-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathlearning_blind_motion_deblurring.py
307 lines (251 loc) · 13.2 KB
/
learning_blind_motion_deblurring.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Author: Patrick Wieschollek <mail@patwie.com>
import argparse
import tensorflow as tf
from data_provider import get_data as YoutubeData # noqa
from tensorpack import *
from tensorpack.tfutils.summary import add_moving_summary
from tensorpack.utils import logger
from tensorpack.tfutils.scope_utils import auto_reuse_variable_scope
import tensorpack.tfutils.symbolic_functions as symbf
import glob
import os
"""
Learning Blind Motion Deblurring
"""
SEQ_LEN = 5
BATCH_SIZE = 8
SHAPE = 128
LEVELS = 3
def ReluConv2D(name, x, out_channels, use_relu=True, kernel_shape=3, stride=1):
if use_relu:
x = tf.nn.relu(x, name='%s_relu' % name)
x = Conv2D('%s_conv' % name, x, out_channels, kernel_shape=kernel_shape, stride=stride)
return x
def ReluDeconv2D(name, x, out_channels, kernel_shape=3, stride=1):
x = tf.nn.relu(x, name='%s_relu' % name)
x = Deconv2D('%s_deconv' % name, x, out_channels, kernel_shape=kernel_shape, stride=stride)
return x
def Merge(incoming_skip, ID, tensor, name):
with tf.name_scope('Merge_%s' % name):
if incoming_skip is None:
# we gonna fake the skip, to allow TF to reuse variable and construct
# for this block a senseless conv-layer
incoming_skip_internal = tensor
else:
# we really want to merge both layers
incoming_skip_internal = incoming_skip[ID]
hs, ws = incoming_skip_internal.get_shape().as_list()[1:3]
hl, wl = tensor.get_shape().as_list()[1:3]
# tmp_name = resize(incoming_skip_internal, name)
# if (hs != hl) or (ws != wl):
# incoming_skip_internal = tmp_name
channels = tensor.get_shape().as_list()[3]
tensor_internal = tf.concat([tensor, incoming_skip_internal], axis=3)
tensor_internal = ReluConv2D(name, tensor_internal, channels, kernel_shape=1)
if incoming_skip is None:
# we have constructed the operation but just return the unmodified tensor itself
# workaround for '@auto_reuse_variable_scope'
# be aware this gives warnings "not gradient w.r.t. ..."
return tensor
else:
# we return the modified tensor
return tensor_internal
class Model(ModelDesc):
def _get_inputs(self):
return [InputDesc(tf.float32, (None, SEQ_LEN, SHAPE, SHAPE, 3), 'blurry'),
InputDesc(tf.float32, (None, SEQ_LEN, SHAPE, SHAPE, 3), 'sharp')]
@auto_reuse_variable_scope
def deblur_block(self, observation, estimate,
skip_temporal_in=None,
name=None):
"""Apply one deblur step.
Args:
observation: new unseen observation
estimate: latest estimate (the image which should be improved)
skip_temporal_in (None, optional): list of skip_connections
skip_unet_out(None, optional): lsit of skip connections between deblurring blocks within the network .
"""
skip_temporal_out = [] # green
skip_unet_out = [] # grey
with tf.name_scope("deblur_block_%s" % name):
# be aware use_local_stat=True gives warnings
with argscope(BatchNorm, use_local_stat=True), \
argscope([Conv2D, Deconv2D], nl=lambda x, name: BatchNorm(name, x)):
inputs = tf.concat([observation, estimate], 3)
block = ReluConv2D('d0', inputs, 32, stride=1, kernel_shape=3)
# H x W -> H/2 x W/2
# ---------------------------------------------------------------------
with tf.name_scope('block_0'):
block = ReluConv2D('d1_0', block, 64, stride=2)
block_start = block
block = ReluConv2D('d1_1', block, 64)
block = ReluConv2D('d1_2', block, 64)
block = ReluConv2D('d1_3', block, 64, kernel_shape=1)
block = tf.add(block_start, block, name='block_skip_A')
# H/2 x W/2 -> H/2 x W/2
# ---------------------------------------------------------------------
with tf.name_scope('block_1'):
block = ReluConv2D('d2_0', block, 64)
block_start = block
block = ReluConv2D('d2_1', block, 64)
block = ReluConv2D('d2_2', block, 64)
block = ReluConv2D('d2_3', block, 64, kernel_shape=1)
block = tf.add(block_start, block, name='block_skip_B')
skip_unet_out.append(block)
# H/2 x W/2 -> H/4 x W/4
# ---------------------------------------------------------------------
with tf.name_scope('block_2'):
block = ReluConv2D('d3_0', block, 128, stride=2)
block_start = block
block = ReluConv2D('d3_1', block, 128)
block = ReluConv2D('d3_2', block, 128)
block = ReluConv2D('d3_3', block, 128, kernel_shape=1)
block = tf.add(block_start, block, name='block_skip_C')
skip_unet_out.append(block)
# H/4 x W/4 -> H/8 x W/8
# ---------------------------------------------------------------------
with tf.name_scope('block_3'):
block = ReluConv2D('d4_0', block, 256, stride=2)
block_start = block
block = Merge(skip_temporal_in, 0, block, 'd41_s')
block = ReluConv2D('d4_1', block, 256)
block = ReluConv2D('d4_2', block, 256)
block = ReluConv2D('d4_3', block, 256, kernel_shape=1)
block = tf.add(block_start, block, name='block_skip_D')
skip_temporal_out.append(block)
# H/8 x W/8 -> H/4 x W/4
# ---------------------------------------------------------------------
with tf.name_scope('block_4'):
block = ReluDeconv2D('u1_0', block, 128, stride=2, kernel_shape=4)
block = tf.add(block, skip_unet_out[1], name='skip01')
block_start = block
block = Merge(skip_temporal_in, 1, block, 'u1_s')
block = ReluConv2D('u1_1', block, 128)
block = ReluConv2D('u1_2', block, 128)
block = ReluConv2D('u1_3', block, 128)
block = tf.add(block, block_start, name='block_skip_E')
skip_temporal_out.append(block)
# H/4 x W/4 -> H/2 x W/2
# ---------------------------------------------------------------------
with tf.name_scope('block_5'):
block = ReluDeconv2D('u2_0', block, 64, stride=2, kernel_shape=4)
block = tf.add(block, skip_unet_out[0], name='skip02')
block_start = block
block = Merge(skip_temporal_in, 2, block, 'u2_s')
block = ReluConv2D('u2_1', block, 64)
block = ReluConv2D('u2_2', block, 64)
block = ReluConv2D('u2_3', block, 64)
block = tf.add(block, block_start, name='block_skip_F')
skip_temporal_out.append(block)
# H/2 x W/2 -> H x W
# ---------------------------------------------------------------------
with tf.name_scope('block_6'):
block = ReluDeconv2D('u3_0', block, 64, stride=2, kernel_shape=4)
block = ReluConv2D('u3_1', block, 64)
block = ReluConv2D('u3_2', block, 64)
block = ReluConv2D('u3_3', block, 6)
block = ReluConv2D('u3_4', block, 3)
estimate = tf.add(estimate, block, name='skip03')
return estimate, skip_temporal_out
def _build_graph(self, input_vars):
# some loss functions and metrics to track performance
def l2_loss(x, y, name):
return tf.reduce_mean(tf.squared_difference(x, y), name=name)
def l1_loss(x, y, name):
return tf.reduce_mean(tf.abs(x - y), name=name)
def scaled_psnr(x, y, name):
return symbf.psnr(128. * (x + 1.0), 128. * (y + 1.), 255, name=name)
# centered inputs [B, T, H, W, C]
blurry, sharp = input_vars
blurry = blurry / 128.0 - 1
sharp = sharp / 128.0 - 1
l2err_list, l1err_list, psnr_list, psnr_impro_list = [], [], [], []
estimate = blurry[:, -1, :, :, :]
expected = sharp[:, -1, :, :, :]
skip_temporal_out = None
estimate_viz = []
psnr_base = scaled_psnr(blurry[:, SEQ_LEN - 1, :, :, :], sharp[:, -1, :, :, :], name="PSNR_base")
for t in range(1, SEQ_LEN):
logger.info("build time step: %i" % t)
# get observation at all scales in time step 't'
observation = blurry[:, SEQ_LEN - t - 1, :, :, :]
logger.info("time step: {} with input shape {}".format(t, observation[t].get_shape()))
estimate, skip_temporal_out = \
self.deblur_block(observation,
estimate,
skip_temporal_in=skip_temporal_out,
name='level_%i_step_%i' % (0, t))
l2err_list.append(l2_loss(estimate, expected, name="L2loss_t%i" % (t)))
l1err_list.append(l1_loss(estimate, expected, name="L1loss_t%i" % (t)))
psnr_list.append(scaled_psnr(estimate, expected, name="PSNR_t%i" % (t)))
pi = tf.divide(psnr_list[-1], psnr_base, name="PSNR_IMPRO_t%i" % (t))
psnr_impro_list.append(pi)
# naming estimates for grabbing during deployment
tf.identity((estimate + 1.0) * 128., name='estimate_t%i_l%i' % (0,t))
estimate_viz.append(estimate)
# just visualize original images
with tf.name_scope('visualization'):
estimate_viz = tf.concat(estimate_viz, axis=2)
observed_viz = tf.concat([blurry[:, i, :, :, :] for i in range(SEQ_LEN)], axis=2)
viz = tf.concat([observed_viz, estimate_viz, expected], axis=2, name='estimates')
viz = 128.0 * (viz + 1.0)
viz = tf.cast(tf.clip_by_value(viz, 0, 255), tf.uint8, name='viz')
tf.summary.image('blurry5_estimates5_expected', viz, max_outputs=max(30, BATCH_SIZE))
# total cost is sum of all individual losses
self.cost = tf.add_n(l2err_list, name="total_cost")
add_moving_summary(self.cost)
for l in range(LEVELS):
add_moving_summary(l2err_list + l1err_list + psnr_list + psnr_impro_list)
def _get_optimizer(self):
lr = symbolic_functions.get_scalar_var('learning_rate', 0.005, summary=True)
return tf.train.AdamOptimizer(lr)
def get_config(datadir, batch_size):
logger.auto_set_dir('n')
lmdbs = glob.glob(os.path.join(datadir, 'train*.lmdb'))
ds_train = [YoutubeData(lmdb, shape=(128, 128), ego_motion_size=[17, 21, 25]) for lmdb in lmdbs]
ds_train = RandomMixData(ds_train)
ds_train = BatchData(ds_train, BATCH_SIZE)
ds_train = PrefetchDataZMQ(ds_train, 8)
lmdbs = glob.glob(os.path.join(datadir, 'val*.lmdb'))
ds_val = [YoutubeData(lmdb, shape=(128, 128), ego_motion_size=[17, 21, 25]) for lmdb in lmdbs]
ds_val = RandomMixData(ds_val)
ds_val = BatchData(ds_val, BATCH_SIZE)
ds_val = FixedSizeData(ds_val, 100)
ds_val = PrefetchDataZMQ(ds_val, 8)
steps_per_epoch = 1000
return TrainConfig(dataflow=ds_train,
callbacks=[
ModelSaver(),
InferenceRunner(ds_val, [ScalarStats('total_cost'),
ScalarStats('PSNR_IMPRO_t%i' % (SEQ_LEN - 1))])
],
extra_callbacks=[
MovingAverageSummary(),
ProgressBar(['tower0/PSNR_base',
'tower0/PSNR_IMPRO_t%i' % (SEQ_LEN - 1),
'tower0/PSNR_IMPRO_t%i' % (SEQ_LEN - 1),
'tower0/PSNR_IMPRO_t%i' % (SEQ_LEN - 1),
]),
MergeAllSummaries(),
RunUpdateOps()
],
model=Model(),
steps_per_epoch=steps_per_epoch,
max_epoch=400)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.')
parser.add_argument('--batch', help='batch-size', type=int, default=32)
d = '/graphics/projects/scratch/wieschol/YouTubeDataset/'
parser.add_argument('--data', help='batch-size', type=str, default=d)
parser.add_argument('--load', help='load model')
args = parser.parse_args()
NR_GPU = len(args.gpu.split(','))
with change_gpu(args.gpu):
config = get_config(args.data, args.batch)
if args.load:
config.session_init = SaverRestore(args.load)
config.nr_tower = NR_GPU
SyncMultiGPUTrainer(config).train()