921875,"s":[100]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[-268.281,-196.981,0],"ix":2},"a":{"a":0,"k":[265.32,200.999,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":432,"op":682,"st":431.8,"bm":0},{"ddd":0,"ind":5,"ty":2,"nm":"Layer 21","parent":63,"refId":"image_3","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":439.999,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":458.999,"s":[100]},{"t":484.99921875,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[104.32,-422.461,0],"ix":2},"a":{"a":0,"k":[265.201,188.398,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":440,"op":485,"st":439.8,"bm":0},{"ddd":0,"ind":6,"ty":2,"nm":"Layer 4","parent":63,"refId":"image_3","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":439.999,"s":[0]},{"t":458.99921875,"s":[100]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[104.32,-422.461,0],"ix":2},"a":{"a":0,"k":[265.201,188.398,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":440,"op":682,"st":439.8,"bm":0},{"ddd":0,"ind":7,"ty":2,"nm":"Layer 22","parent":75,"refId":"image_4","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":447.999,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":466.999,"s":[100]},{"t":492.99921875,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[-81.801,-533.34,0],"ix":2},"a":{"a":0,"k":[265.32,183.84,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":448,"op":493,"st":447.8,"bm":0},{"ddd":0,"ind":8,"ty":2,"nm":"Layer 5","parent":75,"refId":"image_4","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":447.999,"s":[0]},{"t":466.99921875,"s":[100]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[-81.801,-533.34,0],"ix":2},"a":{"a":0,"k":[265.32,183.84,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":448,"op":682,"st":447.8,"bm":0},{"ddd":0,"ind":9,"ty":2,"nm":"Layer 23","parent":69,"refId":"image_5","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":455.999,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":474.999,"s":[100]},{"t":500.99921875,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[-454.521,-309.421,0],"ix":2},"a":{"a":0,"k":[265.32,194.879,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":456,"op":501,"st":455.8,"bm":0},{"ddd":0,"ind":10,"ty":2,"nm":"Layer 6","parent":69,"refId":"image_5","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":455.999,"s":[0]},{"t":474.99921875,"s":[100]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[-454.521,-309.421,0],"ix":2},"a":{"a":0,"k":[265.32,194.879,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":456,"op":682,"st":455.8,"bm":0},{"ddd":0,"ind":11,"ty":1,"nm":"Medium Purple Solid 1","parent":15,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":192,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":222,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":300,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":330,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":435,"s":[60]},{"t":465,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[0,6.699,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1569.875,877.676],[1237,1067.801],[1237,1150.551],[1312.5,1194.051],[1645.5,1002.801],[1645.5,920.801]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":109,"op":682,"st":-720,"bm":0},{"ddd":0,"ind":12,"ty":1,"nm":"Medium Purple Solid 1","parent":16,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":48,"s":[0]},{"t":95,"s":[60]}],"ix":11,"x":"var $bm_rt;\nvar p = 0.8;\nvar a = 50;\nvar s = 1.70158;\nfunction outQuint(t, b, c, d, a, p) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction easeAndWizz() {\n var t, d, sX, eX, sY, eY, sZ, eZ, val1, val2, val2, val3;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n var dim = 1;\n try {\n key(1)[1].length;\n dim = 2;\n key(1)[2].length;\n dim = 3;\n } catch (e) {\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1[0];\n eX = $bm_sub(key2[0], key1[0]);\n if (dim >= 2) {\n sY = key1[1];\n eY = $bm_sub(key2[1], key1[1]);\n if (dim >= 3) {\n sZ = key1[2];\n eZ = $bm_sub(key2[2], key1[2]);\n }\n }\n if (time < key1.time || time > key2.time) {\n return value;\n } else {\n val1 = outQuint(t, sX, eX, d, a, p, s);\n switch (dim) {\n case 1:\n return val1;\n break;\n case 2:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n return [\n val1,\n val2\n ];\n break;\n case 3:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n val3 = outQuint(t, sZ, eZ, d, a, p, s);\n return [\n val1,\n val2,\n val3\n ];\n break;\n default:\n return null;\n }\n }\n}\n$bm_rt = easeAndWizz() || value;"},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[64.189,118.825,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1569.875,877.676],[1237,1067.801],[1237,1150.551],[1312.5,1194.051],[1645.5,1002.801],[1645.5,920.801]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":48,"op":109,"st":-720,"bm":0},{"ddd":0,"ind":13,"ty":1,"nm":"Medium Purple Solid 1","parent":15,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":192,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":222,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":300,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":330,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":435,"s":[60]},{"t":465,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[0,6.699,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1569.875,877.676],[1237,1067.801],[1237,1150.551],[1312.5,1194.051],[1645.5,1002.801],[1645.5,920.801]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":109,"op":682,"st":-720,"bm":14},{"ddd":0,"ind":14,"ty":1,"nm":"Medium Purple Solid 1","parent":16,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":48,"s":[0]},{"t":95,"s":[60]}],"ix":11,"x":"var $bm_rt;\nvar p = 0.8;\nvar a = 50;\nvar s = 1.70158;\nfunction outQuint(t, b, c, d, a, p) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction easeAndWizz() {\n var t, d, sX, eX, sY, eY, sZ, eZ, val1, val2, val2, val3;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n var dim = 1;\n try {\n key(1)[1].length;\n dim = 2;\n key(1)[2].length;\n dim = 3;\n } catch (e) {\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1[0];\n eX = $bm_sub(key2[0], key1[0]);\n if (dim >= 2) {\n sY = key1[1];\n eY = $bm_sub(key2[1], key1[1]);\n if (dim >= 3) {\n sZ = key1[2];\n eZ = $bm_sub(key2[2], key1[2]);\n }\n }\n if (time < key1.time || time > key2.time) {\n return value;\n } else {\n val1 = outQuint(t, sX, eX, d, a, p, s);\n switch (dim) {\n case 1:\n return val1;\n break;\n case 2:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n return [\n val1,\n val2\n ];\n break;\n case 3:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n val3 = outQuint(t, sZ, eZ, d, a, p, s);\n return [\n val1,\n val2,\n val3\n ];\n break;\n default:\n return null;\n }\n }\n}\n$bm_rt = easeAndWizz() || value;"},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[64.189,118.825,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1569.875,877.676],[1237,1067.801],[1237,1150.551],[1312.5,1194.051],[1645.5,1002.801],[1645.5,920.801]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":48,"op":109,"st":-720,"bm":14},{"ddd":0,"ind":15,"ty":3,"nm":"Null 2","sr":1,"ks":{"o":{"a":0,"k":0,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.071,"y":1},"o":{"x":0.227,"y":0},"t":202,"s":[1976,1513,0],"to":[0,-4.333,0],"ti":[0,0,0]},{"i":{"x":0.035,"y":1},"o":{"x":0.214,"y":0},"t":222,"s":[1976,1487,0],"to":[0,0,0],"ti":[0,-4.333,0]},{"i":{"x":0.667,"y":0.667},"o":{"x":0.167,"y":0.167},"t":297,"s":[1976,1513,0],"to":[0,0,0],"ti":[0,0,0]},{"i":{"x":0.071,"y":1},"o":{"x":0.227,"y":0},"t":449,"s":[1976,1513,0],"to":[0,-4.333,0],"ti":[0,0,0]},{"i":{"x":0.035,"y":1},"o":{"x":0.214,"y":0},"t":469,"s":[1976,1487,0],"to":[0,0,0],"ti":[0,-4.333,0]},{"t":544,"s":[1976,1513,0]}],"ix":2},"a":{"a":0,"k":[0,0,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":202,"op":655,"st":22,"bm":0},{"ddd":0,"ind":16,"ty":2,"nm":"Layer 35","parent":15,"refId":"image_6","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":48,"s":[0]},{"t":55.19921875,"s":[100]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":48,"s":[141.319,-33.196,0],"to":[0,13.333,0],"ti":[0,-13.333,0]},{"t":108,"s":[141.319,46.804,0]}],"ix":2,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"a":{"a":0,"k":[205.509,158.929,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":48,"op":682,"st":48,"bm":0},{"ddd":0,"ind":17,"ty":1,"nm":"Medium Purple Solid 1","parent":21,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":308,"s":[60]},{"t":338,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[0,0,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1942.938,664.25],[1609.812,855.75],[1609.25,936.5],[1684.25,981.25],[2018.5,789.75],[2018.5,707.5]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":104,"op":682,"st":-720,"bm":0},{"ddd":0,"ind":18,"ty":1,"nm":"Medium Purple Solid 1","parent":22,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":43,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":90,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":308,"s":[60]},{"t":338,"s":[0]}],"ix":11,"x":"var $bm_rt;\nvar p = 0.8;\nvar a = 50;\nvar s = 1.70158;\nfunction outQuint(t, b, c, d, a, p) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction easeAndWizz() {\n var t, d, sX, eX, sY, eY, sZ, eZ, val1, val2, val2, val3;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n var dim = 1;\n try {\n key(1)[1].length;\n dim = 2;\n key(1)[2].length;\n dim = 3;\n } catch (e) {\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1[0];\n eX = $bm_sub(key2[0], key1[0]);\n if (dim >= 2) {\n sY = key1[1];\n eY = $bm_sub(key2[1], key1[1]);\n if (dim >= 3) {\n sZ = key1[2];\n eZ = $bm_sub(key2[2], key1[2]);\n }\n }\n if (time < key1.time || time > key2.time) {\n return value;\n } else {\n val1 = outQuint(t, sX, eX, d, a, p, s);\n switch (dim) {\n case 1:\n return val1;\n break;\n case 2:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n return [\n val1,\n val2\n ];\n break;\n case 3:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n val3 = outQuint(t, sZ, eZ, d, a, p, s);\n return [\n val1,\n val2,\n val3\n ];\n break;\n default:\n return null;\n }\n }\n}\n$bm_rt = easeAndWizz() || value;"},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[-309.481,330.779,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1942.938,664.25],[1609.812,855.75],[1609.25,936.5],[1684.25,981.25],[2018.5,789.75],[2018.5,707.5]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":43.2,"op":104,"st":-720,"bm":0},{"ddd":0,"ind":19,"ty":1,"nm":"Medium Purple Solid 1","parent":21,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":308,"s":[60]},{"t":338,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[0,0,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1942.938,664.25],[1609.812,855.75],[1609.25,936.5],[1684.25,981.25],[2018.5,789.75],[2018.5,707.5]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":104,"op":682,"st":-720,"bm":14},{"ddd":0,"ind":20,"ty":1,"nm":"Medium Purple Solid 1","parent":22,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":43,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":90,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":308,"s":[60]},{"t":338,"s":[0]}],"ix":11,"x":"var $bm_rt;\nvar p = 0.8;\nvar a = 50;\nvar s = 1.70158;\nfunction outQuint(t, b, c, d, a, p) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction easeAndWizz() {\n var t, d, sX, eX, sY, eY, sZ, eZ, val1, val2, val2, val3;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n var dim = 1;\n try {\n key(1)[1].length;\n dim = 2;\n key(1)[2].length;\n dim = 3;\n } catch (e) {\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1[0];\n eX = $bm_sub(key2[0], key1[0]);\n if (dim >= 2) {\n sY = key1[1];\n eY = $bm_sub(key2[1], key1[1]);\n if (dim >= 3) {\n sZ = key1[2];\n eZ = $bm_sub(key2[2], key1[2]);\n }\n }\n if (time < key1.time || time > key2.time) {\n return value;\n } else {\n val1 = outQuint(t, sX, eX, d, a, p, s);\n switch (dim) {\n case 1:\n return val1;\n break;\n case 2:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n return [\n val1,\n val2\n ];\n break;\n case 3:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n val3 = outQuint(t, sZ, eZ, d, a, p, s);\n return [\n val1,\n val2,\n val3\n ];\n break;\n default:\n return null;\n }\n }\n}\n$bm_rt = easeAndWizz() || value;"},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[-309.481,330.779,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1942.938,664.25],[1609.812,855.75],[1609.25,936.5],[1684.25,981.25],[2018.5,789.75],[2018.5,707.5]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":43.2,"op":104,"st":-720,"bm":14},{"ddd":0,"ind":21,"ty":3,"nm":"Null 2","sr":1,"ks":{"o":{"a":0,"k":0,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.071,"y":1},"o":{"x":0.227,"y":0},"t":318,"s":[1976,1513,0],"to":[0,-4.333,0],"ti":[0,0,0]},{"i":{"x":0.035,"y":1},"o":{"x":0.214,"y":0},"t":338,"s":[1976,1487,0],"to":[0,0,0],"ti":[0,-4.333,0]},{"i":{"x":0.667,"y":0.667},"o":{"x":0.167,"y":0.167},"t":413,"s":[1976,1513,0],"to":[0,0,0],"ti":[0,0,0]},{"i":{"x":0.071,"y":1},"o":{"x":0.227,"y":0},"t":443,"s":[1976,1513,0],"to":[0,-4.333,0],"ti":[0,0,0]},{"i":{"x":0.035,"y":1},"o":{"x":0.214,"y":0},"t":463,"s":[1976,1487,0],"to":[0,0,0],"ti":[0,-4.333,0]},{"t":538,"s":[1976,1513,0]}],"ix":2},"a":{"a":0,"k":[0,0,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":318,"op":665,"st":138,"bm":0},{"ddd":0,"ind":22,"ty":2,"nm":"Layer 34","parent":21,"refId":"image_7","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":43.2,"s":[0]},{"t":50.39921875,"s":[100]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":43.2,"s":[513.99,-252.85,0],"to":[0,13.333,0],"ti":[0,-13.333,0]},{"t":103.2,"s":[513.99,-172.85,0]}],"ix":2,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"a":{"a":0,"k":[204.509,157.929,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":43.2,"op":682,"st":43.2,"bm":0},{"ddd":0,"ind":23,"ty":1,"nm":"Medium Purple Solid 1","parent":27,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":188,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":218,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":300,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":330,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":427,"s":[60]},{"t":457,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[0,6.035,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1085.125,857.715],[976.875,919.09],[976.875,1002.715],[1198.5,1129.09],[1306.25,1066.215],[1306.246,984.09]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":99,"op":682,"st":-720,"bm":0},{"ddd":0,"ind":24,"ty":1,"nm":"Medium Purple Solid 1","parent":28,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":38,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":85,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":188,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":218,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":300,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":330,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":427,"s":[60]},{"t":457,"s":[0]}],"ix":11,"x":"var $bm_rt;\nvar p = 0.8;\nvar a = 50;\nvar s = 1.70158;\nfunction outQuint(t, b, c, d, a, p) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction easeAndWizz() {\n var t, d, sX, eX, sY, eY, sZ, eZ, val1, val2, val2, val3;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n var dim = 1;\n try {\n key(1)[1].length;\n dim = 2;\n key(1)[2].length;\n dim = 3;\n } catch (e) {\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1[0];\n eX = $bm_sub(key2[0], key1[0]);\n if (dim >= 2) {\n sY = key1[1];\n eY = $bm_sub(key2[1], key1[1]);\n if (dim >= 3) {\n sZ = key1[2];\n eZ = $bm_sub(key2[2], key1[2]);\n }\n }\n if (time < key1.time || time > key2.time) {\n return value;\n } else {\n val1 = outQuint(t, sX, eX, d, a, p, s);\n switch (dim) {\n case 1:\n return val1;\n break;\n case 2:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n return [\n val1,\n val2\n ];\n break;\n case 3:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n val3 = outQuint(t, sZ, eZ, d, a, p, s);\n return [\n val1,\n val2,\n val3\n ];\n break;\n default:\n return null;\n }\n }\n}\n$bm_rt = easeAndWizz() || value;"},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[323.825,138.587,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1085.125,857.715],[976.875,919.09],[976.875,1002.715],[1198.5,1129.09],[1306.25,1066.215],[1306.246,984.09]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":38.4,"op":99,"st":-720,"bm":0},{"ddd":0,"ind":25,"ty":1,"nm":"Medium Purple Solid 1","parent":27,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":188,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":218,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":300,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":330,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":427,"s":[60]},{"t":457,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[0,6.035,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1085.125,857.715],[976.875,919.09],[976.875,1002.715],[1198.5,1129.09],[1306.25,1066.215],[1306.246,984.09]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":99,"op":682,"st":-720,"bm":14},{"ddd":0,"ind":26,"ty":1,"nm":"Medium Purple Solid 1","parent":28,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":38,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":85,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":188,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":218,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":300,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":330,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":427,"s":[60]},{"t":457,"s":[0]}],"ix":11,"x":"var $bm_rt;\nvar p = 0.8;\nvar a = 50;\nvar s = 1.70158;\nfunction outQuint(t, b, c, d, a, p) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction easeAndWizz() {\n var t, d, sX, eX, sY, eY, sZ, eZ, val1, val2, val2, val3;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n var dim = 1;\n try {\n key(1)[1].length;\n dim = 2;\n key(1)[2].length;\n dim = 3;\n } catch (e) {\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1[0];\n eX = $bm_sub(key2[0], key1[0]);\n if (dim >= 2) {\n sY = key1[1];\n eY = $bm_sub(key2[1], key1[1]);\n if (dim >= 3) {\n sZ = key1[2];\n eZ = $bm_sub(key2[2], key1[2]);\n }\n }\n if (time < key1.time || time > key2.time) {\n return value;\n } else {\n val1 = outQuint(t, sX, eX, d, a, p, s);\n switch (dim) {\n case 1:\n return val1;\n break;\n case 2:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n return [\n val1,\n val2\n ];\n break;\n case 3:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n val3 = outQuint(t, sZ, eZ, d, a, p, s);\n return [\n val1,\n val2,\n val3\n ];\n break;\n default:\n return null;\n }\n }\n}\n$bm_rt = easeAndWizz() || value;"},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[323.825,138.587,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1085.125,857.715],[976.875,919.09],[976.875,1002.715],[1198.5,1129.09],[1306.25,1066.215],[1306.246,984.09]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":38.4,"op":99,"st":-720,"bm":14},{"ddd":0,"ind":27,"ty":3,"nm":"Null 2","sr":1,"ks":{"o":{"a":0,"k":0,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.071,"y":1},"o":{"x":0.227,"y":0},"t":198,"s":[1976,1513,0],"to":[0,-4.333,0],"ti":[0,0,0]},{"i":{"x":0.035,"y":1},"o":{"x":0.214,"y":0},"t":218,"s":[1976,1487,0],"to":[0,0,0],"ti":[0,-4.333,0]},{"i":{"x":0.667,"y":0.667},"o":{"x":0.167,"y":0.167},"t":293,"s":[1976,1513,0],"to":[0,0,0],"ti":[0,0,0]},{"i":{"x":0.071,"y":1},"o":{"x":0.227,"y":0},"t":437,"s":[1976,1513,0],"to":[0,-4.333,0],"ti":[0,0,0]},{"i":{"x":0.035,"y":1},"o":{"x":0.214,"y":0},"t":457,"s":[1976,1487,0],"to":[0,0,0],"ti":[0,-4.333,0]},{"t":532,"s":[1976,1513,0]}],"ix":2},"a":{"a":0,"k":[0,0,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":198,"op":589,"st":18,"bm":0},{"ddd":0,"ind":28,"ty":2,"nm":"Layer 33","parent":27,"refId":"image_8","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":38.4,"s":[0]},{"t":45.59921875,"s":[100]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":38.4,"s":[-158.323,-76.328,0],"to":[0,13.333,0],"ti":[0,-13.333,0]},{"t":98.4,"s":[-158.323,3.672,0]}],"ix":2,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"a":{"a":0,"k":[165.502,136.224,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":38.4,"op":682,"st":38.4,"bm":0},{"ddd":0,"ind":29,"ty":1,"nm":"Medium Purple Solid 1","parent":33,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":184,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":214,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":300,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":330,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":431,"s":[60]},{"t":461,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[0,0,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1588.37,718.75],[1255.246,909.5],[1255.25,992.125],[1347,1044.25],[1679.999,853.125],[1679.998,770.625]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":94,"op":682,"st":-720,"bm":0},{"ddd":0,"ind":30,"ty":1,"nm":"Medium Purple Solid 1","parent":34,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":34,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":81,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":184,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":214,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":300,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":330,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":431,"s":[60]},{"t":461,"s":[0]}],"ix":11,"x":"var $bm_rt;\nvar p = 0.8;\nvar a = 50;\nvar s = 1.70158;\nfunction outQuint(t, b, c, d, a, p) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction easeAndWizz() {\n var t, d, sX, eX, sY, eY, sZ, eZ, val1, val2, val2, val3;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n var dim = 1;\n try {\n key(1)[1].length;\n dim = 2;\n key(1)[2].length;\n dim = 3;\n } catch (e) {\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1[0];\n eX = $bm_sub(key2[0], key1[0]);\n if (dim >= 2) {\n sY = key1[1];\n eY = $bm_sub(key2[1], key1[1]);\n if (dim >= 3) {\n sZ = key1[2];\n eZ = $bm_sub(key2[2], key1[2]);\n }\n }\n if (time < key1.time || time > key2.time) {\n return value;\n } else {\n val1 = outQuint(t, sX, eX, d, a, p, s);\n switch (dim) {\n case 1:\n return val1;\n break;\n case 2:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n return [\n val1,\n val2\n ];\n break;\n case 3:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n val3 = outQuint(t, sZ, eZ, d, a, p, s);\n return [\n val1,\n val2,\n val3\n ];\n break;\n default:\n return null;\n }\n }\n}\n$bm_rt = easeAndWizz() || value;"},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[45.607,277.306,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1588.37,718.75],[1255.246,909.5],[1255.25,992.125],[1347,1044.25],[1679.999,853.125],[1679.998,770.625]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":33.6,"op":94,"st":-720,"bm":0},{"ddd":0,"ind":31,"ty":1,"nm":"Medium Purple Solid 1","parent":33,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":184,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":214,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":300,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":330,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":431,"s":[60]},{"t":461,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[0,0,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1588.37,718.75],[1255.246,909.5],[1255.25,992.125],[1347,1044.25],[1679.999,853.125],[1679.998,770.625]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":94,"op":682,"st":-720,"bm":14},{"ddd":0,"ind":32,"ty":1,"nm":"Medium Purple Solid 1","parent":34,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":34,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":81,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":184,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":214,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":300,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":330,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":431,"s":[60]},{"t":461,"s":[0]}],"ix":11,"x":"var $bm_rt;\nvar p = 0.8;\nvar a = 50;\nvar s = 1.70158;\nfunction outQuint(t, b, c, d, a, p) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction easeAndWizz() {\n var t, d, sX, eX, sY, eY, sZ, eZ, val1, val2, val2, val3;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n var dim = 1;\n try {\n key(1)[1].length;\n dim = 2;\n key(1)[2].length;\n dim = 3;\n } catch (e) {\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1[0];\n eX = $bm_sub(key2[0], key1[0]);\n if (dim >= 2) {\n sY = key1[1];\n eY = $bm_sub(key2[1], key1[1]);\n if (dim >= 3) {\n sZ = key1[2];\n eZ = $bm_sub(key2[2], key1[2]);\n }\n }\n if (time < key1.time || time > key2.time) {\n return value;\n } else {\n val1 = outQuint(t, sX, eX, d, a, p, s);\n switch (dim) {\n case 1:\n return val1;\n break;\n case 2:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n return [\n val1,\n val2\n ];\n break;\n case 3:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n val3 = outQuint(t, sZ, eZ, d, a, p, s);\n return [\n val1,\n val2,\n val3\n ];\n break;\n default:\n return null;\n }\n }\n}\n$bm_rt = easeAndWizz() || value;"},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[45.607,277.306,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1588.37,718.75],[1255.246,909.5],[1255.25,992.125],[1347,1044.25],[1679.999,853.125],[1679.998,770.625]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":33.6,"op":94,"st":-720,"bm":14},{"ddd":0,"ind":33,"ty":3,"nm":"Null 2","sr":1,"ks":{"o":{"a":0,"k":0,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.071,"y":1},"o":{"x":0.227,"y":0},"t":194,"s":[1976,1513,0],"to":[0,-4.333,0],"ti":[0,0,0]},{"i":{"x":0.035,"y":1},"o":{"x":0.214,"y":0},"t":214,"s":[1976,1487,0],"to":[0,0,0],"ti":[0,-4.333,0]},{"i":{"x":0.667,"y":0.667},"o":{"x":0.167,"y":0.167},"t":289,"s":[1976,1513,0],"to":[0,0,0],"ti":[0,0,0]},{"i":{"x":0.071,"y":1},"o":{"x":0.227,"y":0},"t":441,"s":[1976,1513,0],"to":[0,-4.333,0],"ti":[0,0,0]},{"i":{"x":0.035,"y":1},"o":{"x":0.214,"y":0},"t":461,"s":[1976,1487,0],"to":[0,0,0],"ti":[0,-4.333,0]},{"t":536,"s":[1976,1513,0]}],"ix":2},"a":{"a":0,"k":[0,0,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":194,"op":611,"st":14,"bm":0},{"ddd":0,"ind":34,"ty":2,"nm":"Layer 32","parent":33,"refId":"image_9","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":33.6,"s":[0]},{"t":40.79921875,"s":[100]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":33.6,"s":[167.622,-193.815,0],"to":[0,13.333,0],"ti":[0,-13.333,0]},{"t":93.6,"s":[167.622,-113.815,0]}],"ix":2,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"a":{"a":0,"k":[213.229,163.491,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":33.6,"op":682,"st":33.6,"bm":0},{"ddd":0,"ind":35,"ty":1,"nm":"Medium Purple Solid 1","parent":39,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":180,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":210,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":300,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":330,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":423,"s":[60]},{"t":453,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[0,0,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1385.999,685.75],[1125.5,835.25],[1125.5,917],[1217.5,969.5],[1478.5,819.5],[1478.5,737.75]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":89,"op":682,"st":-720,"bm":0},{"ddd":0,"ind":36,"ty":1,"nm":"Medium Purple Solid 1","parent":40,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":29,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":76,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":180,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":210,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":300,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":330,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":423,"s":[60]},{"t":453,"s":[0]}],"ix":11,"x":"var $bm_rt;\nvar p = 0.8;\nvar a = 50;\nvar s = 1.70158;\nfunction outQuint(t, b, c, d, a, p) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction easeAndWizz() {\n var t, d, sX, eX, sY, eY, sZ, eZ, val1, val2, val2, val3;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n var dim = 1;\n try {\n key(1)[1].length;\n dim = 2;\n key(1)[2].length;\n dim = 3;\n } catch (e) {\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1[0];\n eX = $bm_sub(key2[0], key1[0]);\n if (dim >= 2) {\n sY = key1[1];\n eY = $bm_sub(key2[1], key1[1]);\n if (dim >= 3) {\n sZ = key1[2];\n eZ = $bm_sub(key2[2], key1[2]);\n }\n }\n if (time < key1.time || time > key2.time) {\n return value;\n } else {\n val1 = outQuint(t, sX, eX, d, a, p, s);\n switch (dim) {\n case 1:\n return val1;\n break;\n case 2:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n return [\n val1,\n val2\n ];\n break;\n case 3:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n val3 = outQuint(t, sZ, eZ, d, a, p, s);\n return [\n val1,\n val2,\n val3\n ];\n break;\n default:\n return null;\n }\n }\n}\n$bm_rt = easeAndWizz() || value;"},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[175.861,310.596,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1385.999,685.75],[1125.5,835.25],[1125.5,917],[1217.5,969.5],[1478.5,819.5],[1478.5,737.75]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":28.8,"op":89,"st":-720,"bm":0},{"ddd":0,"ind":37,"ty":1,"nm":"Medium Purple Solid 1","parent":39,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":180,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":210,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":300,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":330,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":423,"s":[60]},{"t":453,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[0,0,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1385.999,685.75],[1125.5,835.25],[1125.5,917],[1217.5,969.5],[1478.5,819.5],[1478.5,737.75]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":89,"op":682,"st":-720,"bm":14},{"ddd":0,"ind":38,"ty":1,"nm":"Medium Purple Solid 1","parent":40,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":29,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":76,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":180,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":210,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":300,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":330,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":423,"s":[60]},{"t":453,"s":[0]}],"ix":11,"x":"var $bm_rt;\nvar p = 0.8;\nvar a = 50;\nvar s = 1.70158;\nfunction outQuint(t, b, c, d, a, p) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction easeAndWizz() {\n var t, d, sX, eX, sY, eY, sZ, eZ, val1, val2, val2, val3;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n var dim = 1;\n try {\n key(1)[1].length;\n dim = 2;\n key(1)[2].length;\n dim = 3;\n } catch (e) {\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1[0];\n eX = $bm_sub(key2[0], key1[0]);\n if (dim >= 2) {\n sY = key1[1];\n eY = $bm_sub(key2[1], key1[1]);\n if (dim >= 3) {\n sZ = key1[2];\n eZ = $bm_sub(key2[2], key1[2]);\n }\n }\n if (time < key1.time || time > key2.time) {\n return value;\n } else {\n val1 = outQuint(t, sX, eX, d, a, p, s);\n switch (dim) {\n case 1:\n return val1;\n break;\n case 2:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n return [\n val1,\n val2\n ];\n break;\n case 3:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n val3 = outQuint(t, sZ, eZ, d, a, p, s);\n return [\n val1,\n val2,\n val3\n ];\n break;\n default:\n return null;\n }\n }\n}\n$bm_rt = easeAndWizz() || value;"},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[175.861,310.596,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1385.999,685.75],[1125.5,835.25],[1125.5,917],[1217.5,969.5],[1478.5,819.5],[1478.5,737.75]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":28.8,"op":89,"st":-720,"bm":14},{"ddd":0,"ind":39,"ty":3,"nm":"Null 2","sr":1,"ks":{"o":{"a":0,"k":0,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.071,"y":1},"o":{"x":0.227,"y":0},"t":190,"s":[1976,1513,0],"to":[0,-4.333,0],"ti":[0,0,0]},{"i":{"x":0.035,"y":1},"o":{"x":0.214,"y":0},"t":210,"s":[1976,1487,0],"to":[0,0,0],"ti":[0,-4.333,0]},{"i":{"x":0.667,"y":0.667},"o":{"x":0.167,"y":0.167},"t":285,"s":[1976,1513,0],"to":[0,0,0],"ti":[0,0,0]},{"i":{"x":0.071,"y":1},"o":{"x":0.227,"y":0},"t":433,"s":[1976,1513,0],"to":[0,-4.333,0],"ti":[0,0,0]},{"i":{"x":0.035,"y":1},"o":{"x":0.214,"y":0},"t":453,"s":[1976,1487,0],"to":[0,0,0],"ti":[0,-4.333,0]},{"t":528,"s":[1976,1513,0]}],"ix":2},"a":{"a":0,"k":[0,0,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":190,"op":666,"st":10,"bm":0},{"ddd":0,"ind":40,"ty":2,"nm":"Layer 31","parent":39,"refId":"image_10","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":28.8,"s":[0]},{"t":35.99921875,"s":[100]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":28.8,"s":[1.815,-247.427,0],"to":[0,13.333,0],"ti":[0,-13.333,0]},{"t":88.8,"s":[1.815,-167.427,0]}],"ix":2,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"a":{"a":0,"k":[177.677,143.169,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":28.8,"op":682,"st":28.8,"bm":0},{"ddd":0,"ind":41,"ty":1,"nm":"Medium Purple Solid 1","parent":45,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":304,"s":[60]},{"t":334,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[0,0,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1813,590.25],[1628.125,696.25],[1628.125,778],[1718.5,830],[1904.5,723.5],[1904.5,643]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":85,"op":682,"st":-720,"bm":0},{"ddd":0,"ind":42,"ty":1,"nm":"Medium Purple Solid 1","parent":46,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":24,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":71,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":304,"s":[60]},{"t":334,"s":[0]}],"ix":11,"x":"var $bm_rt;\nvar p = 0.8;\nvar a = 50;\nvar s = 1.70158;\nfunction outQuint(t, b, c, d, a, p) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction easeAndWizz() {\n var t, d, sX, eX, sY, eY, sZ, eZ, val1, val2, val2, val3;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n var dim = 1;\n try {\n key(1)[1].length;\n dim = 2;\n key(1)[2].length;\n dim = 3;\n } catch (e) {\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1[0];\n eX = $bm_sub(key2[0], key1[0]);\n if (dim >= 2) {\n sY = key1[1];\n eY = $bm_sub(key2[1], key1[1]);\n if (dim >= 3) {\n sZ = key1[2];\n eZ = $bm_sub(key2[2], key1[2]);\n }\n }\n if (time < key1.time || time > key2.time) {\n return value;\n } else {\n val1 = outQuint(t, sX, eX, d, a, p, s);\n switch (dim) {\n case 1:\n return val1;\n break;\n case 2:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n return [\n val1,\n val2\n ];\n break;\n case 3:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n val3 = outQuint(t, sZ, eZ, d, a, p, s);\n return [\n val1,\n val2,\n val3\n ];\n break;\n default:\n return null;\n }\n }\n}\n$bm_rt = easeAndWizz() || value;"},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[-327.033,405.694,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1813,590.25],[1628.125,696.25],[1628.125,778],[1718.5,830],[1904.5,723.5],[1904.5,643]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":24,"op":85,"st":-720,"bm":0},{"ddd":0,"ind":43,"ty":1,"nm":"Medium Purple Solid 1","parent":45,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":304,"s":[60]},{"t":334,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[0,0,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1813,590.25],[1628.125,696.25],[1628.125,778],[1718.5,830],[1904.5,723.5],[1904.5,643]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":85,"op":682,"st":-720,"bm":14},{"ddd":0,"ind":44,"ty":1,"nm":"Medium Purple Solid 1","parent":46,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":24,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":71,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":304,"s":[60]},{"t":334,"s":[0]}],"ix":11,"x":"var $bm_rt;\nvar p = 0.8;\nvar a = 50;\nvar s = 1.70158;\nfunction outQuint(t, b, c, d, a, p) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction easeAndWizz() {\n var t, d, sX, eX, sY, eY, sZ, eZ, val1, val2, val2, val3;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n var dim = 1;\n try {\n key(1)[1].length;\n dim = 2;\n key(1)[2].length;\n dim = 3;\n } catch (e) {\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1[0];\n eX = $bm_sub(key2[0], key1[0]);\n if (dim >= 2) {\n sY = key1[1];\n eY = $bm_sub(key2[1], key1[1]);\n if (dim >= 3) {\n sZ = key1[2];\n eZ = $bm_sub(key2[2], key1[2]);\n }\n }\n if (time < key1.time || time > key2.time) {\n return value;\n } else {\n val1 = outQuint(t, sX, eX, d, a, p, s);\n switch (dim) {\n case 1:\n return val1;\n break;\n case 2:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n return [\n val1,\n val2\n ];\n break;\n case 3:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n val3 = outQuint(t, sZ, eZ, d, a, p, s);\n return [\n val1,\n val2,\n val3\n ];\n break;\n default:\n return null;\n }\n }\n}\n$bm_rt = easeAndWizz() || value;"},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[-327.033,405.694,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1813,590.25],[1628.125,696.25],[1628.125,778],[1718.5,830],[1904.5,723.5],[1904.5,643]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":24,"op":85,"st":-720,"bm":14},{"ddd":0,"ind":45,"ty":3,"nm":"Null 2","sr":1,"ks":{"o":{"a":0,"k":0,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.071,"y":1},"o":{"x":0.227,"y":0},"t":314,"s":[1976,1513,0],"to":[0,-4.333,0],"ti":[0,0,0]},{"i":{"x":0.035,"y":1},"o":{"x":0.214,"y":0},"t":334,"s":[1976,1487,0],"to":[0,0,0],"ti":[0,-4.333,0]},{"i":{"x":0.667,"y":0.667},"o":{"x":0.167,"y":0.167},"t":409,"s":[1976,1513,0],"to":[0,0,0],"ti":[0,0,0]},{"i":{"x":0.071,"y":1},"o":{"x":0.227,"y":0},"t":439,"s":[1976,1513,0],"to":[0,-4.333,0],"ti":[0,0,0]},{"i":{"x":0.035,"y":1},"o":{"x":0.214,"y":0},"t":459,"s":[1976,1487,0],"to":[0,0,0],"ti":[0,-4.333,0]},{"t":534,"s":[1976,1513,0]}],"ix":2},"a":{"a":0,"k":[0,0,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":314,"op":655,"st":134,"bm":0},{"ddd":0,"ind":46,"ty":2,"nm":"Layer 30","parent":45,"refId":"image_11","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":24,"s":[0]},{"t":31.19921875,"s":[100]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":24,"s":[466.278,-364.478,0],"to":[0,13.333,0],"ti":[0,-13.333,0]},{"t":84,"s":[466.278,-284.478,0]}],"ix":2,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"a":{"a":0,"k":[139.244,121.216,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":24,"op":682,"st":24,"bm":0},{"ddd":0,"ind":47,"ty":1,"nm":"Medium Purple Solid 1","parent":51,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":300,"s":[60]},{"t":330,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[0,0,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1683,516.5],[1425.5,663.312],[1425.5,745],[1517,798],[1775,649.5],[1775,568]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":80,"op":682,"st":-720,"bm":0},{"ddd":0,"ind":48,"ty":1,"nm":"Medium Purple Solid 1","parent":52,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":19,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":66,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":300,"s":[60]},{"t":330,"s":[0]}],"ix":11,"x":"var $bm_rt;\nvar p = 0.8;\nvar a = 50;\nvar s = 1.70158;\nfunction outQuint(t, b, c, d, a, p) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction easeAndWizz() {\n var t, d, sX, eX, sY, eY, sZ, eZ, val1, val2, val2, val3;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n var dim = 1;\n try {\n key(1)[1].length;\n dim = 2;\n key(1)[2].length;\n dim = 3;\n } catch (e) {\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1[0];\n eX = $bm_sub(key2[0], key1[0]);\n if (dim >= 2) {\n sY = key1[1];\n eY = $bm_sub(key2[1], key1[1]);\n if (dim >= 3) {\n sZ = key1[2];\n eZ = $bm_sub(key2[2], key1[2]);\n }\n }\n if (time < key1.time || time > key2.time) {\n return value;\n } else {\n val1 = outQuint(t, sX, eX, d, a, p, s);\n switch (dim) {\n case 1:\n return val1;\n break;\n case 2:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n return [\n val1,\n val2\n ];\n break;\n case 3:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n val3 = outQuint(t, sZ, eZ, d, a, p, s);\n return [\n val1,\n val2,\n val3\n ];\n break;\n default:\n return null;\n }\n }\n}\n$bm_rt = easeAndWizz() || value;"},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[-124.808,480.121,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1683,516.5],[1425.5,663.312],[1425.5,745],[1517,798],[1775,649.5],[1775,568]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":19.2,"op":80,"st":-720,"bm":0},{"ddd":0,"ind":49,"ty":1,"nm":"Medium Purple Solid 1","parent":51,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":300,"s":[60]},{"t":330,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[0,0,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1683,516.5],[1425.5,663.312],[1425.5,745],[1517,798],[1775,649.5],[1775,568]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":80,"op":682,"st":-720,"bm":14},{"ddd":0,"ind":50,"ty":1,"nm":"Medium Purple Solid 1","parent":52,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":19,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":66,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":300,"s":[60]},{"t":330,"s":[0]}],"ix":11,"x":"var $bm_rt;\nvar p = 0.8;\nvar a = 50;\nvar s = 1.70158;\nfunction outQuint(t, b, c, d, a, p) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction easeAndWizz() {\n var t, d, sX, eX, sY, eY, sZ, eZ, val1, val2, val2, val3;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n var dim = 1;\n try {\n key(1)[1].length;\n dim = 2;\n key(1)[2].length;\n dim = 3;\n } catch (e) {\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1[0];\n eX = $bm_sub(key2[0], key1[0]);\n if (dim >= 2) {\n sY = key1[1];\n eY = $bm_sub(key2[1], key1[1]);\n if (dim >= 3) {\n sZ = key1[2];\n eZ = $bm_sub(key2[2], key1[2]);\n }\n }\n if (time < key1.time || time > key2.time) {\n return value;\n } else {\n val1 = outQuint(t, sX, eX, d, a, p, s);\n switch (dim) {\n case 1:\n return val1;\n break;\n case 2:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n return [\n val1,\n val2\n ];\n break;\n case 3:\n val2 = outQuint(t, sY, eY, d, a, p, s);\n val3 = outQuint(t, sZ, eZ, d, a, p, s);\n return [\n val1,\n val2,\n val3\n ];\n break;\n default:\n return null;\n }\n }\n}\n$bm_rt = easeAndWizz() || value;"},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[-124.808,480.121,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1683,516.5],[1425.5,663.312],[1425.5,745],[1517,798],[1775,649.5],[1775,568]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":19.2,"op":80,"st":-720,"bm":14},{"ddd":0,"ind":51,"ty":3,"nm":"Null 2","sr":1,"ks":{"o":{"a":0,"k":0,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.071,"y":1},"o":{"x":0.227,"y":0},"t":310,"s":[1976,1513,0],"to":[0,-4.333,0],"ti":[0,0,0]},{"i":{"x":0.035,"y":1},"o":{"x":0.214,"y":0},"t":330,"s":[1976,1487,0],"to":[0,0,0],"ti":[0,-4.333,0]},{"i":{"x":0.667,"y":0.667},"o":{"x":0.167,"y":0.167},"t":405,"s":[1976,1513,0],"to":[0,0,0],"ti":[0,0,0]},{"i":{"x":0.071,"y":1},"o":{"x":0.227,"y":0},"t":435,"s":[1976,1513,0],"to":[0,-4.333,0],"ti":[0,0,0]},{"i":{"x":0.035,"y":1},"o":{"x":0.214,"y":0},"t":455,"s":[1976,1487,0],"to":[0,0,0],"ti":[0,-4.333,0]},{"t":530,"s":[1976,1513,0]}],"ix":2},"a":{"a":0,"k":[0,0,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":310,"op":639,"st":130,"bm":0},{"ddd":0,"ind":52,"ty":2,"nm":"Layer 29","parent":51,"refId":"image_12","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":19.2,"s":[0]},{"t":26.39921875,"s":[100]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":19.2,"s":[300.042,-418.339,0],"to":[0,13.333,0],"ti":[0,-13.333,0]},{"t":79.2,"s":[300.042,-338.339,0]}],"ix":2,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"a":{"a":0,"k":[175.234,141.782,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":19.2,"op":682,"st":19.2,"bm":0},{"ddd":0,"ind":53,"ty":1,"nm":"Medium Purple Solid 1","parent":57,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":180,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":210,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":420,"s":[60]},{"t":450,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[0,0,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1124,622.5],[791.25,813.5],[791.25,895.25],[939,980],[1272,788.5],[1272,708]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":75,"op":682,"st":-720,"bm":0},{"ddd":0,"ind":54,"ty":1,"nm":"Medium Purple Solid 1","parent":58,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":180,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":210,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":420,"s":[60]},{"t":450,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[509.959,373.555,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1124,622.5],[791.25,813.5],[791.25,895.25],[939,980],[1272,788.5],[1272,708]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":14.4,"op":75,"st":-720,"bm":0},{"ddd":0,"ind":55,"ty":1,"nm":"Medium Purple Solid 1","parent":57,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":180,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":210,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":420,"s":[60]},{"t":450,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[0,0,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1124,622.5],[791.25,813.5],[791.25,895.25],[939,980],[1272,788.5],[1272,708]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":75,"op":682,"st":-720,"bm":14},{"ddd":0,"ind":56,"ty":1,"nm":"Medium Purple Solid 1","parent":58,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":180,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":210,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":420,"s":[60]},{"t":450,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[509.959,373.555,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1124,622.5],[791.25,813.5],[791.25,895.25],[939,980],[1272,788.5],[1272,708]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":14.4,"op":75,"st":-720,"bm":14},{"ddd":0,"ind":57,"ty":3,"nm":"Null 2","sr":1,"ks":{"o":{"a":0,"k":0,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.071,"y":1},"o":{"x":0.227,"y":0},"t":430,"s":[1976,1513,0],"to":[0,-4.333,0],"ti":[0,0,0]},{"i":{"x":0.035,"y":1},"o":{"x":0.214,"y":0},"t":450,"s":[1976,1487,0],"to":[0,0,0],"ti":[0,-4.333,0]},{"t":525,"s":[1976,1513,0]}],"ix":2},"a":{"a":0,"k":[0,0,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":430,"op":525,"st":250,"bm":0},{"ddd":0,"ind":58,"ty":2,"nm":"Layer 27","parent":57,"refId":"image_13","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":14.4,"s":[0]},{"t":21.59921875,"s":[100]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":14.4,"s":[-268.347,-273.846,0],"to":[0,13.333,0],"ti":[0,-13.333,0]},{"t":74.4,"s":[-268.347,-193.846,0]}],"ix":2,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"a":{"a":0,"k":[241.613,179.71,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":14.4,"op":682,"st":14.4,"bm":0},{"ddd":0,"ind":59,"ty":1,"nm":"Medium Purple Solid 1","parent":63,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":180,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":210,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":424,"s":[60]},{"t":454,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[0,0,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1497.5,410],[1164,600.438],[1164,682],[1312,766.5],[1644.5,576],[1644.5,494.5]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":70,"op":682,"st":-720,"bm":0},{"ddd":0,"ind":60,"ty":1,"nm":"Medium Purple Solid 1","parent":64,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":180,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":210,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":424,"s":[60]},{"t":454,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[137.339,586.469,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1497.5,410],[1164,600.438],[1164,682],[1312,766.5],[1644.5,576],[1644.5,494.5]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":10,"op":70,"st":-720,"bm":0},{"ddd":0,"ind":61,"ty":1,"nm":"Medium Purple Solid 1","parent":63,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":180,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":210,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":424,"s":[60]},{"t":454,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[0,0,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1497.5,410],[1164,600.438],[1164,682],[1312,766.5],[1644.5,576],[1644.5,494.5]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":70,"op":682,"st":-720,"bm":14},{"ddd":0,"ind":62,"ty":1,"nm":"Medium Purple Solid 1","parent":64,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":180,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":210,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":424,"s":[60]},{"t":454,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[137.339,586.469,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1497.5,410],[1164,600.438],[1164,682],[1312,766.5],[1644.5,576],[1644.5,494.5]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":10,"op":70,"st":-720,"bm":14},{"ddd":0,"ind":63,"ty":3,"nm":"Null 2","sr":1,"ks":{"o":{"a":0,"k":0,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.071,"y":1},"o":{"x":0.227,"y":0},"t":434,"s":[1976,1513,0],"to":[0,-4.333,0],"ti":[0,0,0]},{"i":{"x":0.035,"y":1},"o":{"x":0.214,"y":0},"t":454,"s":[1976,1487,0],"to":[0,0,0],"ti":[0,-4.333,0]},{"t":529,"s":[1976,1513,0]}],"ix":2},"a":{"a":0,"k":[0,0,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":434,"op":529,"st":254,"bm":0},{"ddd":0,"ind":64,"ty":2,"nm":"Layer 26","parent":63,"refId":"image_14","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":9.6,"s":[0]},{"t":16.79921875,"s":[100]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":9.6,"s":[104.274,-486.759,0],"to":[0,13.333,0],"ti":[0,-13.333,0]},{"t":69.6,"s":[104.274,-406.759,0]}],"ix":2,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"a":{"a":0,"k":[241.613,179.71,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":9.6,"op":682,"st":9.6,"bm":0},{"ddd":0,"ind":65,"ty":1,"nm":"Medium Purple Solid 1","parent":69,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":180,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":210,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":432,"s":[60]},{"t":462,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[0,0,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[937.5,516.5],[605,707],[605,789],[753,873],[1086.5,682.5],[1086,601]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":65,"op":682,"st":-720,"bm":0},{"ddd":0,"ind":66,"ty":1,"nm":"Medium Purple Solid 1","parent":70,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":180,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":210,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":432,"s":[60]},{"t":462,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[696.094,479.914,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[937.5,516.5],[605,707],[605,789],[753,873],[1086.5,682.5],[1086,601]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":4.8,"op":65,"st":-720,"bm":0},{"ddd":0,"ind":67,"ty":1,"nm":"Medium Purple Solid 1","parent":69,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":180,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":210,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":432,"s":[60]},{"t":462,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[0,0,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[937.5,516.5],[605,707],[605,789],[753,873],[1086.5,682.5],[1086,601]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":65,"op":682,"st":-720,"bm":14},{"ddd":0,"ind":68,"ty":1,"nm":"Medium Purple Solid 1","parent":70,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":180,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":210,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":432,"s":[60]},{"t":462,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[696.094,479.914,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[937.5,516.5],[605,707],[605,789],[753,873],[1086.5,682.5],[1086,601]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":4.8,"op":65,"st":-720,"bm":14},{"ddd":0,"ind":69,"ty":3,"nm":"Null 2","sr":1,"ks":{"o":{"a":0,"k":0,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.071,"y":1},"o":{"x":0.227,"y":0},"t":442,"s":[1976,1513,0],"to":[0,-4.333,0],"ti":[0,0,0]},{"i":{"x":0.035,"y":1},"o":{"x":0.214,"y":0},"t":462,"s":[1976,1487,0],"to":[0,0,0],"ti":[0,-4.333,0]},{"t":537,"s":[1976,1513,0]}],"ix":2},"a":{"a":0,"k":[0,0,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":442,"op":537,"st":262,"bm":0},{"ddd":0,"ind":70,"ty":2,"nm":"Layer 25","parent":69,"refId":"image_15","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":4.8,"s":[0]},{"t":11.99921875,"s":[100]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":4.8,"s":[-454.481,-380.204,0],"to":[0,13.333,0],"ti":[0,-13.333,0]},{"t":64.8,"s":[-454.481,-300.204,0]}],"ix":2,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"a":{"a":0,"k":[241.613,179.71,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":4.8,"op":682,"st":4.8,"bm":0},{"ddd":0,"ind":71,"ty":1,"nm":"Medium Purple Solid 1","parent":75,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":180,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":210,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":428,"s":[60]},{"t":458,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[0,0,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1310,302.5],[977.5,493],[977.5,576],[1125.5,660.5],[1458.5,470],[1458.5,388.5]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":61,"op":682,"st":-720,"bm":0},{"ddd":0,"ind":72,"ty":1,"nm":"Medium Purple Solid 1","parent":76,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":180,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":210,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":428,"s":[60]},{"t":458,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[323.473,692.827,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1310,302.5],[977.5,493],[977.5,576],[1125.5,660.5],[1458.5,470],[1458.5,388.5]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":0,"op":61,"st":-720,"bm":0},{"ddd":0,"ind":73,"ty":1,"nm":"Medium Purple Solid 1","parent":75,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":180,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":210,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":428,"s":[60]},{"t":458,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[0,0,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1310,302.5],[977.5,493],[977.5,576],[1125.5,660.5],[1458.5,470],[1458.5,388.5]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":61,"op":682,"st":-720,"bm":14},{"ddd":0,"ind":74,"ty":1,"nm":"Medium Purple Solid 1","parent":76,"sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":180,"s":[0]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":210,"s":[60]},{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":428,"s":[60]},{"t":458,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[323.473,692.827,0],"ix":2},"a":{"a":0,"k":[1300,995.5,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0],[0,0],[0,0]],"v":[[1310,302.5],[977.5,493],[977.5,576],[1125.5,660.5],[1458.5,470],[1458.5,388.5]],"c":true},"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 2"}],"sw":2600,"sh":1991,"sc":"#7b2bf9","ip":0,"op":61,"st":-720,"bm":14},{"ddd":0,"ind":75,"ty":3,"nm":"Null 2","sr":1,"ks":{"o":{"a":0,"k":0,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.071,"y":1},"o":{"x":0.227,"y":0},"t":438,"s":[1976,1513,0],"to":[0,-4.333,0],"ti":[0,0,0]},{"i":{"x":0.035,"y":1},"o":{"x":0.214,"y":0},"t":458,"s":[1976,1487,0],"to":[0,0,0],"ti":[0,-4.333,0]},{"t":533,"s":[1976,1513,0]}],"ix":2},"a":{"a":0,"k":[0,0,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":438,"op":533,"st":258,"bm":0},{"ddd":0,"ind":76,"ty":2,"nm":"Layer 24","parent":75,"refId":"image_16","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":17,"s":[0]},{"t":24.19921875,"s":[100]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":0,"s":[-81.861,-593.118,0],"to":[0,13.333,0],"ti":[0,-13.333,0]},{"t":60,"s":[-81.861,-513.118,0]}],"ix":2,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"a":{"a":0,"k":[241.613,179.71,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":0,"op":682,"st":0,"bm":0}]},{"id":"comp_4","layers":[{"ddd":0,"ind":1,"ty":2,"nm":"Layer 47","refId":"image_17","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1014.207,772.438,0],"ix":2},"a":{"a":0,"k":[26.116,23.56,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":205.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":265.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":386.999,"s":[100,100,100]},{"t":446.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":205.8,"op":26440.2,"st":205.8,"bm":0},{"ddd":0,"ind":2,"ty":2,"nm":"Layer 67","refId":"image_18","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1038.181,791.054,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":198.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":258.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":388,"s":[100,100,100]},{"t":448.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":198.6,"op":26440.2,"st":198.6,"bm":0},{"ddd":0,"ind":3,"ty":2,"nm":"Layer 84","refId":"image_19","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1103.911,739.116,0],"ix":2},"a":{"a":0,"k":[19.583,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":201,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":261,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":389,"s":[100,100,100]},{"t":449,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":201,"op":26440.2,"st":201,"bm":0},{"ddd":0,"ind":4,"ty":2,"nm":"Layer 97","refId":"image_20","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1071.337,766.826,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":196.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":256.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":390.001,"s":[100,100,100]},{"t":450.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":196.2,"op":26440.2,"st":196.2,"bm":0},{"ddd":0,"ind":5,"ty":2,"nm":"Layer 48","refId":"image_21","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[989.759,757.887,0],"ix":2},"a":{"a":0,"k":[26.116,23.56,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":193.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":253.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":390.999,"s":[100,100,100]},{"t":450.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":193.8,"op":26440.2,"st":193.8,"bm":0},{"ddd":0,"ind":6,"ty":2,"nm":"Layer 74","refId":"image_22","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1126.62,708.041,0],"ix":2},"a":{"a":0,"k":[19.583,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":191.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":251.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":392,"s":[100,100,100]},{"t":451.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":191.4,"op":26440.2,"st":191.4,"bm":0},{"ddd":0,"ind":7,"ty":2,"nm":"Layer 85","refId":"image_23","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1084.147,728.843,0],"ix":2},"a":{"a":0,"k":[19.583,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":186.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":246.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":393,"s":[100,100,100]},{"t":453.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":186.6,"op":26440.2,"st":186.6,"bm":0},{"ddd":0,"ind":8,"ty":2,"nm":"Layer 96","refId":"image_24","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[952.005,786.03,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":189,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":249,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":394,"s":[100,100,100]},{"t":454,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":189,"op":26440.2,"st":189,"bm":0},{"ddd":0,"ind":9,"ty":2,"nm":"Layer 98","refId":"image_25","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1041.342,750.325,0],"ix":2},"a":{"a":0,"k":[29.439,17.643,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":184.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":244.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":395.001,"s":[100,100,100]},{"t":455.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":184.2,"op":26440.2,"st":184.2,"bm":0},{"ddd":0,"ind":10,"ty":2,"nm":"Layer 40","refId":"image_26","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1060.01,707.034,0],"ix":2},"a":{"a":0,"k":[26.116,23.56,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":181.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":241.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":395.999,"s":[100,100,100]},{"t":455.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":181.8,"op":26440.2,"st":181.8,"bm":0},{"ddd":0,"ind":11,"ty":2,"nm":"Layer 54","refId":"image_27","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1103.046,686.818,0],"ix":2},"a":{"a":0,"k":[26.116,23.56,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":179.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":239.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":397,"s":[100,100,100]},{"t":456.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":179.4,"op":26440.2,"st":179.4,"bm":0},{"ddd":0,"ind":12,"ty":2,"nm":"Layer 68","refId":"image_28","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[969.224,752.884,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":174.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":234.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":398,"s":[100,100,100]},{"t":458.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":174.6,"op":26440.2,"st":174.6,"bm":0},{"ddd":0,"ind":13,"ty":2,"nm":"Layer 73","refId":"image_29","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1122.156,665.64,0],"ix":2},"a":{"a":0,"k":[19.583,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":177,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":237,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":399,"s":[100,100,100]},{"t":459,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":177,"op":26440.2,"st":177,"bm":0},{"ddd":0,"ind":14,"ty":2,"nm":"Layer 89","refId":"image_30","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1016.013,735.613,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":172.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":232.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":400.001,"s":[100,100,100]},{"t":460.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":172.2,"op":26440.2,"st":172.2,"bm":0},{"ddd":0,"ind":15,"ty":2,"nm":"Layer 15","refId":"image_31","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[841.527,814.787,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":179.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":239.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":401,"s":[100,100,100]},{"t":460.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":179.4,"op":26440.2,"st":179.4,"bm":0},{"ddd":0,"ind":16,"ty":2,"nm":"Layer 44","refId":"image_32","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[886.671,788.924,0],"ix":2},"a":{"a":0,"k":[26.116,23.56,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":174.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":234.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":402,"s":[100,100,100]},{"t":462.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":174.6,"op":26440.2,"st":174.6,"bm":0},{"ddd":0,"ind":17,"ty":2,"nm":"Layer 57","refId":"image_33","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[928.562,772.385,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":177,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":237,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":403,"s":[100,100,100]},{"t":463,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":177,"op":26440.2,"st":177,"bm":0},{"ddd":0,"ind":18,"ty":2,"nm":"Layer 58","refId":"image_34","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1100.921,646.437,0],"ix":2},"a":{"a":0,"k":[26.116,23.56,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":169.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":229.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":403.999,"s":[100,100,100]},{"t":463.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":169.8,"op":26440.2,"st":169.8,"bm":0},{"ddd":0,"ind":19,"ty":2,"nm":"Layer 59","refId":"image_35","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[989.195,715.014,0],"ix":2},"a":{"a":0,"k":[26.117,23.56,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":172.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":232.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":405.001,"s":[100,100,100]},{"t":465.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":172.2,"op":26440.2,"st":172.2,"bm":0},{"ddd":0,"ind":20,"ty":2,"nm":"Layer 69","refId":"image_36","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[953.927,743.573,0],"ix":2},"a":{"a":0,"k":[19.583,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":167.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":227.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":406,"s":[100,100,100]},{"t":465.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":167.4,"op":26440.2,"st":167.4,"bm":0},{"ddd":0,"ind":21,"ty":2,"nm":"Layer 75","refId":"image_37","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1075.636,680.219,0],"ix":2},"a":{"a":0,"k":[19.583,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":165,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":225,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":407,"s":[100,100,100]},{"t":467,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":165,"op":26440.2,"st":165,"bm":0},{"ddd":0,"ind":22,"ty":2,"nm":"Layer 104","refId":"image_38","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1030.893,697.174,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":160.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":220.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":408.001,"s":[100,100,100]},{"t":468.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":160.2,"op":26440.2,"st":160.2,"bm":0},{"ddd":0,"ind":23,"ty":2,"nm":"Layer 11","refId":"image_39","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[819.846,793.365,0],"ix":2},"a":{"a":0,"k":[26.116,23.56,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":160.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":220.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":409.001,"s":[100,100,100]},{"t":469.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":160.2,"op":26440.2,"st":160.2,"bm":0},{"ddd":0,"ind":24,"ty":2,"nm":"Layer 35","refId":"image_40","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[865.473,784.156,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":162.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":222.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":410,"s":[100,100,100]},{"t":470.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":162.6,"op":26440.2,"st":162.6,"bm":0},{"ddd":0,"ind":25,"ty":2,"nm":"Layer 70","refId":"image_41","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[937.174,734.062,0],"ix":2},"a":{"a":0,"k":[19.583,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":153,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":213,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":411,"s":[100,100,100]},{"t":471,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":153,"op":26440.2,"st":153,"bm":0},{"ddd":0,"ind":26,"ty":2,"nm":"Layer 86","refId":"image_42","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1031.9,651.822,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":155.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":215.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":412,"s":[100,100,100]},{"t":471.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":155.4,"op":26440.2,"st":155.4,"bm":0},{"ddd":0,"ind":27,"ty":2,"nm":"Layer 92","refId":"image_43","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1073.398,636.204,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":150.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":210.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":413,"s":[100,100,100]},{"t":473.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":150.6,"op":26440.2,"st":150.6,"bm":0},{"ddd":0,"ind":28,"ty":2,"nm":"Layer 99","refId":"image_44","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[903.471,757.664,0],"ix":2},"a":{"a":0,"k":[29.44,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":157.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":217.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":413.999,"s":[100,100,100]},{"t":473.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":157.8,"op":26440.2,"st":157.8,"bm":0},{"ddd":0,"ind":29,"ty":2,"nm":"Layer 101","refId":"image_45","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[961.112,704.457,0],"ix":2},"a":{"a":0,"k":[29.44,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":148.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":208.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":415.001,"s":[100,100,100]},{"t":475.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":148.2,"op":26440.2,"st":148.2,"bm":0},{"ddd":0,"ind":30,"ty":2,"nm":"Layer 16","refId":"image_46","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[796.793,787.388,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":39,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":99,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":416,"s":[100,100,100]},{"t":476,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":39,"op":26326.2,"st":39,"bm":0},{"ddd":0,"ind":31,"ty":2,"nm":"Layer 36","refId":"image_47","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[839.302,770.919,0],"ix":2},"a":{"a":0,"k":[29.44,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":36.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":96.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":417,"s":[100,100,100]},{"t":477.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":36.6,"op":26326.2,"st":36.6,"bm":0},{"ddd":0,"ind":32,"ty":2,"nm":"Layer 45","refId":"image_48","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[915.826,713.8,0],"ix":2},"a":{"a":0,"k":[26.116,23.559,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":34.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":94.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":418.001,"s":[100,100,100]},{"t":478.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":34.2,"op":26326.2,"st":34.2,"bm":0},{"ddd":0,"ind":33,"ty":2,"nm":"Layer 53","refId":"image_49","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1004.101,667.64,0],"ix":2},"a":{"a":0,"k":[20.113,29.402,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":31.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":91.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":418.999,"s":[100,100,100]},{"t":478.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":31.8,"op":26326.2,"st":31.8,"bm":0},{"ddd":0,"ind":34,"ty":2,"nm":"Layer 55","refId":"image_50","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1054.288,657.799,0],"ix":2},"a":{"a":0,"k":[26.116,23.56,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":24.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":84.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":420,"s":[100,100,100]},{"t":480.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":24.6,"op":26326.2,"st":24.6,"bm":0},{"ddd":0,"ind":35,"ty":2,"nm":"Layer 91","refId":"image_51","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[937.33,691.566,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":27,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":87,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":421,"s":[100,100,100]},{"t":481,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":27,"op":26326.2,"st":27,"bm":0},{"ddd":0,"ind":36,"ty":2,"nm":"Layer 94","refId":"image_52","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1056.352,625.378,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":29.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":89.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":422,"s":[100,100,100]},{"t":481.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":29.4,"op":26326.2,"st":29.4,"bm":0},{"ddd":0,"ind":37,"ty":2,"nm":"Layer 100","refId":"image_53","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[873.766,741.701,0],"ix":2},"a":{"a":0,"k":[29.44,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":22.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":82.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":423.001,"s":[100,100,100]},{"t":483.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":22.2,"op":26326.2,"st":22.2,"bm":0},{"ddd":0,"ind":38,"ty":2,"nm":"Layer 2","refId":"image_54","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[849.802,715.083,0],"ix":2},"a":{"a":0,"k":[20.112,29.403,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":22.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":82.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":424.001,"s":[100,100,100]},{"t":484.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":22.2,"op":26326.2,"st":22.2,"bm":0},{"ddd":0,"ind":39,"ty":2,"nm":"Layer 18","refId":"image_55","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[771.579,774.578,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":24.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":84.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":425,"s":[100,100,100]},{"t":485.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":24.6,"op":26326.2,"st":24.6,"bm":0},{"ddd":0,"ind":40,"ty":2,"nm":"Layer 37","refId":"image_56","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[811.562,752.333,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":27,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":87,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":426,"s":[100,100,100]},{"t":486,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":27,"op":26326.2,"st":27,"bm":0},{"ddd":0,"ind":41,"ty":2,"nm":"Layer 46","refId":"image_57","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[891.659,697.475,0],"ix":2},"a":{"a":0,"k":[26.116,23.56,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":19.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":79.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":426.999,"s":[100,100,100]},{"t":486.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":19.8,"op":26326.2,"st":19.8,"bm":0},{"ddd":0,"ind":42,"ty":2,"nm":"Layer 65","refId":"image_58","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[962.318,655.209,0],"ix":2},"a":{"a":0,"k":[26.116,23.56,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":15,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":75,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":428,"s":[100,100,100]},{"t":488,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":15,"op":26326.2,"st":15,"bm":0},{"ddd":0,"ind":43,"ty":2,"nm":"Layer 90","refId":"image_59","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[920.925,681.368,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":17.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":77.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":429,"s":[100,100,100]},{"t":488.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":17.4,"op":26326.2,"st":17.4,"bm":0},{"ddd":0,"ind":44,"ty":2,"nm":"Layer 93","refId":"image_60","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1037.729,615.623,0],"ix":2},"a":{"a":0,"k":[19.583,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":12.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":72.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":430,"s":[100,100,100]},{"t":490.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":12.6,"op":26326.2,"st":12.6,"bm":0},{"ddd":0,"ind":45,"ty":2,"nm":"Layer 109","refId":"image_61","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1004.025,641.008,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":10.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":70.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":431.001,"s":[100,100,100]},{"t":491.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":10.2,"op":26326.2,"st":10.2,"bm":0},{"ddd":0,"ind":46,"ty":2,"nm":"Layer 597","refId":"image_62","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[865.89,827.197,0],"ix":2},"a":{"a":0,"k":[117.976,67.243,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":0,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[5.586,-11.954],[-17.914,4.546],[-8.914,-1.954],[7.586,-9.454]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":55,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[5.586,-11.954],[-17.914,4.546],[40.898,30.499],[57.398,22.999]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":130,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[5.586,-11.954],[-17.914,4.546],[40.898,30.499],[57.398,22.999]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":185.801,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[5.586,-11.954],[-17.914,4.546],[84.086,58.546],[100.586,51.046]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":403,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[5.586,-11.954],[-17.914,4.546],[84.086,58.546],[100.586,51.046]],"c":true}]},{"t":463,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[5.586,-11.954],[-17.914,4.546],[-8.914,-1.954],[7.586,-9.454]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":0,"op":26347.2,"st":0,"bm":0},{"ddd":0,"ind":47,"ty":2,"nm":"Layer 598","refId":"image_63","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[914.198,812.923,0],"ix":2},"a":{"a":0,"k":[130.207,74.192,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":4.8,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[10.509,-13.732],[-15.491,3.768],[-10.991,2.768],[10.009,-8.732]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":58.999,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[10.509,-13.732],[-15.491,3.768],[38.949,31.979],[59.949,20.479]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":133.999,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[10.509,-13.732],[-15.491,3.768],[38.949,31.979],[59.949,20.479]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":190.601,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[10.509,-13.732],[-15.491,3.768],[95.009,64.768],[116.009,53.268]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":400.999,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[10.509,-13.732],[-15.491,3.768],[95.009,64.768],[116.009,53.268]],"c":true}]},{"t":460.99921875,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[10.509,-13.732],[-15.491,3.768],[-10.991,2.768],[10.009,-8.732]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":4.8,"op":26347.2,"st":4.8,"bm":0},{"ddd":0,"ind":48,"ty":2,"nm":"Layer 599","refId":"image_64","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1086.878,729.771,0],"ix":2},"a":{"a":0,"k":[144.146,82.111,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":9.6,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[2.268,-10.66],[-22.732,2.34],[-12.732,0.84],[6.268,-7.66]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":63,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[2.268,-10.66],[-22.732,2.34],[50.344,36.318],[69.344,27.818]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":138,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[2.268,-10.66],[-22.732,2.34],[50.344,36.318],[69.344,27.818]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":195.401,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[2.268,-10.66],[-22.732,2.34],[149.768,95.34],[168.768,86.84]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":398,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[2.268,-10.66],[-22.732,2.34],[149.768,95.34],[168.768,86.84]],"c":true}]},{"t":458.000390625,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[2.268,-10.66],[-22.732,2.34],[-12.732,0.84],[6.268,-7.66]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":9.6,"op":26347.2,"st":9.6,"bm":0},{"ddd":0,"ind":49,"ty":2,"nm":"Layer 600","refId":"image_65","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1125.157,707.768,0],"ix":2},"a":{"a":0,"k":[145.795,83.048,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":14.4,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-0.362,-12.221],[-21.862,3.279],[-10.862,3.279],[8.638,-9.721]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":67,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-0.362,-12.221],[-21.862,3.279],[62.987,44.803],[82.487,31.803]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":142,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-0.362,-12.221],[-21.862,3.279],[62.987,44.803],[82.487,31.803]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":200.201,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-0.362,-12.221],[-21.862,3.279],[138.138,88.779],[157.638,75.779]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":396,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-0.362,-12.221],[-21.862,3.279],[138.138,88.779],[157.638,75.779]],"c":true}]},{"t":455.999609375,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-0.362,-12.221],[-21.862,3.279],[-10.862,3.279],[8.638,-9.721]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":14.4,"op":26347.2,"st":14.4,"bm":0},{"ddd":0,"ind":50,"ty":2,"nm":"Layer 601","refId":"image_66","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1163.333,686.76,0],"ix":2},"a":{"a":0,"k":[144.088,82.078,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":19.2,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[9.755,-15.183],[-22.245,5.317],[-9.745,-2.683],[12.755,-15.683]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":71.001,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[9.755,-15.183],[-22.245,5.317],[29.203,23.158],[51.703,10.158]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":146.001,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[9.755,-15.183],[-22.245,5.317],[29.203,23.158],[51.703,10.158]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":205.001,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[9.755,-15.183],[-22.245,5.317],[94.255,66.317],[116.755,53.317]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":394.001,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[9.755,-15.183],[-22.245,5.317],[94.255,66.317],[116.755,53.317]],"c":true}]},{"t":454.00078125,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[9.755,-15.183],[-22.245,5.317],[-9.745,-2.683],[12.755,-15.683]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":19.2,"op":26347.2,"st":19.2,"bm":0},{"ddd":0,"ind":51,"ty":2,"nm":"Layer 602","refId":"image_67","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1042.7,750.809,0],"ix":2},"a":{"a":0,"k":[141.258,80.47,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":21.6,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[5.059,-13.839],[-19.441,6.161],[-14.941,2.661],[11.059,-15.839]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":75,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[5.059,-13.839],[-19.441,6.161],[23.919,30.255],[49.919,11.755]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":150,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[5.059,-13.839],[-19.441,6.161],[23.919,30.255],[49.919,11.755]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":207.401,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[5.059,-13.839],[-19.441,6.161],[159.059,106.161],[185.059,87.661]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":391,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[5.059,-13.839],[-19.441,6.161],[159.059,106.161],[185.059,87.661]],"c":true}]},{"t":451.000390625,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[5.059,-13.839],[-19.441,6.161],[-14.941,2.661],[11.059,-15.839]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":21.6,"op":26347.2,"st":21.6,"bm":0},{"ddd":0,"ind":52,"ty":2,"nm":"Layer 603","refId":"image_68","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[970.013,795.755,0],"ix":2},"a":{"a":0,"k":[142.75,81.318,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":26.4,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-0.263,-13.937],[-24.763,1.563],[-16.763,3.063],[12.237,-10.437]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":79,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-0.263,-13.937],[-24.763,1.563],[30.15,31.776],[59.15,18.276]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":154,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-0.263,-13.937],[-24.763,1.563],[30.15,31.776],[59.15,18.276]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":212.201,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-0.263,-13.937],[-24.763,1.563],[111.737,78.063],[140.737,64.563]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":389,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-0.263,-13.937],[-24.763,1.563],[111.737,78.063],[140.737,64.563]],"c":true}]},{"t":448.999609375,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-0.263,-13.937],[-24.763,1.563],[-16.763,3.063],[12.237,-10.437]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":26.4,"op":26347.2,"st":26.4,"bm":0},{"ddd":0,"ind":53,"ty":2,"nm":"Layer 610","refId":"image_69","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1008.173,774.403,0],"ix":2},"a":{"a":0,"k":[144.751,82.455,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":31.2,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[10.579,-19.448],[-21.921,3.552],[-13.921,2.552],[12.079,-13.448]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":83.001,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[10.579,-19.448],[-21.921,3.552],[39.875,36.109],[65.875,20.109]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":158.001,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[10.579,-19.448],[-21.921,3.552],[39.875,36.109],[65.875,20.109]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":217.001,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[10.579,-19.448],[-21.921,3.552],[160.579,109.052],[186.579,93.052]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":387.001,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[10.579,-19.448],[-21.921,3.552],[160.579,109.052],[186.579,93.052]],"c":true}]},{"t":447.00078125,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[10.579,-19.448],[-21.921,3.552],[-13.921,2.552],[12.079,-13.448]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":31.2,"op":26347.2,"st":31.2,"bm":0}]},{"id":"comp_5","layers":[{"ddd":0,"ind":1,"ty":2,"nm":"Layer 185","refId":"image_70","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[429.817,769.14,0],"ix":2},"a":{"a":0,"k":[26.116,23.56,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":200.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":260.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":386.999,"s":[100,100,100]},{"t":447.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":200.8,"op":26447.2,"st":200.8,"bm":0},{"ddd":0,"ind":2,"ty":2,"nm":"Layer 206","refId":"image_71","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[377.343,760.145,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":203.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":263.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":388.001,"s":[100,100,100]},{"t":449.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":203.2,"op":26447.2,"st":203.2,"bm":0},{"ddd":0,"ind":3,"ty":2,"nm":"Layer 210","refId":"image_72","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[399.096,746.202,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":198.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":258.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":389,"s":[100,100,100]},{"t":449.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":198.4,"op":26447.2,"st":198.4,"bm":0},{"ddd":0,"ind":4,"ty":2,"nm":"Layer 229","refId":"image_73","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[345.055,725.413,0],"ix":2},"a":{"a":0,"k":[26.117,23.56,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":196,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":256,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":390,"s":[100,100,100]},{"t":451,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":196,"op":26447.2,"st":196,"bm":0},{"ddd":0,"ind":5,"ty":2,"nm":"Layer 177","refId":"image_74","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[474.696,794.418,0],"ix":2},"a":{"a":0,"k":[19.583,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":193.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":253.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":391,"s":[100,100,100]},{"t":452.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":193.6,"op":26447.2,"st":193.6,"bm":0},{"ddd":0,"ind":6,"ty":2,"nm":"Layer 181","refId":"image_75","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[518.123,815.197,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":191.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":251.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":392.001,"s":[100,100,100]},{"t":453.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":191.2,"op":26447.2,"st":191.2,"bm":0},{"ddd":0,"ind":7,"ty":2,"nm":"Layer 186","refId":"image_76","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[453.65,753.147,0],"ix":2},"a":{"a":0,"k":[26.116,23.559,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":186.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":246.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":392,"s":[100,100,100]},{"t":452.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":186.4,"op":26447.2,"st":186.4,"bm":0},{"ddd":0,"ind":8,"ty":2,"nm":"Layer 232","refId":"image_77","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[375.048,714.719,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":188.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":248.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":392.999,"s":[100,100,100]},{"t":453.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":188.8,"op":26447.2,"st":188.8,"bm":0},{"ddd":0,"ind":9,"ty":2,"nm":"Layer 392","refId":"image_78","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[329.184,692.392,0],"ix":2},"a":{"a":0,"k":[29.439,17.643,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":184,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":244,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":394,"s":[100,100,100]},{"t":455,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":184,"op":26447.2,"st":184,"bm":0},{"ddd":0,"ind":10,"ty":2,"nm":"Layer 169","refId":"image_79","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[543.694,801.276,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":186.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":246.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":395,"s":[100,100,100]},{"t":455.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":186.4,"op":26447.2,"st":186.4,"bm":0},{"ddd":0,"ind":11,"ty":2,"nm":"Layer 174","refId":"image_80","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[498.269,773.196,0],"ix":2},"a":{"a":0,"k":[26.116,23.56,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":184,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":244,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":396,"s":[100,100,100]},{"t":457,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":184,"op":26447.2,"st":184,"bm":0},{"ddd":0,"ind":12,"ty":2,"nm":"Layer 207","refId":"image_81","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[424.785,733.541,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":172,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":232,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":397,"s":[100,100,100]},{"t":458,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":172,"op":26447.2,"st":172,"bm":0},{"ddd":0,"ind":13,"ty":2,"nm":"Layer 230","refId":"image_82","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[398.434,700.863,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":174.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":234.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":398,"s":[100,100,100]},{"t":458.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":174.4,"op":26447.2,"st":174.4,"bm":0},{"ddd":0,"ind":14,"ty":2,"nm":"Layer 252","refId":"image_83","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[352.627,678.746,0],"ix":2},"a":{"a":0,"k":[19.583,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":179.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":239.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":399.001,"s":[100,100,100]},{"t":460.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":179.2,"op":26447.2,"st":179.2,"bm":0},{"ddd":0,"ind":15,"ty":2,"nm":"Layer 348","refId":"image_84","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[316.62,656.917,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":176.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":236.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":399.999,"s":[100,100,100]},{"t":460.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":176.8,"op":26447.2,"st":176.8,"bm":0},{"ddd":0,"ind":16,"ty":2,"nm":"Layer 349","refId":"image_85","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[335.036,646.077,0],"ix":2},"a":{"a":0,"k":[19.583,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":181.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":241.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":401,"s":[100,100,100]},{"t":462.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":181.6,"op":26447.2,"st":181.6,"bm":0},{"ddd":0,"ind":17,"ty":2,"nm":"Layer 163","refId":"image_86","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[610.346,804.052,0],"ix":2},"a":{"a":0,"k":[26.116,23.559,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":172,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":232,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":402,"s":[100,100,100]},{"t":463,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":172,"op":26447.2,"st":172,"bm":0},{"ddd":0,"ind":18,"ty":2,"nm":"Layer 170","refId":"image_87","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[562.184,791.003,0],"ix":2},"a":{"a":0,"k":[19.582,11.758,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":164.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":224.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":402.999,"s":[100,100,100]},{"t":463.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":164.8,"op":26447.2,"st":164.8,"bm":0},{"ddd":0,"ind":19,"ty":2,"nm":"Layer 178","refId":"image_88","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[522.943,767.964,0],"ix":2},"a":{"a":0,"k":[19.583,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":169.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":229.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":404,"s":[100,100,100]},{"t":465.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":169.6,"op":26447.2,"st":169.6,"bm":0},{"ddd":0,"ind":20,"ty":2,"nm":"Layer 187","refId":"image_89","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[472.173,734.574,0],"ix":2},"a":{"a":0,"k":[20.521,29.119,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":167.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":227.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":405.001,"s":[100,100,100]},{"t":466.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":167.2,"op":26447.2,"st":167.2,"bm":0},{"ddd":0,"ind":21,"ty":2,"nm":"Layer 211","refId":"image_90","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[448.48,718.577,0],"ix":2},"a":{"a":0,"k":[19.583,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":160,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":220,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":406,"s":[100,100,100]},{"t":467,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":160,"op":26447.2,"st":160,"bm":0},{"ddd":0,"ind":22,"ty":2,"nm":"Layer 216","refId":"image_91","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[376.648,658.493,0],"ix":2},"a":{"a":0,"k":[26.116,23.56,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":162.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":222.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":407,"s":[100,100,100]},{"t":467.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":162.4,"op":26447.2,"st":162.4,"bm":0},{"ddd":0,"ind":23,"ty":2,"nm":"Layer 166","refId":"image_92","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[585.758,771.348,0],"ix":2},"a":{"a":0,"k":[26.117,23.56,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":51.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":111.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":407.999,"s":[100,100,100]},{"t":468.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":51.8,"op":26334.2,"st":51.8,"bm":0},{"ddd":0,"ind":24,"ty":2,"nm":"Layer 175","refId":"image_93","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[543.608,745.543,0],"ix":2},"a":{"a":0,"k":[26.116,23.56,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":47,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":107,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":409,"s":[100,100,100]},{"t":470,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":47,"op":26334.2,"st":47,"bm":0},{"ddd":0,"ind":25,"ty":2,"nm":"Layer 188","refId":"image_94","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[506.449,725.413,0],"ix":2},"a":{"a":0,"k":[26.116,23.56,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":44.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":104.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":410,"s":[100,100,100]},{"t":471.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":44.6,"op":26334.2,"st":44.6,"bm":0},{"ddd":0,"ind":26,"ty":2,"nm":"Layer 200","refId":"image_95","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[422.006,679.641,0],"ix":2},"a":{"a":0,"k":[26.117,23.56,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":42.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":102.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":411.001,"s":[100,100,100]},{"t":472.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":42.2,"op":26334.2,"st":42.2,"bm":0},{"ddd":0,"ind":27,"ty":2,"nm":"Layer 212","refId":"image_96","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[466.969,708.304,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":49.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":109.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":412,"s":[100,100,100]},{"t":472.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":49.4,"op":26334.2,"st":49.4,"bm":0},{"ddd":0,"ind":28,"ty":2,"nm":"Layer 222","refId":"image_97","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[362.304,625.479,0],"ix":2},"a":{"a":0,"k":[26.117,23.56,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":37.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":97.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":413,"s":[100,100,100]},{"t":473.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":37.4,"op":26334.2,"st":37.4,"bm":0},{"ddd":0,"ind":29,"ty":2,"nm":"Layer 253","refId":"image_98","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[399.774,652.321,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":39.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":99.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":413.999,"s":[100,100,100]},{"t":474.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":39.8,"op":26334.2,"st":39.8,"bm":0},{"ddd":0,"ind":30,"ty":2,"nm":"Layer 264","refId":"image_99","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[638.429,793.495,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":35,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":95,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":415,"s":[100,100,100]},{"t":476,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":35,"op":26334.2,"st":35,"bm":0},{"ddd":0,"ind":31,"ty":2,"nm":"Layer 167","refId":"image_100","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[610.591,756.322,0],"ix":2},"a":{"a":0,"k":[26.116,23.56,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":36.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":96.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":416,"s":[100,100,100]},{"t":476.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":36.4,"op":26333.2,"st":36.4,"bm":0},{"ddd":0,"ind":32,"ty":2,"nm":"Layer 179","refId":"image_101","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[565.996,740.592,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":34,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":94,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":417,"s":[100,100,100]},{"t":478,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":34,"op":26333.2,"st":34,"bm":0},{"ddd":0,"ind":33,"ty":2,"nm":"Layer 190","refId":"image_102","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[536.441,716.049,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":31.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":91.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":418,"s":[100,100,100]},{"t":479.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":31.6,"op":26333.2,"st":31.6,"bm":0},{"ddd":0,"ind":34,"ty":2,"nm":"Layer 208","refId":"image_103","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[492.274,689.688,0],"ix":2},"a":{"a":0,"k":[26.116,23.56,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":26.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":86.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":418.999,"s":[100,100,100]},{"t":479.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":26.8,"op":26333.2,"st":26.8,"bm":0},{"ddd":0,"ind":35,"ty":2,"nm":"Layer 231","refId":"image_104","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[449.417,673.041,0],"ix":2},"a":{"a":0,"k":[19.582,11.758,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":29.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":89.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":420.001,"s":[100,100,100]},{"t":481.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":29.2,"op":26333.2,"st":29.2,"bm":0},{"ddd":0,"ind":36,"ty":2,"nm":"Layer 254","refId":"image_105","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[416.82,641.494,0],"ix":2},"a":{"a":0,"k":[19.583,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":24.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":84.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":421,"s":[100,100,100]},{"t":481.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":24.4,"op":26333.2,"st":24.4,"bm":0},{"ddd":0,"ind":37,"ty":2,"nm":"Layer 260","refId":"image_106","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[662.212,780.603,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":22,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":82,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":422,"s":[100,100,100]},{"t":483,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":22,"op":26333.2,"st":22,"bm":0},{"ddd":0,"ind":38,"ty":2,"nm":"Layer 168","refId":"image_107","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[635.901,741.855,0],"ix":2},"a":{"a":0,"k":[26.116,23.56,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":26.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":86.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":422.999,"s":[100,100,100]},{"t":483.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":26.8,"op":26333.2,"st":26.8,"bm":0},{"ddd":0,"ind":39,"ty":2,"nm":"Layer 183","refId":"image_108","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[594.897,728.41,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":24.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":84.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":424,"s":[100,100,100]},{"t":484.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":24.4,"op":26333.2,"st":24.4,"bm":0},{"ddd":0,"ind":40,"ty":2,"nm":"Layer 189","refId":"image_109","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[559.827,702.193,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":19.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":79.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":425,"s":[100,100,100]},{"t":486.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":19.6,"op":26333.2,"st":19.6,"bm":0},{"ddd":0,"ind":41,"ty":2,"nm":"Layer 209","refId":"image_110","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[516.108,673.695,0],"ix":2},"a":{"a":0,"k":[26.116,23.559,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":17.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":77.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":426.001,"s":[100,100,100]},{"t":487.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":17.2,"op":26333.2,"st":17.2,"bm":0},{"ddd":0,"ind":42,"ty":2,"nm":"Layer 228","refId":"image_111","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[470.765,650.621,0],"ix":2},"a":{"a":0,"k":[26.116,23.559,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":22,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":82,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":427,"s":[100,100,100]},{"t":488,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":22,"op":26333.2,"st":22,"bm":0},{"ddd":0,"ind":43,"ty":2,"nm":"Layer 255","refId":"image_112","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[434.391,630.825,0],"ix":2},"a":{"a":0,"k":[19.583,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":14.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":74.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":427.999,"s":[100,100,100]},{"t":488.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":14.8,"op":26333.2,"st":14.8,"bm":0},{"ddd":0,"ind":44,"ty":2,"nm":"Layer 261","refId":"image_113","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[679.281,770.849,0],"ix":2},"a":{"a":0,"k":[19.583,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":12.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":72.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":429,"s":[100,100,100]},{"t":489.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":12.4,"op":26333.2,"st":12.4,"bm":0},{"ddd":0,"ind":45,"ty":2,"nm":"Layer 389","refId":"image_114","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[392.6,613.256,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":10,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":70,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":431,"s":[100,100,100]},{"t":491,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":10,"op":26333.2,"st":10,"bm":0},{"ddd":0,"ind":46,"ty":2,"nm":"Layer 233","refId":"image_115","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[356.839,725.052,0],"ix":2},"a":{"a":0,"k":[143.483,81.734,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":0,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[283.143,-13.818],[276.143,-12.818],[294.643,-0.818],[300.643,7.182]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":76,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[283.143,-13.818],[200.861,36.746],[219.361,48.746],[300.643,7.182]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":150,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[283.143,-13.818],[200.861,36.746],[219.361,48.746],[300.643,7.182]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":208,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[283.143,-13.818],[120.643,83.682],[139.143,95.682],[300.643,7.182]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":402,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[283.143,-13.818],[120.643,83.682],[139.143,95.682],[300.643,7.182]],"c":true}]},{"t":452,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[283.143,-13.818],[276.143,-12.818],[294.643,-0.818],[300.643,7.182]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":0,"op":26347.2,"st":0,"bm":0},{"ddd":0,"ind":47,"ty":2,"nm":"Layer 265","refId":"image_116","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[572.335,831.045,0],"ix":2},"a":{"a":0,"k":[125.766,71.668,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":4.8,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[239.931,-7.876],[236.431,-11.376],[261.931,0.624],[269.431,1.624]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":79.999,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[239.931,-7.876],[178.922,26.979],[204.422,38.979],[269.431,1.624]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":153.999,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[239.931,-7.876],[178.922,26.979],[204.422,38.979],[269.431,1.624]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":212.8,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[239.931,-7.876],[146.931,48.124],[172.431,60.124],[269.431,1.624]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":399.999,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[239.931,-7.876],[146.931,48.124],[172.431,60.124],[269.431,1.624]],"c":true}]},{"t":449.99921875,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[239.931,-7.876],[236.431,-11.376],[261.931,0.624],[269.431,1.624]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":4.8,"op":26347.2,"st":4.8,"bm":0},{"ddd":0,"ind":48,"ty":2,"nm":"Layer 390","refId":"image_117","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[295.743,667.852,0],"ix":2},"a":{"a":0,"k":[122.024,69.543,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":9.6,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[241.281,-13.31],[242.781,-8.81],[261.781,-0.31],[260.281,1.69]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":84,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[241.281,-13.31],[173.789,30.212],[192.789,38.712],[260.281,1.69]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":158,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[241.281,-13.31],[173.789,30.212],[192.789,38.712],[260.281,1.69]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":217.6,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[241.281,-13.31],[133.281,54.69],[152.281,63.19],[260.281,1.69]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":397,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[241.281,-13.31],[133.281,54.69],[152.281,63.19],[260.281,1.69]],"c":true}]},{"t":447.000390625,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[241.281,-13.31],[242.781,-8.81],[261.781,-0.31],[260.281,1.69]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":9.6,"op":26347.2,"st":9.6,"bm":0},{"ddd":0,"ind":49,"ty":2,"nm":"Layer 434","refId":"image_118","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[428.54,775.356,0],"ix":2},"a":{"a":0,"k":[148.699,84.698,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":14.4,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[292.16,-10.658],[288.16,-11.658],[315.66,-0.158],[314.66,-0.658]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":88,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[292.16,-10.658],[211.623,35.655],[239.123,47.155],[314.66,-0.658]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":162,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[292.16,-10.658],[211.623,35.655],[239.123,47.155],[314.66,-0.658]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":222.4,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[292.16,-10.658],[130.16,83.842],[157.66,95.342],[314.66,-0.658]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":395,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[292.16,-10.658],[130.16,83.842],[157.66,95.342],[314.66,-0.658]],"c":true}]},{"t":444.999609375,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[292.16,-10.658],[288.16,-11.658],[315.66,-0.158],[314.66,-0.658]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":14.4,"op":26347.2,"st":14.4,"bm":0},{"ddd":0,"ind":50,"ty":2,"nm":"Layer 435","refId":"image_119","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[387.748,752.299,0],"ix":2},"a":{"a":0,"k":[148.699,84.698,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":19.2,"s":[{"i":[[0,0],[0,0],[0,0],[-0.5,1.5]],"o":[[0,0],[0,0],[0,0],[0.5,-1.5]],"v":[[288.451,-9.102],[279.951,-10.102],[309.951,2.898],[317.951,5.398]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":92.001,"s":[{"i":[[0,0],[0,0],[0,0],[-0.5,1.5]],"o":[[0,0],[0,0],[0,0],[0.5,-1.5]],"v":[[288.451,-9.102],[207.335,33.305],[237.335,46.305],[317.951,5.398]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":166.001,"s":[{"i":[[0,0],[0,0],[0,0],[-0.5,1.5]],"o":[[0,0],[0,0],[0,0],[0.5,-1.5]],"v":[[288.451,-9.102],[207.335,33.305],[237.335,46.305],[317.951,5.398]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":227.2,"s":[{"i":[[0,0],[0,0],[0,0],[-0.5,1.5]],"o":[[0,0],[0,0],[0,0],[0.5,-1.5]],"v":[[288.451,-9.102],[114.951,87.898],[144.951,100.898],[317.951,5.398]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":393.001,"s":[{"i":[[0,0],[0,0],[0,0],[-0.5,1.5]],"o":[[0,0],[0,0],[0,0],[0.5,-1.5]],"v":[[288.451,-9.102],[114.951,87.898],[144.951,100.898],[317.951,5.398]],"c":true}]},{"t":443.00078125,"s":[{"i":[[0,0],[0,0],[0,0],[-0.5,1.5]],"o":[[0,0],[0,0],[0,0],[0.5,-1.5]],"v":[[288.451,-9.102],[279.951,-10.102],[309.951,2.898],[317.951,5.398]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":19.2,"op":26347.2,"st":19.2,"bm":0},{"ddd":0,"ind":51,"ty":2,"nm":"Layer 436","refId":"image_120","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[305.227,705.497,0],"ix":2},"a":{"a":0,"k":[148.699,84.698,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":24,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[298.972,-13.299],[291.972,-10.299],[323.472,3.201],[315.972,1.201]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":96,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[298.972,-13.299],[223.85,26.746],[255.35,40.246],[315.972,1.201]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":170,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[298.972,-13.299],[223.85,26.746],[255.35,40.246],[315.972,1.201]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":232,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[298.972,-13.299],[159.472,65.201],[190.972,78.701],[315.972,1.201]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":391,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[298.972,-13.299],[159.472,65.201],[190.972,78.701],[315.972,1.201]],"c":true}]},{"t":441,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[298.972,-13.299],[291.972,-10.299],[323.472,3.201],[315.972,1.201]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":24,"op":26347.2,"st":24,"bm":0},{"ddd":0,"ind":52,"ty":2,"nm":"Layer 437","refId":"image_121","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[480.952,791.18,0],"ix":2},"a":{"a":0,"k":[137.454,78.309,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":28.8,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[276.001,-11.871],[265.001,-9.371],[288.001,2.129],[294.001,-2.371]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":99.999,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[276.001,-11.871],[191.817,32.987],[214.817,44.487],[294.001,-2.371]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":173.999,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[276.001,-11.871],[191.817,32.987],[214.817,44.487],[294.001,-2.371]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":236.8,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[276.001,-11.871],[121.001,75.629],[144.001,87.129],[294.001,-2.371]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":388.999,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[276.001,-11.871],[121.001,75.629],[144.001,87.129],[294.001,-2.371]],"c":true}]},{"t":438.99921875,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[276.001,-11.871],[265.001,-9.371],[288.001,2.129],[294.001,-2.371]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":28.8,"op":26347.2,"st":28.8,"bm":0},{"ddd":0,"ind":53,"ty":2,"nm":"Layer 438","refId":"image_122","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[528.696,809.85,0],"ix":2},"a":{"a":0,"k":[130.068,74.112,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":33.6,"s":[{"i":[[0,0],[0,0],[0,0],[0.5,1.5]],"o":[[0,0],[0,0],[0,0],[-0.5,-1.5]],"v":[[264.372,-11.237],[245.372,-9.737],[276.372,4.763],[284.872,2.763]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":104,"s":[{"i":[[0,0],[0,0],[0,0],[0.5,1.5]],"o":[[0,0],[0,0],[0,0],[-0.5,-1.5]],"v":[[264.372,-11.237],[165.809,35.926],[196.809,50.426],[284.872,2.763]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":178,"s":[{"i":[[0,0],[0,0],[0,0],[0.5,1.5]],"o":[[0,0],[0,0],[0,0],[-0.5,-1.5]],"v":[[264.372,-11.237],[165.809,35.926],[196.809,50.426],[284.872,2.763]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":241.6,"s":[{"i":[[0,0],[0,0],[0,0],[0.5,1.5]],"o":[[0,0],[0,0],[0,0],[-0.5,-1.5]],"v":[[264.372,-11.237],[103.372,73.763],[134.372,88.263],[284.872,2.763]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":387,"s":[{"i":[[0,0],[0,0],[0,0],[0.5,1.5]],"o":[[0,0],[0,0],[0,0],[-0.5,-1.5]],"v":[[264.372,-11.237],[103.372,73.763],[134.372,88.263],[284.872,2.763]],"c":true}]},{"t":437.000390625,"s":[{"i":[[0,0],[0,0],[0,0],[0.5,1.5]],"o":[[0,0],[0,0],[0,0],[-0.5,-1.5]],"v":[[264.372,-11.237],[245.372,-9.737],[276.372,4.763],[284.872,2.763]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":33.6,"op":26347.2,"st":33.6,"bm":0}]},{"id":"comp_6","layers":[{"ddd":0,"ind":2,"ty":2,"nm":"typo 2","refId":"image_123","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":600,"s":[0]},{"t":720,"s":[100]}],"ix":11,"x":"var $bm_rt;\nfunction inOutQuint(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(inOutQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":600,"s":[1552.364,1394.68,0],"to":[0,-10,0],"ti":[0,10,0]},{"t":720,"s":[1552.364,1334.68,0]}],"ix":2,"x":"var $bm_rt;\nfunction inOutQuint(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(inOutQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"a":{"a":0,"k":[208.844,137.23,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6,"x":"var $bm_rt;\nfunction inOutQuint(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(inOutQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":600,"op":26347.2,"st":0,"bm":0},{"ddd":0,"ind":3,"ty":2,"nm":"logo 2","refId":"image_124","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":600,"s":[729.473,1090.309,0],"to":[20.583,-4.5,0],"ti":[-20.583,4.5,0]},{"t":720,"s":[852.973,1063.309,0]}],"ix":2,"x":"var $bm_rt;\nfunction inOutQuint(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(inOutQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"a":{"a":0,"k":[135.487,75.087,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":600,"s":[73,73,100]},{"t":720,"s":[100,100,100]}],"ix":6,"x":"var $bm_rt;\nfunction inOutQuint(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(inOutQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":360,"op":26347.2,"st":0,"bm":0},{"ddd":0,"ind":4,"ty":4,"nm":"Layer 26 Outlines 2","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[2026.608,1507.469,0],"ix":2},"a":{"a":0,"k":[353.016,244.895,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":240,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-237.359,-238.27],[-237.127,-175.587],[-352.248,-109.855],[-352.48,-172.87]],"c":true}]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":360,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[417.641,-206.77],[417.873,-144.087],[-352.707,296.145],[-352.939,233.13]],"c":true}]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":600,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[417.641,-206.77],[417.873,-144.087],[-352.707,296.145],[-352.939,233.13]],"c":true}]},{"t":720,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[352.766,-244.645],[352.766,-159.462],[-352.766,244.645],[-352.766,159.13]],"c":true}]}],"ix":2,"x":"var $bm_rt;\nfunction inOutQuint(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(inOutQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"nm":"Path 2","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"gf","o":{"a":0,"k":100,"ix":10},"r":1,"bm":0,"g":{"p":5,"k":{"a":0,"k":[0,0.584,0.212,0.953,0.23,0.533,0.19,0.965,0.46,0.482,0.169,0.976,0.73,0.42,0.147,0.888,1,0.357,0.125,0.8],"ix":9}},"s":{"a":0,"k":[307,0],"ix":5},"e":{"a":0,"k":[-417,0],"ix":6},"t":1,"nm":"Gradient Fill 1","mn":"ADBE Vector Graphic - G-Fill","hd":false},{"ty":"fl","c":{"a":0,"k":[0.5,0.5,0.5,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false}],"ip":360,"op":26347.2,"st":0,"bm":0},{"ddd":0,"ind":5,"ty":4,"nm":"Layer 27 Outlines 2","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1321.311,1507.397,0],"ix":2},"a":{"a":0,"k":[354.03,245.467,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":240,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[238.47,-238.967],[238.47,-175.283],[353.842,-109.533],[353.842,-172.548]],"c":true}]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":360,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-421.53,-206.967],[-421.53,-143.283],[353.842,297.467],[353.842,234.452]],"c":true}]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":600,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-421.53,-206.967],[-421.53,-143.283],[353.842,297.467],[353.842,234.452]],"c":true}]},{"t":720,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-353.78,-245.217],[-353.78,-160.033],[353.78,245.217],[353.78,159.703]],"c":true}]}],"ix":2,"x":"var $bm_rt;\nfunction inOutQuint(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(inOutQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"nm":"Path 2","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"gf","o":{"a":0,"k":100,"ix":10},"r":1,"bm":0,"g":{"p":3,"k":{"a":0,"k":[0,0.502,0.18,0.957,0.5,0.737,0.28,0.906,1,0.973,0.38,0.855],"ix":9}},"s":{"a":0,"k":[345,0],"ix":5},"e":{"a":0,"k":[-398,0],"ix":6},"t":1,"nm":"Gradient Fill 1","mn":"ADBE Vector Graphic - G-Fill","hd":false},{"ty":"fl","c":{"a":0,"k":[0.5,0.5,0.5,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false}],"ip":360,"op":26347.2,"st":0,"bm":0},{"ddd":0,"ind":6,"ty":4,"nm":"Layer 28 Outlines 4","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1320.202,1016.923,0],"ix":2},"a":{"a":0,"k":[706.796,405.176,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":240,"s":[15,15,100]},{"t":360,"s":[100,100,100]}],"ix":6,"x":"var $bm_rt;\nfunction inOutQuint(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(inOutQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"shapes":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":600,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-68,442.996],[707.186,884.603],[1477.717,444.265],[705.781,0.25]],"c":true}]},{"t":720,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[0.25,405.183],[707.811,810.103],[1413.342,406.328],[705.781,0.25]],"c":true}]}],"ix":2,"x":"var $bm_rt;\nfunction inOutQuint(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(inOutQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"nm":"Path 2","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"gf","o":{"a":0,"k":100,"ix":10},"r":1,"bm":0,"g":{"p":3,"k":{"a":0,"k":[0,0.502,0.18,0.957,0.5,0.737,0.28,0.906,1,0.973,0.38,0.855],"ix":9}},"s":{"a":0,"k":[0,0],"ix":5},"e":{"a":0,"k":[1204,0],"ix":6},"t":1,"nm":"Gradient Fill 1","mn":"ADBE Vector Graphic - G-Fill","hd":false},{"ty":"fl","c":{"a":0,"k":[0.5,0.5,0.5,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false}],"ip":360,"op":26347.2,"st":0,"bm":0},{"ddd":0,"ind":7,"ty":4,"nm":"Layer 30 Outlines 2","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1742.009,1381.271,0],"ix":2},"a":{"a":0,"k":[421.589,270.947,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":600,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[446.839,-216.543],[391.445,-255.697],[-421.269,212.224],[-421.096,281.197]],"c":true}]},{"t":720,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[421.339,-216.543],[345.445,-270.697],[-421.338,172.724],[-421.339,270.697]],"c":true}]}],"ix":2,"x":"var $bm_rt;\nfunction inOutQuint(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(inOutQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[0.878431432387,0.847058883368,0.87450986376,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[421.589,270.947],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":2,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false}],"ip":360,"op":26347.2,"st":0,"bm":0},{"ddd":0,"ind":8,"ty":4,"nm":"Layer 31 Outlines 2","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[888.695,1375.613,0],"ix":2},"a":{"a":0,"k":[432.226,276.604,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":600,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[432.121,218.382],[-403.583,-259.854],[-457.476,-221.198],[432.231,287.855]],"c":true}]},{"t":720,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[431.976,178.382],[-356.083,-276.354],[-431.976,-222.198],[431.975,276.355]],"c":true}]}],"ix":2,"x":"var $bm_rt;\nfunction inOutQuint(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(inOutQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[0.784313785329,0.768627510819,0.803921628466,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[432.226,276.604],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":2,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false}],"ip":360,"op":26347.2,"st":0,"bm":0},{"ddd":0,"ind":9,"ty":4,"nm":"Layer 32 Outlines 2","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[872.729,1427.92,0],"ix":2},"a":{"a":0,"k":[448.19,274.755,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":600,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[447.877,252.982],[-464.94,-271.755],[-464.841,-250.233],[447.919,276.005]],"c":true}]},{"t":720,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[447.94,242.482],[-447.94,-274.505],[-447.94,-242.483],[447.94,274.505]],"c":true}]}],"ix":2,"x":"var $bm_rt;\nfunction inOutQuint(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(inOutQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[0.784313785329,0.768627510819,0.803921628466,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[448.19,274.755],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":2,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false}],"ip":360,"op":26347.2,"st":0,"bm":0},{"ddd":0,"ind":10,"ty":4,"nm":"Layer 34 Outlines 2","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1757.973,1433.577,0],"ix":2},"a":{"a":0,"k":[437.554,269.098,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":600,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[454.527,-268.848],[-437.21,247.45],[-437.314,270.098],[454.304,-246.325]],"c":true}]},{"t":720,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[437.304,-268.848],[-437.304,236.825],[-437.304,268.848],[437.304,-236.825]],"c":true}]}],"ix":2,"x":"var $bm_rt;\nfunction inOutQuint(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(inOutQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[0.878431432387,0.847058883368,0.87450986376,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[437.554,269.098],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":2,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false}],"ip":360,"op":26347.2,"st":0,"bm":0},{"ddd":0,"ind":11,"ty":4,"nm":"Layer 33 Outlines 2","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1310.033,1159.179,0],"ix":2},"a":{"a":0,"k":[885.494,511.472,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":600,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[901.744,6.049],[1.269,-514.222],[-901.994,-2.514],[10.562,522.222]],"c":true}]},{"t":720,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[885.244,5.549],[-9.731,-511.222],[-885.244,-5.764],[10.636,511.222]],"c":true}]}],"ix":2,"x":"var $bm_rt;\nfunction inOutQuint(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(inOutQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[0.976470648074,0.964705942191,0.980392216701,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[885.494,511.473],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":2,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false}],"ip":360,"op":26347.2,"st":0,"bm":0},{"ddd":0,"ind":12,"ty":2,"nm":"logo","parent":13,"refId":"image_124","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":265,"s":[0]},{"t":319,"s":[100]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":240,"s":[-88.441,590.817,0],"to":[34.085,-18.709,0],"ti":[-34.085,18.709,0]},{"t":359,"s":[116.066,478.563,0]}],"ix":2,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"a":{"a":0,"k":[135.487,75.087,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":600,"s":[73,73,100]},{"t":720,"s":[100,100,100]}],"ix":6,"x":"var $bm_rt;\nfunction inOutQuint(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(inOutQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":240,"op":360,"st":0,"bm":0},{"ddd":0,"ind":13,"ty":3,"nm":"Layer 28 Outlines","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1320.202,1016.923,0],"ix":2},"a":{"a":0,"k":[706.796,405.176,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":240,"s":[10,10,100]},{"t":360,"s":[100,100,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":240,"op":360,"st":0,"bm":0},{"ddd":0,"ind":14,"ty":4,"nm":"Layer 26 Outlines","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[2026.608,1507.469,0],"ix":2},"a":{"a":0,"k":[353.016,244.895,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":240,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-276.234,-241.27],[-276.002,-178.587],[-352.886,-134.543],[-353.119,-197.557]],"c":true}]},{"t":360,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[417.641,-206.77],[417.873,-144.087],[-352.707,296.145],[-352.939,233.13]],"c":true}]}],"ix":2,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"nm":"Path 2","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"gf","o":{"a":0,"k":100,"ix":10},"r":1,"bm":0,"g":{"p":5,"k":{"a":0,"k":[0,0.584,0.212,0.953,0.23,0.533,0.19,0.965,0.46,0.482,0.169,0.976,0.73,0.42,0.147,0.888,1,0.357,0.125,0.8],"ix":9}},"s":{"a":0,"k":[307,0],"ix":5},"e":{"a":0,"k":[-417,0],"ix":6},"t":1,"nm":"Gradient Fill 1","mn":"ADBE Vector Graphic - G-Fill","hd":false},{"ty":"fl","c":{"a":0,"k":[0.5,0.5,0.5,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false}],"ip":240,"op":360,"st":0,"bm":0},{"ddd":0,"ind":15,"ty":4,"nm":"Layer 27 Outlines","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1321.311,1507.397,0],"ix":2},"a":{"a":0,"k":[354.03,245.467,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":240,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[275.533,-241.092],[275.532,-177.408],[353.215,-133.533],[353.215,-196.548]],"c":true}]},{"t":360,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-421.53,-206.967],[-421.53,-143.283],[353.842,297.467],[353.842,234.452]],"c":true}]}],"ix":2,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"nm":"Path 2","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"gf","o":{"a":0,"k":100,"ix":10},"r":1,"bm":0,"g":{"p":3,"k":{"a":0,"k":[0,0.502,0.18,0.957,0.5,0.737,0.28,0.906,1,0.973,0.38,0.855],"ix":9}},"s":{"a":0,"k":[345,0],"ix":5},"e":{"a":0,"k":[-398,0],"ix":6},"t":1,"nm":"Gradient Fill 1","mn":"ADBE Vector Graphic - G-Fill","hd":false},{"ty":"fl","c":{"a":0,"k":[0.5,0.5,0.5,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false}],"ip":240,"op":360,"st":0,"bm":0},{"ddd":0,"ind":16,"ty":4,"nm":"Layer 28 Outlines 12","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1320.202,1016.923,0],"ix":2},"a":{"a":0,"k":[706.796,405.176,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":240,"s":[10,10,100]},{"t":360,"s":[100,100,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"shapes":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-68,442.996],[707.186,884.603],[1477.717,444.265],[705.781,0.25]],"c":true},"ix":2,"x":"var $bm_rt;\nfunction inOutQuint(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(inOutQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"nm":"Path 2","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"gf","o":{"a":0,"k":100,"ix":10},"r":1,"bm":0,"g":{"p":3,"k":{"a":0,"k":[0,0.502,0.18,0.957,0.5,0.737,0.28,0.906,1,0.973,0.38,0.855],"ix":9}},"s":{"a":0,"k":[0,0],"ix":5},"e":{"a":0,"k":[1204,0],"ix":6},"t":1,"nm":"Gradient Fill 1","mn":"ADBE Vector Graphic - G-Fill","hd":false},{"ty":"fl","c":{"a":0,"k":[0.5,0.5,0.5,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false}],"ip":240,"op":360,"st":0,"bm":0},{"ddd":0,"ind":17,"ty":4,"nm":"Layer 30 Outlines","parent":21,"sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1317.47,733.564,0],"ix":2},"a":{"a":0,"k":[421.589,270.947,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":600,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[446.839,-216.543],[391.445,-255.697],[-421.269,212.224],[-421.096,281.197]],"c":true}]},{"t":720,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[421.339,-216.543],[345.445,-270.697],[-421.338,172.724],[-421.339,270.697]],"c":true}]}],"ix":2,"x":"var $bm_rt;\nfunction inOutQuint(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(inOutQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[0.878431432387,0.847058883368,0.87450986376,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[421.589,270.947],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":2,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false}],"ip":240,"op":360,"st":0,"bm":0},{"ddd":0,"ind":18,"ty":4,"nm":"Layer 31 Outlines","parent":21,"sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[464.156,727.907,0],"ix":2},"a":{"a":0,"k":[432.226,276.604,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":600,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[432.121,218.382],[-403.583,-259.854],[-457.476,-221.198],[432.231,287.855]],"c":true}]},{"t":720,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[431.976,178.382],[-356.083,-276.354],[-431.976,-222.198],[431.975,276.355]],"c":true}]}],"ix":2,"x":"var $bm_rt;\nfunction inOutQuint(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(inOutQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[0.784313785329,0.768627510819,0.803921628466,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[432.226,276.604],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":2,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false}],"ip":240,"op":360,"st":0,"bm":0},{"ddd":0,"ind":19,"ty":4,"nm":"Layer 32 Outlines","parent":21,"sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[448.19,780.213,0],"ix":2},"a":{"a":0,"k":[448.19,274.755,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":600,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[447.877,252.982],[-464.94,-271.755],[-464.841,-250.233],[447.919,276.005]],"c":true}]},{"t":720,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[447.94,242.482],[-447.94,-274.505],[-447.94,-242.483],[447.94,274.505]],"c":true}]}],"ix":2,"x":"var $bm_rt;\nfunction inOutQuint(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(inOutQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[0.784313785329,0.768627510819,0.803921628466,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[448.19,274.755],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":2,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false}],"ip":240,"op":360,"st":0,"bm":0},{"ddd":0,"ind":20,"ty":4,"nm":"Layer 34 Outlines","parent":21,"sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1333.434,785.87,0],"ix":2},"a":{"a":0,"k":[437.554,269.098,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":600,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[454.527,-268.848],[-437.21,247.45],[-437.314,270.098],[454.304,-246.325]],"c":true}]},{"t":720,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[437.304,-268.848],[-437.304,236.825],[-437.304,268.848],[437.304,-236.825]],"c":true}]}],"ix":2,"x":"var $bm_rt;\nfunction inOutQuint(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(inOutQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[0.878431432387,0.847058883368,0.87450986376,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[437.554,269.098],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":2,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false}],"ip":240,"op":360,"st":0,"bm":0},{"ddd":0,"ind":21,"ty":4,"nm":"Layer 33 Outlines","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":240,"s":[1318.033,1099.179,0],"to":[-1.333,10,0],"ti":[1.333,-10,0]},{"t":360,"s":[1310.033,1159.179,0]}],"ix":2,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"a":{"a":0,"k":[885.494,511.472,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":240,"s":[22,22,100]},{"t":360,"s":[100,100,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":600,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[901.744,6.049],[1.269,-514.222],[-901.994,-2.514],[10.562,522.222]],"c":true}]},{"t":720,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[885.244,5.549],[-9.731,-511.222],[-885.244,-5.764],[10.636,511.222]],"c":true}]}],"ix":2,"x":"var $bm_rt;\nfunction inOutQuint(t, b, c, d) {\n if ((t /= d / 2) < 1)\n return $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul($bm_mul($bm_div(c, 2), t), t), t), t), t), b);\n return $bm_sum($bm_mul($bm_div(c, 2), $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t -= 2, t), t), t), t), 2)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(inOutQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"fl","c":{"a":0,"k":[0.976470648074,0.964705942191,0.980392216701,1],"ix":4},"o":{"a":0,"k":100,"ix":5},"r":1,"bm":0,"nm":"Fill 1","mn":"ADBE Vector Graphic - Fill","hd":false},{"ty":"tr","p":{"a":0,"k":[885.494,511.473],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":2,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false}],"ip":240,"op":360,"st":0,"bm":0},{"ddd":0,"ind":22,"ty":4,"nm":"Layer 28 Outlines 6","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":240,"s":[1318.202,1095.923,0],"to":[0,15.333,0],"ti":[0,-15.333,0]},{"t":360,"s":[1318.202,1187.923,0]}],"ix":2,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"},"a":{"a":0,"k":[706.796,405.176,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":240,"s":[60,60,100]},{"t":360,"s":[135,135,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"shapes":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[705.781,0.25],[0.25,405.183],[707.811,810.103],[1413.342,406.328]],"c":true},"ix":2},"nm":"Path 2","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"rd","nm":"Round Corners 1","r":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":296,"s":[0]},{"t":360,"s":[20]}],"ix":1},"ix":2,"mn":"ADBE Vector Filter - RC","hd":false},{"ty":"st","c":{"a":0,"k":[0.972549079446,0.380392186782,0.854902020623,1],"ix":3},"o":{"a":0,"k":100,"ix":4},"w":{"a":1,"k":[{"i":{"x":[0],"y":[1]},"o":{"x":[0.009],"y":[0.474]},"t":240,"s":[130]},{"i":{"x":[0.667],"y":[1]},"o":{"x":[0.167],"y":[0]},"t":360,"s":[4]},{"i":{"x":[0.46],"y":[1]},"o":{"x":[0.573],"y":[0]},"t":600,"s":[4]},{"t":720,"s":[8]}],"ix":5},"lc":1,"lj":1,"ml":4,"bm":0,"nm":"Stroke 1","mn":"ADBE Vector Graphic - Stroke","hd":false}],"ip":240,"op":26347,"st":0,"bm":0}]},{"id":"comp_7","layers":[{"ddd":0,"ind":1,"ty":2,"nm":"Layer 155","refId":"image_125","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[468.307,256.669,0],"ix":2},"a":{"a":0,"k":[20.113,29.402,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":10.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":72,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":421,"s":[100,100,100]},{"t":489.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":10.6,"op":26336.2,"st":10.6,"bm":0},{"ddd":0,"ind":2,"ty":2,"nm":"Layer 224","refId":"image_126","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[548.891,213.769,0],"ix":2},"a":{"a":0,"k":[20.113,29.402,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":15.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":76.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":420,"s":[100,100,100]},{"t":487.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":15.4,"op":26336.2,"st":15.4,"bm":0},{"ddd":0,"ind":3,"ty":2,"nm":"Layer 239","refId":"image_127","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[583.07,194.141,0],"ix":2},"a":{"a":0,"k":[26.258,29.411,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":13,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":74.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":419,"s":[100,100,100]},{"t":487,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":13,"op":26336.2,"st":13,"bm":0},{"ddd":0,"ind":4,"ty":2,"nm":"Layer 311","refId":"image_128","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[504.251,249.517,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":17.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":79.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":417.999,"s":[100,100,100]},{"t":485.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":17.8,"op":26336.2,"st":17.8,"bm":0},{"ddd":0,"ind":5,"ty":2,"nm":"Layer 315","refId":"image_129","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[619.201,172.145,0],"ix":2},"a":{"a":0,"k":[26.258,29.411,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":20.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":81.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":417.001,"s":[100,100,100]},{"t":485.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":20.2,"op":26336.2,"st":20.2,"bm":0},{"ddd":0,"ind":6,"ty":2,"nm":"Layer 339","refId":"image_130","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[698.894,144.574,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":22.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":84,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":416,"s":[100,100,100]},{"t":484.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":22.6,"op":26336.2,"st":22.6,"bm":0},{"ddd":0,"ind":7,"ty":2,"nm":"Layer 415","refId":"image_131","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[424.167,295.258,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":27.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":88.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":415,"s":[100,100,100]},{"t":482.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":27.4,"op":26336.2,"st":27.4,"bm":0},{"ddd":0,"ind":8,"ty":2,"nm":"Layer 424","refId":"image_132","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[660.845,166.785,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":25,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":86.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":414,"s":[100,100,100]},{"t":482,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":25,"op":26336.2,"st":25,"bm":0},{"ddd":0,"ind":9,"ty":2,"nm":"Layer 156","refId":"image_133","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[443.477,242.923,0],"ix":2},"a":{"a":0,"k":[20.113,29.402,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":22.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":84,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":413,"s":[100,100,100]},{"t":481.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":22.6,"op":26336.2,"st":22.6,"bm":0},{"ddd":0,"ind":10,"ty":2,"nm":"Layer 225","refId":"image_134","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[519.969,216.12,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":29.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":91.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":411.999,"s":[100,100,100]},{"t":479.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":29.8,"op":26336.2,"st":29.8,"bm":0},{"ddd":0,"ind":11,"ty":2,"nm":"Layer 240","refId":"image_135","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[552.076,188.315,0],"ix":2},"a":{"a":0,"k":[29.44,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":32.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":93.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":411.001,"s":[100,100,100]},{"t":479.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":32.2,"op":26336.2,"st":32.2,"bm":0},{"ddd":0,"ind":12,"ty":2,"nm":"Layer 310","refId":"image_136","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[479.164,237.304,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":25,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":86.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":410,"s":[100,100,100]},{"t":478,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":25,"op":26336.2,"st":25,"bm":0},{"ddd":0,"ind":13,"ty":2,"nm":"Layer 316","refId":"image_137","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[593.929,156.184,0],"ix":2},"a":{"a":0,"k":[26.257,29.411,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":27.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":88.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":409,"s":[100,100,100]},{"t":476.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":27.4,"op":26336.2,"st":27.4,"bm":0},{"ddd":0,"ind":14,"ty":2,"nm":"Layer 338","refId":"image_138","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[681.824,135.374,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":34.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":96,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":408,"s":[100,100,100]},{"t":476.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":34.6,"op":26336.2,"st":34.6,"bm":0},{"ddd":0,"ind":15,"ty":2,"nm":"Layer 414","refId":"image_139","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[395.519,277.997,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":149,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":210.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":407,"s":[100,100,100]},{"t":475,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":149,"op":26448.2,"st":149,"bm":0},{"ddd":0,"ind":16,"ty":2,"nm":"Layer 429","refId":"image_140","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[639.975,153.176,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":39.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":100.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":406,"s":[100,100,100]},{"t":473.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":39.4,"op":26336.2,"st":39.4,"bm":0},{"ddd":0,"ind":17,"ty":2,"nm":"Layer 158","refId":"image_141","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[413.808,230.488,0],"ix":2},"a":{"a":0,"k":[26.258,29.411,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":34.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":96,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":405,"s":[100,100,100]},{"t":473.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":34.6,"op":26336.2,"st":34.6,"bm":0},{"ddd":0,"ind":18,"ty":2,"nm":"Layer 223","refId":"image_142","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[490.776,186.116,0],"ix":2},"a":{"a":0,"k":[26.258,29.411,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":41.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":103.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":403.999,"s":[100,100,100]},{"t":471.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":41.8,"op":26336.2,"st":41.8,"bm":0},{"ddd":0,"ind":19,"ty":2,"nm":"Layer 243","refId":"image_143","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[521.37,172.572,0],"ix":2},"a":{"a":0,"k":[29.44,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":46.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":108,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":403,"s":[100,100,100]},{"t":471.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":46.6,"op":26336.2,"st":46.6,"bm":0},{"ddd":0,"ind":20,"ty":2,"nm":"Layer 309","refId":"image_144","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[464.387,227.52,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":44.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":105.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":402.001,"s":[100,100,100]},{"t":470.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":44.2,"op":26336.2,"st":44.2,"bm":0},{"ddd":0,"ind":21,"ty":2,"nm":"Layer 317","refId":"image_145","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[527.449,134.825,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":150,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":211.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":401,"s":[100,100,100]},{"t":469,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":150,"op":26437.2,"st":150,"bm":0},{"ddd":0,"ind":22,"ty":2,"nm":"Layer 340","refId":"image_146","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[659.45,109.295,0],"ix":2},"a":{"a":0,"k":[26.257,29.411,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":148.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":210.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":399.999,"s":[100,100,100]},{"t":467.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":148.8,"op":26431.2,"st":148.8,"bm":0},{"ddd":0,"ind":23,"ty":2,"nm":"Layer 428","refId":"image_147","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[613.372,135.884,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":51.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":112.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":399,"s":[100,100,100]},{"t":466.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":51.4,"op":26336.2,"st":51.4,"bm":0},{"ddd":0,"ind":24,"ty":2,"nm":"Layer 308","refId":"image_148","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[446.801,216.851,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":147.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":209,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":398,"s":[100,100,100]},{"t":466.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":147.6,"op":26437.2,"st":147.6,"bm":0},{"ddd":0,"ind":25,"ty":2,"nm":"Layer 319","refId":"image_149","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[559.816,150.342,0],"ix":2},"a":{"a":0,"k":[29.439,17.643,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":152.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":213.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":397,"s":[100,100,100]},{"t":464.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":152.4,"op":26437.2,"st":152.4,"bm":0},{"ddd":0,"ind":26,"ty":2,"nm":"Layer 432","refId":"image_150","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[371.111,265.858,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":150,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":211.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":396,"s":[100,100,100]},{"t":464,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":150,"op":26437.2,"st":150,"bm":0},{"ddd":0,"ind":27,"ty":2,"nm":"Layer 241","refId":"image_151","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[493.256,143.384,0],"ix":2},"a":{"a":0,"k":[26.257,29.411,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":159.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":221,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":395,"s":[100,100,100]},{"t":463.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":159.6,"op":26437.2,"st":159.6,"bm":0},{"ddd":0,"ind":28,"ty":2,"nm":"Layer 426","refId":"image_152","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[584.995,120.366,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":162,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":223.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":394,"s":[100,100,100]},{"t":462,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":162,"op":26437.2,"st":162,"bm":0},{"ddd":0,"ind":29,"ty":2,"nm":"Layer 427","refId":"image_153","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[623.681,98.64,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":166.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":228.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":392.999,"s":[100,100,100]},{"t":460.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":166.8,"op":26437.2,"st":166.8,"bm":0},{"ddd":0,"ind":30,"ty":2,"nm":"Layer 475","refId":"image_154","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[421.119,191.706,0],"ix":2},"a":{"a":0,"k":[26.257,29.411,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":164.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":225.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":392,"s":[100,100,100]},{"t":459.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":164.4,"op":26437.2,"st":164.4,"bm":0},{"ddd":0,"ind":31,"ty":2,"nm":"Layer 480","refId":"image_155","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[452.827,176.683,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":169.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":230.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":391.001,"s":[100,100,100]},{"t":459.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":169.2,"op":26437.2,"st":169.2,"bm":0},{"ddd":0,"ind":32,"ty":2,"nm":"Layer 312","refId":"image_156","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[506.001,122.221,0],"ix":2},"a":{"a":0,"k":[19.583,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":171.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":233,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":390,"s":[100,100,100]},{"t":458.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":171.6,"op":26437.2,"st":171.6,"bm":0},{"ddd":0,"ind":33,"ty":2,"nm":"Layer 337","refId":"image_157","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[598.467,86.379,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":176.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":237.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":389,"s":[100,100,100]},{"t":456.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":176.4,"op":26437.2,"st":176.4,"bm":0},{"ddd":0,"ind":34,"ty":2,"nm":"Layer 479","refId":"image_158","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[426.223,159.39,0],"ix":2},"a":{"a":0,"k":[29.439,17.644,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":174,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":235.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":388,"s":[100,100,100]},{"t":456,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":174,"op":26437.2,"st":174,"bm":0},{"ddd":0,"ind":35,"ty":2,"nm":"Layer 242","refId":"image_159","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[460.445,124.318,0],"ix":2},"a":{"a":0,"k":[26.258,29.411,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":181.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":242.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":387.001,"s":[100,100,100]},{"t":455.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":181.2,"op":26437.2,"st":181.2,"bm":0},{"ddd":0,"ind":36,"ty":2,"nm":"Layer 320","refId":"image_160","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[532.689,139.603,0],"ix":2},"a":{"a":0,"k":[114.158,65.073,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":0,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[237.969,127.971],[222.969,137.971],[225.969,142.471],[249.469,129.471]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":74,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[174.668,89.165],[159.668,99.165],[225.969,142.471],[249.469,129.471]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":130,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[174.668,89.165],[159.668,99.165],[225.969,142.471],[249.469,129.471]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":196,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[93.469,44.971],[78.469,54.971],[225.969,142.471],[249.469,129.471]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":382,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[93.469,44.971],[78.469,54.971],[225.969,142.471],[249.469,129.471]],"c":true}]},{"t":461,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[237.969,127.971],[222.969,137.971],[225.969,142.471],[249.469,129.471]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":0,"op":26347.2,"st":0,"bm":0},{"ddd":0,"ind":37,"ty":2,"nm":"Layer 472","refId":"image_161","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[324.282,240.952,0],"ix":2},"a":{"a":0,"k":[126.652,72.172,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":4.8,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[261.87,143.72],[245.87,150.22],[243.87,157.22],[264.87,142.22]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":77.999,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[223.869,120.965],[207.869,127.465],[243.87,157.22],[264.87,142.22]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":133.999,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[223.869,120.965],[207.869,127.465],[243.87,157.22],[264.87,142.22]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":200.8,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[178.37,93.72],[162.37,100.22],[243.87,157.22],[264.87,142.22]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":379.999,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[178.37,93.72],[162.37,100.22],[243.87,157.22],[264.87,142.22]],"c":true}]},{"t":458.99921875,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[261.87,143.72],[245.87,150.22],[243.87,157.22],[264.87,142.22]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":4.8,"op":26347.2,"st":4.8,"bm":0},{"ddd":0,"ind":38,"ty":2,"nm":"Layer 488","refId":"image_162","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[445.637,172.895,0],"ix":2},"a":{"a":0,"k":[144.527,82.327,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":9.6,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[306.89,156.432],[271.89,177.432],[281.889,176.932],[309.389,157.432]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":82,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[204.185,95.524],[169.185,116.524],[281.889,176.932],[309.389,157.432]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":138,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[204.185,95.524],[169.185,116.524],[281.889,176.932],[309.389,157.432]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":205.6,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[136.889,61.432],[101.889,82.432],[281.889,176.932],[309.389,157.432]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":378,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[136.889,61.432],[101.889,82.432],[281.889,176.932],[309.389,157.432]],"c":true}]},{"t":457.000390625,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[306.89,156.432],[271.89,177.432],[281.889,176.932],[309.389,157.432]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":9.6,"op":26347.2,"st":9.6,"bm":0},{"ddd":0,"ind":39,"ty":2,"nm":"Layer 491","refId":"image_163","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[393.169,189.422,0],"ix":2},"a":{"a":0,"k":[134.723,76.757,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":14.4,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[282.554,148.836],[263.554,162.336],[263.054,166.836],[285.554,148.836]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":86,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[213.256,107.25],[194.256,120.75],[263.054,166.836],[285.554,148.836]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":142,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[213.256,107.25],[194.256,120.75],[263.054,166.836],[285.554,148.836]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":210.4,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[168.554,85.836],[149.554,99.336],[263.054,166.836],[285.554,148.836]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":376,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[168.554,85.836],[149.554,99.336],[263.054,166.836],[285.554,148.836]],"c":true}]},{"t":454.999609375,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[282.554,148.836],[263.554,162.336],[263.054,166.836],[285.554,148.836]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":14.4,"op":26347.2,"st":14.4,"bm":0},{"ddd":0,"ind":40,"ty":2,"nm":"Layer 493","refId":"image_164","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[567.498,115.45,0],"ix":2},"a":{"a":0,"k":[115.447,65.806,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":19.2,"s":[{"i":[[0,0],[-2.5,0],[0,0],[0,0]],"o":[[0,0],[2.5,0],[0,0],[0,0]],"v":[[248.449,131.856],[225.949,142.356],[229.449,146.356],[243.949,132.356]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":90.001,"s":[{"i":[[0,0],[-2.5,0],[0,0],[0,0]],"o":[[0,0],[2.5,0],[0,0],[0,0]],"v":[[167.85,79.931],[145.351,90.431],[229.449,146.356],[243.949,132.356]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":146.001,"s":[{"i":[[0,0],[-2.5,0],[0,0],[0,0]],"o":[[0,0],[2.5,0],[0,0],[0,0]],"v":[[167.85,79.931],[145.351,90.431],[229.449,146.356],[243.949,132.356]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":215.2,"s":[{"i":[[0,0],[-2.5,0],[0,0],[0,0]],"o":[[0,0],[2.5,0],[0,0],[0,0]],"v":[[139.449,67.856],[116.949,78.356],[229.449,146.356],[243.949,132.356]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":374.001,"s":[{"i":[[0,0],[-2.5,0],[0,0],[0,0]],"o":[[0,0],[2.5,0],[0,0],[0,0]],"v":[[139.449,67.856],[116.949,78.356],[229.449,146.356],[243.949,132.356]],"c":true}]},{"t":453.00078125,"s":[{"i":[[0,0],[-2.5,0],[0,0],[0,0]],"o":[[0,0],[2.5,0],[0,0],[0,0]],"v":[[248.449,131.856],[225.949,142.356],[229.449,146.356],[243.949,132.356]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":19.2,"op":26347.2,"st":19.2,"bm":0},{"ddd":0,"ind":41,"ty":2,"nm":"Layer 494","refId":"image_165","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[649.649,117.22,0],"ix":2},"a":{"a":0,"k":[70.14,40.065,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":24,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[151.491,80.345],[130.491,90.845],[136.991,93.845],[154.491,74.845]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":94,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[107.027,53.38],[86.027,63.88],[136.991,93.845],[154.491,74.845]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":150,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[107.027,53.38],[86.027,63.88],[136.991,93.845],[154.491,74.845]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":220,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[26.991,4.845],[5.991,15.345],[136.991,93.845],[154.491,74.845]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":372,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[26.991,4.845],[5.991,15.345],[136.991,93.845],[154.491,74.845]],"c":true}]},{"t":451,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[151.491,80.345],[130.491,90.845],[136.991,93.845],[154.491,74.845]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":24,"op":26347.2,"st":24,"bm":0},{"ddd":0,"ind":42,"ty":2,"nm":"Layer 496","refId":"image_166","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[361.095,213.88,0],"ix":2},"a":{"a":0,"k":[136.297,77.651,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":28.8,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[293.702,149.771],[271.702,162.771],[268.202,165.771],[295.202,148.771]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":97.999,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[200.435,99.306],[178.435,112.306],[268.202,165.771],[295.202,148.771]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":153.999,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[200.435,99.306],[178.435,112.306],[268.202,165.771],[295.202,148.771]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":224.8,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[196.702,98.771],[174.702,111.771],[268.202,165.771],[295.202,148.771]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":369.999,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[196.702,98.771],[174.702,111.771],[268.202,165.771],[295.202,148.771]],"c":true}]},{"t":448.99921875,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[293.702,149.771],[271.702,162.771],[268.202,165.771],[295.202,148.771]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":28.8,"op":26347.2,"st":28.8,"bm":0},{"ddd":0,"ind":43,"ty":2,"nm":"Layer 500","refId":"image_167","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[480.791,149.618,0],"ix":2},"a":{"a":0,"k":[132.43,75.454,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":33.6,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[285.139,144.087],[259.639,160.087],[259.139,159.837],[281.139,147.337]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":102,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[188.137,88.196],[162.637,104.196],[259.139,159.837],[281.139,147.337]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":158,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[188.137,88.196],[162.637,104.196],[259.139,159.837],[281.139,147.337]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":229.6,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[119.639,50.337],[94.139,66.337],[259.139,159.837],[281.139,147.337]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":368,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[119.639,50.337],[94.139,66.337],[259.139,159.837],[281.139,147.337]],"c":true}]},{"t":447.000390625,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[285.139,144.087],[259.639,160.087],[259.139,159.837],[281.139,147.337]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":33.6,"op":26347.2,"st":33.6,"bm":0}]},{"id":"comp_8","layers":[{"ddd":0,"ind":1,"ty":2,"nm":"Layer 513","refId":"image_168","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1010.817,276.908,0],"ix":2},"a":{"a":0,"k":[26.257,29.411,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":10.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":70.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":422,"s":[100,100,100]},{"t":481.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":10.4,"op":26331.2,"st":10.4,"bm":0},{"ddd":0,"ind":2,"ty":2,"nm":"Layer 520","refId":"image_169","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[974.047,256.181,0],"ix":2},"a":{"a":0,"k":[26.286,29.426,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":22.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":82.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":421,"s":[100,100,100]},{"t":480.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":22.4,"op":26331.2,"st":22.4,"bm":0},{"ddd":0,"ind":3,"ty":2,"nm":"Layer 525","refId":"image_170","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[936.766,234.611,0],"ix":2},"a":{"a":0,"k":[26.285,29.427,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":15.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":75.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":420.001,"s":[100,100,100]},{"t":480.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":15.2,"op":26331.2,"st":15.2,"bm":0},{"ddd":0,"ind":4,"ty":2,"nm":"Layer 526","refId":"image_171","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[865.799,193.514,0],"ix":2},"a":{"a":0,"k":[20.073,29.461,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":17.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":77.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":419,"s":[100,100,100]},{"t":479.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":17.6,"op":26331.2,"st":17.6,"bm":0},{"ddd":0,"ind":5,"ty":2,"nm":"Layer 532","refId":"image_172","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[901.717,226.814,0],"ix":2},"a":{"a":0,"k":[29.43,17.662,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":20,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":80,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":418,"s":[100,100,100]},{"t":478,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":20,"op":26331.2,"st":20,"bm":0},{"ddd":0,"ind":6,"ty":2,"nm":"Layer 557","refId":"image_173","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[759.667,133.534,0],"ix":2},"a":{"a":0,"k":[26.286,29.427,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":15.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":75.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":417.001,"s":[100,100,100]},{"t":477.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":15.2,"op":26331.2,"st":15.2,"bm":0},{"ddd":0,"ind":7,"ty":2,"nm":"Layer 561","refId":"image_174","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[825.734,189.588,0],"ix":2},"a":{"a":0,"k":[19.57,11.778,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":24.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":84.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":415.999,"s":[100,100,100]},{"t":475.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":24.8,"op":26331.2,"st":24.8,"bm":0},{"ddd":0,"ind":8,"ty":2,"nm":"Layer 563","refId":"image_175","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[797.418,166.824,0],"ix":2},"a":{"a":0,"k":[29.431,17.662,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":20,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":80,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":415,"s":[100,100,100]},{"t":475,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":20,"op":26331.2,"st":20,"bm":0},{"ddd":0,"ind":9,"ty":2,"nm":"Layer 514","refId":"image_176","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1042.329,257.711,0],"ix":2},"a":{"a":0,"k":[26.258,29.411,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":22.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":82.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":414,"s":[100,100,100]},{"t":473.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":22.4,"op":26331.2,"st":22.4,"bm":0},{"ddd":0,"ind":10,"ty":2,"nm":"Layer 527","refId":"image_177","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[887.356,181.722,0],"ix":2},"a":{"a":0,"k":[20.074,29.461,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":24.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":84.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":412.999,"s":[100,100,100]},{"t":472.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":24.8,"op":26331.2,"st":24.8,"bm":0},{"ddd":0,"ind":11,"ty":2,"nm":"Layer 529","refId":"image_178","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[927.925,209.946,0],"ix":2},"a":{"a":0,"k":[29.43,17.662,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":27.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":87.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":412.001,"s":[100,100,100]},{"t":472.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":27.2,"op":26331.2,"st":27.2,"bm":0},{"ddd":0,"ind":12,"ty":2,"nm":"Layer 540","refId":"image_179","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[966.465,215.865,0],"ix":2},"a":{"a":0,"k":[26.285,29.427,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":29.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":89.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":411,"s":[100,100,100]},{"t":471.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":29.6,"op":26331.2,"st":29.6,"bm":0},{"ddd":0,"ind":13,"ty":2,"nm":"Layer 547","refId":"image_180","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[998.96,257.729,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":32,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":92,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":410,"s":[100,100,100]},{"t":470,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":32,"op":26331.2,"st":32,"bm":0},{"ddd":0,"ind":14,"ty":2,"nm":"Layer 559","refId":"image_181","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[842.839,180.03,0],"ix":2},"a":{"a":0,"k":[19.571,11.778,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":34.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":94.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":409,"s":[100,100,100]},{"t":468.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":34.4,"op":26331.2,"st":34.4,"bm":0},{"ddd":0,"ind":15,"ty":2,"nm":"Layer 560","refId":"image_182","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[821.236,153.767,0],"ix":2},"a":{"a":0,"k":[19.571,11.778,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":36.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":96.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":407.999,"s":[100,100,100]},{"t":467.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":36.8,"op":26331.2,"st":36.8,"bm":0},{"ddd":0,"ind":16,"ty":2,"nm":"Layer 583","refId":"image_183","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[786.849,133.88,0],"ix":2},"a":{"a":0,"k":[19.582,11.758,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":39.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":99.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":407.001,"s":[100,100,100]},{"t":467.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":39.2,"op":26331.2,"st":39.2,"bm":0},{"ddd":0,"ind":17,"ty":2,"nm":"Layer 528","refId":"image_184","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[904.878,167.364,0],"ix":2},"a":{"a":0,"k":[20.073,29.46,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":34.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":94.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":406,"s":[100,100,100]},{"t":465.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":34.4,"op":26331.2,"st":34.4,"bm":0},{"ddd":0,"ind":18,"ty":2,"nm":"Layer 548","refId":"image_185","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1015.52,246.009,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":46.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":106.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":405,"s":[100,100,100]},{"t":464.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":46.4,"op":26331.2,"st":46.4,"bm":0},{"ddd":0,"ind":19,"ty":2,"nm":"Layer 556","refId":"image_186","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[841.676,126.892,0],"ix":2},"a":{"a":0,"k":[26.285,29.426,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":41.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":101.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":404,"s":[100,100,100]},{"t":464.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":41.6,"op":26331.2,"st":41.6,"bm":0},{"ddd":0,"ind":20,"ty":2,"nm":"Layer 558","refId":"image_187","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[860.673,169.84,0],"ix":2},"a":{"a":0,"k":[19.571,11.778,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":39.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":99.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":403.001,"s":[100,100,100]},{"t":463.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":39.2,"op":26331.2,"st":39.2,"bm":0},{"ddd":0,"ind":21,"ty":2,"nm":"Layer 562","refId":"image_188","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[806.23,118.871,0],"ix":2},"a":{"a":0,"k":[29.43,17.662,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":150,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":210,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":402,"s":[100,100,100]},{"t":462,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":150,"op":26437.2,"st":150,"bm":0},{"ddd":0,"ind":22,"ty":2,"nm":"Layer 517","refId":"image_189","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1074.537,253.008,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":148.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":208.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":401,"s":[100,100,100]},{"t":460.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":148.4,"op":26433.2,"st":148.4,"bm":0},{"ddd":0,"ind":23,"ty":2,"nm":"Layer 541","refId":"image_190","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[993.98,200.324,0],"ix":2},"a":{"a":0,"k":[26.285,29.427,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":153.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":213.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":400.001,"s":[100,100,100]},{"t":460.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":153.2,"op":26433.2,"st":153.2,"bm":0},{"ddd":0,"ind":24,"ty":2,"nm":"Layer 542","refId":"image_191","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[953.435,196.921,0],"ix":2},"a":{"a":0,"k":[19.57,11.778,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":150.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":210.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":398.999,"s":[100,100,100]},{"t":458.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":150.8,"op":26433.2,"st":150.8,"bm":0},{"ddd":0,"ind":25,"ty":2,"nm":"Layer 549","refId":"image_192","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1030.43,236.107,0],"ix":2},"a":{"a":0,"k":[19.582,11.757,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":155.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":215.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":398,"s":[100,100,100]},{"t":458.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":155.6,"op":26433.2,"st":155.6,"bm":0},{"ddd":0,"ind":26,"ty":2,"nm":"Layer 564","refId":"image_193","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[880.623,143.859,0],"ix":2},"a":{"a":0,"k":[26.285,29.426,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":158,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":218,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":397,"s":[100,100,100]},{"t":457,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":158,"op":26433.2,"st":158,"bm":0},{"ddd":0,"ind":27,"ty":2,"nm":"Layer 531","refId":"image_194","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1054.848,222.295,0],"ix":2},"a":{"a":0,"k":[29.43,17.662,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":160.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":220.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":396,"s":[100,100,100]},{"t":455.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":160.4,"op":26433.2,"st":160.4,"bm":0},{"ddd":0,"ind":28,"ty":2,"nm":"Layer 538","refId":"image_195","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[934.348,172.44,0],"ix":2},"a":{"a":0,"k":[19.571,11.778,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":167.6,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":227.6,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":395,"s":[100,100,100]},{"t":455.000390625,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":167.6,"op":26433.2,"st":167.6,"bm":0},{"ddd":0,"ind":29,"ty":2,"nm":"Layer 543","refId":"image_196","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[969.74,186.73,0],"ix":2},"a":{"a":0,"k":[19.57,11.778,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":165.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":225.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":394.001,"s":[100,100,100]},{"t":454.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":165.2,"op":26433.2,"st":165.2,"bm":0},{"ddd":0,"ind":30,"ty":2,"nm":"Layer 565","refId":"image_197","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[910.715,140.758,0],"ix":2},"a":{"a":0,"k":[19.571,11.778,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":162.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":222.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":392.999,"s":[100,100,100]},{"t":452.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":162.8,"op":26433.2,"st":162.8,"bm":0},{"ddd":0,"ind":31,"ty":2,"nm":"Layer 574","refId":"image_198","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[874.917,106.952,0],"ix":2},"a":{"a":0,"k":[26.285,29.426,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":170,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":230,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":392,"s":[100,100,100]},{"t":452,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":170,"op":26433.2,"st":170,"bm":0},{"ddd":0,"ind":32,"ty":2,"nm":"Layer 524","refId":"image_199","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[954.088,146.049,0],"ix":2},"a":{"a":0,"k":[26.285,29.426,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":172.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":232.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":391,"s":[100,100,100]},{"t":450.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":172.4,"op":26433.2,"st":172.4,"bm":0},{"ddd":0,"ind":33,"ty":2,"nm":"Layer 544","refId":"image_200","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[987.328,176.597,0],"ix":2},"a":{"a":0,"k":[19.57,11.778,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":177.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":237.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":390.001,"s":[100,100,100]},{"t":450.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":177.2,"op":26433.2,"st":177.2,"bm":0},{"ddd":0,"ind":34,"ty":2,"nm":"Layer 545","refId":"image_201","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1017.328,200.084,0],"ix":2},"a":{"a":0,"k":[19.571,11.778,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":174.8,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":234.8,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":388.999,"s":[100,100,100]},{"t":448.99921875,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":174.8,"op":26433.2,"st":174.8,"bm":0},{"ddd":0,"ind":35,"ty":2,"nm":"Layer 505","refId":"image_202","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1035.554,172.627,0],"ix":2},"a":{"a":0,"k":[20.113,29.402,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":184.4,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":244.4,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":388,"s":[100,100,100]},{"t":447.999609375,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":184.4,"op":26433.2,"st":184.4,"bm":0},{"ddd":0,"ind":36,"ty":2,"nm":"Layer 533","refId":"image_203","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[981.616,128.989,0],"ix":2},"a":{"a":0,"k":[20.113,29.402,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":189.2,"s":[0,0,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":249.2,"s":[100,100,100]},{"i":{"x":[0.833,0.833,0.833],"y":[0.833,0.833,0.833]},"o":{"x":[0.167,0.167,0.167],"y":[0.167,0.167,0.167]},"t":387.001,"s":[100,100,100]},{"t":447.00078125,"s":[0,0,100]}],"ix":6,"x":"var $bm_rt;\nfunction outQuint(t, b, c, d) {\n return $bm_sum($bm_mul(c, $bm_sum($bm_mul($bm_mul($bm_mul($bm_mul(t = t / d - 1, t), t), t), t), 1)), b);\n}\nfunction curvaceous() {\n var t, d, sX, eX;\n var n = 0;\n if (numKeys > 0) {\n n = nearestKey(time).index;\n if (key(n).time > time) {\n n--;\n }\n }\n if (n > 1 && n < numKeys - 1) {\n return null;\n }\n try {\n var key1 = key(n);\n var key2 = key($bm_sum(n, 1));\n } catch (e) {\n return null;\n }\n t = $bm_sub(time, key1.time);\n d = $bm_sub(key2.time, key1.time);\n sX = key1.time;\n eX = $bm_sub(key2.time, key1.time);\n if (time < key1.time || time > key2.time) {\n return null;\n } else {\n return valueAtTime(outQuint(t, sX, eX, d));\n }\n}\n$bm_rt = curvaceous() || value;"}},"ao":0,"ip":189.2,"op":26433.2,"st":189.2,"bm":0},{"ddd":0,"ind":37,"ty":2,"nm":"Layer 539","refId":"image_204","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[976.333,149.047,0],"ix":2},"a":{"a":0,"k":[136.586,77.259,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":0,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-18.247,150.212],[-18.747,151.212],[0.753,165.712],[6.253,162.212]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":83,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[57.577,105.22],[-18.747,151.212],[0.753,165.712],[82.077,117.22]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":131,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[57.577,105.22],[-18.747,151.212],[0.753,165.712],[82.077,117.22]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":207,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[124.753,67.212],[-18.747,151.212],[0.753,165.712],[149.253,79.212]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":385,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[124.753,67.212],[-18.747,151.212],[0.753,165.712],[149.253,79.212]],"c":true}]},{"t":475,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-18.247,150.212],[-18.747,151.212],[0.753,165.712],[6.253,162.212]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":0,"op":26347.2,"st":0,"bm":0},{"ddd":0,"ind":38,"ty":2,"nm":"Layer 546","refId":"image_205","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1039.392,188.758,0],"ix":2},"a":{"a":0,"k":[149.099,84.316,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":4.8,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-17.793,163.558],[-17.293,168.058],[-1.793,177.058],[1.707,176.058]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":87.999,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[70.237,114.918],[-17.293,168.058],[-1.793,177.058],[89.737,127.418]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":134.999,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[70.237,114.918],[-17.293,168.058],[-1.793,177.058],[89.737,127.418]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":211.8,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[138.707,74.558],[-17.293,168.058],[-1.793,177.058],[158.207,87.058]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":382.999,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[138.707,74.558],[-17.293,168.058],[-1.793,177.058],[158.207,87.058]],"c":true}]},{"t":472.99921875,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-17.793,163.558],[-17.293,168.058],[-1.793,177.058],[1.707,176.058]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":4.8,"op":26347.2,"st":4.8,"bm":0},{"ddd":0,"ind":39,"ty":2,"nm":"Layer 567","refId":"image_206","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[936.171,128.945,0],"ix":2},"a":{"a":0,"k":[134.85,76.28,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":9.6,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-6.82,152.835],[-18.82,152.335],[-8.32,167.835],[3.68,159.835]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":92,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[54.818,113.396],[-18.82,152.335],[-8.32,167.835],[65.318,120.396]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":139,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[54.818,113.396],[-18.82,152.335],[-8.32,167.835],[65.318,120.396]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":216.6,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[107.68,83.835],[-18.82,152.335],[-8.32,167.835],[118.18,90.835]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":381,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[107.68,83.835],[-18.82,152.335],[-8.32,167.835],[118.18,90.835]],"c":true}]},{"t":471.000390625,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-6.82,152.835],[-18.82,152.335],[-8.32,167.835],[3.68,159.835]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":9.6,"op":26347.2,"st":9.6,"bm":0},{"ddd":0,"ind":40,"ty":2,"nm":"Layer 568","refId":"image_207","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1089.515,204.749,0],"ix":2},"a":{"a":0,"k":[161.05,91.057,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":14.4,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-14.465,182.309],[-14.965,178.309],[-1.965,194.809],[4.535,188.309]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":96,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[78.371,128.446],[-14.965,178.309],[-1.965,194.809],[97.371,134.446]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":143,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[78.371,128.446],[-14.965,178.309],[-1.965,194.809],[97.371,134.446]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":221.4,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[123.535,101.809],[-14.965,178.309],[-1.965,194.809],[142.535,107.809]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":379,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[123.535,101.809],[-14.965,178.309],[-1.965,194.809],[142.535,107.809]],"c":true}]},{"t":468.999609375,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-14.465,182.309],[-14.965,178.309],[-1.965,194.809],[4.535,188.309]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":14.4,"op":26347.2,"st":14.4,"bm":0},{"ddd":0,"ind":41,"ty":2,"nm":"Layer 573","refId":"image_208","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1004.908,170.093,0],"ix":2},"a":{"a":0,"k":[157.72,89.18,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":19.2,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[8.812,162.087],[3.312,162.587],[28.812,174.087],[25.312,173.087]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":100.001,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[72.737,125.751],[3.312,162.587],[28.812,174.087],[89.237,136.751]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":147.001,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[72.737,125.751],[3.312,162.587],[28.812,174.087],[89.237,136.751]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":226.2,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[134.312,91.087],[3.312,162.587],[28.812,174.087],[150.812,102.087]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":377.001,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[134.312,91.087],[3.312,162.587],[28.812,174.087],[150.812,102.087]],"c":true}]},{"t":467.00078125,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[8.812,162.087],[3.312,162.587],[28.812,174.087],[25.312,173.087]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":19.2,"op":26347.2,"st":19.2,"bm":0},{"ddd":0,"ind":42,"ty":2,"nm":"Layer 578","refId":"image_209","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[860.776,130.456,0],"ix":2},"a":{"a":0,"k":[151.315,85.566,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":24,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[32.039,137.11],[32.539,135.61],[55.039,145.61],[54.539,145.11]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":104,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[120.465,91.541],[32.539,135.61],[55.039,145.61],[142.965,99.541]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":151,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[120.465,91.541],[32.539,135.61],[55.039,145.61],[142.965,99.541]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":231,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[158.039,67.11],[32.539,135.61],[55.039,145.61],[180.539,75.11]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":375,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[158.039,67.11],[32.539,135.61],[55.039,145.61],[180.539,75.11]],"c":true}]},{"t":465,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[32.039,137.11],[32.539,135.61],[55.039,145.61],[54.539,145.11]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":24,"op":26347.2,"st":24,"bm":0},{"ddd":0,"ind":43,"ty":2,"nm":"Layer 586","refId":"image_210","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[849.966,98.054,0],"ix":2},"a":{"a":0,"k":[116.902,66.156,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":28.8,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-14.064,129.602],[-14.064,128.602],[5.436,141.102],[2.936,139.602]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":107.999,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[42.817,96.484],[-14.064,128.602],[5.436,141.102],[59.817,106.484]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":154.999,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[42.817,96.484],[-14.064,128.602],[5.436,141.102],[59.817,106.484]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":235.8,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[72.936,79.102],[-14.064,128.602],[5.436,141.102],[89.936,89.102]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":372.999,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[72.936,79.102],[-14.064,128.602],[5.436,141.102],[89.936,89.102]],"c":true}]},{"t":462.99921875,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-14.064,129.602],[-14.064,128.602],[5.436,141.102],[2.936,139.602]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":28.8,"op":26347.2,"st":28.8,"bm":0},{"ddd":0,"ind":44,"ty":2,"nm":"Layer 596","refId":"image_211","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[1132.082,219.623,0],"ix":2},"a":{"a":0,"k":[150.511,85.727,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"hasMask":true,"masksProperties":[{"inv":false,"mode":"a","pt":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":33.6,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-11.571,167.104],[-11.071,169.104],[7.429,181.104],[3.929,177.104]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":112,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[54.984,133.212],[-11.071,169.104],[7.429,181.104],[70.484,143.212]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":159,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[54.984,133.212],[-11.071,169.104],[7.429,181.104],[70.484,143.212]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":240.6,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[87.929,112.604],[-11.071,169.104],[7.429,181.104],[103.429,122.604]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.167,"y":0},"t":371,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[87.929,112.604],[-11.071,169.104],[7.429,181.104],[103.429,122.604]],"c":true}]},{"t":461.000390625,"s":[{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-11.571,167.104],[-11.071,169.104],[7.429,181.104],[3.929,177.104]],"c":true}]}],"ix":1},"o":{"a":0,"k":100,"ix":3},"x":{"a":0,"k":0,"ix":4},"nm":"Mask 1"}],"ip":33.6,"op":26347.2,"st":33.6,"bm":0}]}],"layers":[{"ddd":0,"ind":6,"ty":0,"nm":"MAIN_ANIM _CROP_RENDER","refId":"comp_0","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[590,458,0],"ix":2},"a":{"a":0,"k":[960,600,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"w":1920,"h":1200,"ip":0,"op":585,"st":-420,"bm":0}],"markers":[]} \ No newline at end of file diff --git a/src/components/sections/two-column-h2.js b/src/components/sections/two-column-h2.js index 833f30899..674717bf2 100644 --- a/src/components/sections/two-column-h2.js +++ b/src/components/sections/two-column-h2.js @@ -41,9 +41,9 @@ const TwoColumnH2 = ({
-
+
{anim && } {!anim && {title}}