Skip to content

celoibarros/spark-bigquery

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

spark-bigquery: A Google BigQuery Data Source for Apache Spark

This project provides a Google BigQuery data source (com.miraisolutions.spark.bigquery.DefaultSource) to Apache Spark using the new Google Cloud client libraries for the Google BigQuery API. It supports "direct" import/export where records are directly streamed from/to BigQuery. In addition, data may be imported/exported via intermediate data extracts on Google Cloud Storage (GCS). Note that when using "direct" (streaming) export, data may not be immediately available for further querying/processing in BigQuery. It may take several minutes for streamed records to become "available". See the following resources for more information:

The following import/export combinations are currently supported:

Direct Parquet Avro ORC JSON CSV
Import to Spark (export from BigQuery) ✔️ ✔️ ✔️ ✔️
Export from Spark (import to BigQuery) ✔️ ✔️ ✔️ ✔️

More information on the various supported formats can be found at:

CSV and JSON are not recommended as data exchange formats between Apache Spark and BigQuery due to their lack of type safety. Better options are direct import/export, Parquet, Avro and ORC.

This data source is used in the sparkbq R package.

Building

Due to dependency version mismatches between Apache Spark and Google client libraries (e.g. Google Guava) this project uses sbt-assembly to build a fat JAR using shading to relocate relevant Google classes.

Version Information

The following table provides an overview over supported versions of Apache Spark, Scala and Google Dataproc:

spark-bigquery Spark Scala Google Dataproc
0.1.x 2.2.x and 2.3.x 2.11 1.2.x and 1.3.x

Example

The provided Google BigQuery data source (com.miraisolutions.spark.bigquery.DefaultSource) can be used as follows:

import org.apache.spark.sql.{SaveMode, SparkSession}
import com.miraisolutions.spark.bigquery.config._

// Initialize Spark session
val spark = SparkSession
  .builder
  .appName("Google BigQuery Shakespeare")
  .getOrCreate

import spark.implicits._

// Define BigQuery options
val config = BigQueryConfig(
  project = "<billing_project_id>",  // Google BigQuery billing project ID
  location = "<dataset_location>", // Google BigQuery dataset location
  stagingDataset = StagingDatasetConfig(
	gcsBucket = "<gcs_bucket>" // Google Cloud Storage bucket for staging files
  ),
  // Google Cloud service account key file - works only in local cluster mode
  serviceAccountKeyFile = if(args.length > 3) Some(args(3)) else None
)

// Read public shakespeare data table using direct import (streaming)
val shakespeare = spark.read
  .bigquery(config)
  .option("table", "bigquery-public-data.samples.shakespeare")
  .option("type", "direct")
  .load()

val hamlet = shakespeare.filter($"corpus".like("hamlet"))
hamlet.show(100)

shakespeare.createOrReplaceTempView("shakespeare")
val macbeth = spark.sql("SELECT * FROM shakespeare WHERE corpus = 'macbeth'").persist()
macbeth.show(100)

// Write filtered data table via a Parquet export on GCS
macbeth.write
  .bigquery(config)
  .option("table", "<billing_project_id>.samples.macbeth")
  .option("type", "parquet")
  .mode(SaveMode.Overwrite)
  .save()

You can find a complete example at com.miraisolutions.spark.bigquery.examples.Shakespeare.

To run this example first compile and assembly using sbt assembly. Then run:

Local Spark Cluster

spark-submit --class com.miraisolutions.spark.bigquery.examples.Shakespeare --master local[*] target/scala-2.11/spark-bigquery-assembly-<version>.jar <arguments>

Google Cloud Dataproc

Login to service account (it needs to have permissions to access all resources):

gcloud auth activate-service-account --key-file=[KEY-FILE]

Run spark job:

gcloud dataproc jobs submit spark --cluster <cluster> --class com.miraisolutions.spark.bigquery.examples.Shakespeare --jars target/scala-2.11/spark-bigquery-assembly-<version>.jar -- <argument>

where <arguments> are:

  1. Google BigQuery billing project ID
  2. Google BigQuery dataset location (EU, US)
  3. Google Cloud Storage (GCS) bucket where staging files will be located

Using the spark-bigquery Spark package

spark-bigquery is available as Spark package from https://spark-packages.org/package/miraisolutions/spark-bigquery and as such via the Maven coordinates miraisolutions:spark-bigquery:<version>. You can simply specify the appropriate Maven coordinates with the --packages option when using the Spark shell or when using spark-submit.

Using the Spark Shell

spark-shell --master local[*] --packages miraisolutions:spark-bigquery:<version>

import com.miraisolutions.spark.bigquery.config._

// Define BigQuery options
val config = BigQueryConfig(
  project = "<your_billing_project_id>",
  location = "US",
  stagingDataset = StagingDatasetConfig(
    gcsBucket = "<your_gcs_bucket>"
  ),
  serviceAccountKeyFile = Some("<your_service_account_key_file>")
)

val shakespeare = spark.read
  .bigquery(config)
  .option("table", "bigquery-public-data.samples.shakespeare")
  .option("type", "direct")
  .load()
  
shakespeare.show()

Using PySpark

pyspark --master local[*] --packages miraisolutions:spark-bigquery:<version>

shakespeare = spark.read \
  .format("bigquery") \
  .option("bq.project", "<your_billing_project_id>") \
  .option("bq.location", "US") \
  .option("bq.service_account_key_file", "<your_service_account_key_file>") \
  .option("bq.staging_dataset.gcs_bucket", "<your_gcs_bucket>") \
  .option("table", "bigquery-public-data.samples.shakespeare") \
  .option("type", "direct") \
  .load()
  
shakespeare.show()

Using spark-submit

Assume the following Spark application which has been compiled into a JAR named Shakespeare.jar (you may want to use something like Holden Karau's Giter8 Spark project template for this):

package com.example

import org.apache.spark.sql.SparkSession
import com.miraisolutions.spark.bigquery.config._

object Shakespeare {
	
	def main(args: Array[String]): Unit = {
		
		// Initialize Spark session
		val spark = SparkSession
		  .builder
		  .appName("Google BigQuery Shakespeare")
		  .getOrCreate
		
		// Define BigQuery options
		val config = BigQueryConfig(
		  project = "<your_billing_project_id>",
		  location = "US",
		  stagingDataset = StagingDatasetConfig(
			gcsBucket = "<your_gcs_bucket>"
		  ),
		  serviceAccountKeyFile = Some("<your_service_account_key_file>")
		)

		// Read public shakespeare data table using direct import (streaming)
		val shakespeare = spark.read
		  .bigquery(config)
		  .option("table", "bigquery-public-data.samples.shakespeare")
		  .option("type", "direct")
		  .load()
  		
  		shakespeare.show()	
  		
	}
	
}

You can run this application using spark-submit in the following way:

spark-submit --class com.example.Shakespeare --master local[*] --packages miraisolutions:spark-bigquery:<version> Shakespeare.jar

Using gcloud dataproc jobs submit

Login to service account (it needs to have permissions to access all resources):

gcloud auth activate-service-account --key-file=[KEY-FILE]

Similar to the spark-submit example above, the Spark application can be submitted to Google Dataproc using

gcloud dataproc jobs submit spark --cluster <dataproc_cluster_name> --class com.example.Shakespeare --jars Shakespeare.jar --properties "spark.jars.packages=miraisolutions:spark-bigquery:<version>"

You may choose not to specify a service account key file and use default application credentials instead when running on Dataproc.

Configuration

The three main Spark read/write options include:

  • table: The BigQuery table to read/write. To be specified in the form [projectId].[datasetId].[tableId]. One of table or sqlQuery must be specified.
  • sqlQuery: A SQL query in Google BigQuery standard SQL dialect (SQL-2011). One of table or sqlQuery must be specified.
  • type (optional): The BigQuery import/export type to use. Options include "direct", "parquet", "avro", "orc", "json" and "csv". Defaults to "direct". See the table at the top for supported type and import/export combinations.

In addition, there are a number of BigQuery configuration options that can be specified in two ways: the traditional way using Spark's read/write options (e.g. spark.read.option("bq.project", "<your_project>")) and using the bigquery extension method (spark.read.bigquery(config); see example above) which is usually more straightforward to use. If you prefer the traditional way or if you are using spark-bigquery in a non-Scala environment (e.g. PySpark), the configuration keys are as follows:

  • bq.project (required): Google BigQuery billing project id
  • bq.location (required): Geographic location where newly created datasets should reside. "EU" or "US".
  • bq.service_account_key_file (optional): Google Cloud service account key file to use for authentication with Google Cloud services. The use of service accounts is highly recommended. Specifically, the service account will be used to interact with BigQuery and Google Cloud Storage (GCS). If not specified, application default credentials will be used.
  • bq.staging_dataset.name (optional): Prefix of BigQuery staging dataset. A staging dataset is used to temporarily store the results of SQL queries. Defaults to "spark_staging".
  • bq.staging_dataset.lifetime (optional): Default staging dataset table lifetime in milliseconds. Tables are automatically deleted once the lifetime has been reached. Defaults to 86400000 ms (= 1 day).
  • bq.staging_dataset.gcs_bucket (required): Google Cloud Storage (GCS) bucket to use for storing temporary files. Temporary files are used when importing through BigQuery load jobs and exporting through BigQuery extraction jobs (i.e. when using data extracts such as Parquet, Avro, ORC, ...). The service account specified in bq.service_account_key_file needs to be given appropriate rights.
  • bq.job.priority (optional): BigQuery job priority when executing SQL queries. Options include "interactive" and "batch". Defaults to "interactive", i.e. the query is executed as soon as possible.
  • bq.job.timeout (optional): Timeout in milliseconds after which a file import/export job should be considered as failed. Defaults to 3600000 ms (= 1 h).

See the following resources for more information:

Schema Conversion

Using Direct Mode

In direct (streaming) mode, spark-bigquery performs the following data type conversions between supported Spark data types and BigQuery data types:

Importing to Spark / Exporting from BigQuery

BigQuery Source Data Type Spark Target Data Type
BOOL BooleanType
INT64 LongType
FLOAT64 DoubleType
NUMERIC DecimalType(38, 9)
STRING StringType
BYTES BinaryType
STRUCT StructType
TIMESTAMP TimestampType
DATE DateType
TIME StringType
DATETIME StringType

BigQuery repeated fields are mapped to the corresponding Spark ArrayType. Also, BigQuery's nullable mode is used to determine the appropriate nullable property of the target Spark data type.

Exporting from Spark / Importing to BigQuery

Spark Source Data Type BigQuery Target Data Type
BooleanType BOOL
ByteType INT64
ShortType INT64
IntegerType INT64
LongType INT64
FloatType FLOAT64
DoubleType FLOAT64
<= DecimalType(38, 9) NUMERIC
> DecimalType(38, 9) STRING
StringType STRING
BinaryType BYTES
StructType STRUCT
TimestampType TIMESTAMP
DateType DATE
MapType Repeated key-value STRUCT
ArrayType Repeated field
Other STRING

For more information on supported BigQuery data types see https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types.

Using GCS Data Extracts

When using intermediate GCS data extracts (Parquet, Avro, ORC, ...) the result depends on the data format being used. Consult the data format's specification for information on supported data types. Furthermore, see the following resources on type conversions supported by BigQuery:

Authentication

Providing key file is only possible in local cluster mode, since app deployed on GC will try to resolve a location on HDFS. It's not a good practice to keep key files stored as cloud resource.

If you need to run via gcloud you can authenticate with service account JSON file using:

gcloud auth activate-service-account --key-file=[KEY-FILE]

Using local cluster mode it is possible to provide the key file as an argument to the spark job.

Information on how to generate service account credentials can be found at https://cloud.google.com/storage/docs/authentication#service_accounts. The service account key file can either be passed directly via BigQueryConfig or it can be passed through an environment variable: export GOOGLE_APPLICATION_CREDENTIALS=/path/to/your/service_account_keyfile.json (see https://cloud.google.com/docs/authentication/getting-started for more information). When running on Google Cloud, e.g. Google Cloud Dataproc, application default credentials may be used in which case it is not necessary to specify a service account key file.

License

MIT License

Copyright (c) 2018 Mirai Solutions GmbH

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

About

Google BigQuery data source for Apache Spark

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Scala 100.0%