-
Notifications
You must be signed in to change notification settings - Fork 14
/
Breakout_ppo.py
225 lines (183 loc) · 6.46 KB
/
Breakout_ppo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import gym
import os
import random
from itertools import chain
import numpy as np
import torch.nn.functional as F
import torch.nn as nn
import torch
import cv2
from model import *
import torch.optim as optim
from torch.multiprocessing import Pipe, Process
from collections import deque
from sklearn.utils import shuffle
from ppo_agent import CNNActorAgent
from utils import make_train_data
from tensorboardX import SummaryWriter
from torch.distributions.categorical import Categorical
class Environment(Process):
def __init__(
self,
is_render,
env_idx,
child_conn):
super(Environment, self).__init__()
self.daemon = True
self.env = gym.make('BreakoutDeterministic-v4')
self.is_render = is_render
self.env_idx = env_idx
self.steps = 0
self.episode = 0
self.rall = 0
self.recent_rlist = deque(maxlen=100)
self.child_conn = child_conn
self.history = np.zeros([4, 84, 84])
self.reset()
self.lives = self.env.env.ale.lives()
def run(self):
super(Environment, self).run()
while True:
action = self.child_conn.recv()
if self.is_render:
self.env.render()
_, reward, done, info = self.env.step(action + 1)
if life_done:
if self.lives > info['ale.lives'] and info['ale.lives'] > 0:
force_done = True
self.lives = info['ale.lives']
else:
force_done = done
else:
force_done = done
if force_done:
reward = -1
self.history[:3, :, :] = self.history[1:, :, :]
self.history[3, :, :] = self.pre_proc(
self.env.env.ale.getScreenGrayscale().squeeze().astype('float32'))
self.rall += reward
self.steps += 1
if done:
self.history = self.reset()
self.child_conn.send(
[self.history[:, :, :], reward, force_done, done])
def reset(self):
self.steps = 0
self.episode += 1
self.rall = 0
self.env.reset()
self.lives = self.env.env.ale.lives()
self.get_init_state(
self.env.env.ale.getScreenGrayscale().squeeze().astype('float32'))
return self.history[:, :, :]
def pre_proc(self, X):
x = cv2.resize(X, (84, 84))
x *= (1.0 / 255.0)
return x
def get_init_state(self, s):
for i in range(4):
self.history[i, :, :] = self.pre_proc(s)
if __name__ == '__main__':
writer = SummaryWriter()
use_cuda = True
use_gae = True
is_load_model = False
is_render = True
use_standardization = True
lr_schedule = False
life_done = True
use_noisy_net = True
num_worker = 16
num_step = 128
ppo_eps = 0.1
epoch = 3
batch_size = 32
max_step = 1.15e8
learning_rate = 0.00025
stable_eps = 1e-30
epslion = 0.1
entropy_coef = 0.01
alpha = 0.99
gamma = 0.99
clip_grad_norm = 0.5
agent = CNNActorAgent(
num_step,
gamma,
use_cuda=use_cuda,
use_gae=use_gae)
if is_load_model:
agent.model.load_state_dict(torch.load(model_path))
works = []
parent_conns = []
child_conns = []
for idx in range(num_worker):
parent_conn, child_conn = Pipe()
work = Environment(is_render, idx, child_conn)
work.start()
works.append(work)
parent_conns.append(parent_conn)
child_conns.append(child_conn)
states = np.zeros([num_worker, 4, 84, 84])
sample_episode = 0
sample_rall = 0
sample_step = 0
sample_env_idx = 0
global_step = 0
recent_prob = deque(maxlen=10)
score = 0
while True:
total_state, total_reward, total_done, total_next_state, total_action = [], [], [], [], []
global_step += (num_worker * num_step)
for _ in range(num_step):
actions = agent.get_action(states)
for parent_conn, action in zip(parent_conns, actions):
parent_conn.send(action)
next_states, rewards, dones, real_dones = [], [], [], []
for parent_conn in parent_conns:
s, r, d, rd = parent_conn.recv()
next_states.append(s)
rewards.append(r)
dones.append(d)
real_dones.append(rd)
score += rewards[sample_env_idx]
next_states = np.stack(next_states)
rewards = np.hstack(rewards)
dones = np.hstack(dones)
real_dones = np.hstack(real_dones)
total_state.append(states)
total_next_state.append(next_states)
total_reward.append(rewards)
total_done.append(dones)
total_action.append(actions)
states = next_states[:, :, :, :]
if real_dones[sample_env_idx]:
sample_episode += 1
if sample_episode < 1000:
print('episodes:', sample_episode, '| score:', score)
writer.add_scalar('data/reward', score, sample_episode)
score = 0
total_state = np.stack(total_state).transpose(
[1, 0, 2, 3, 4]).reshape([-1, 4, 84, 84])
total_next_state = np.stack(total_next_state).transpose(
[1, 0, 2, 3, 4]).reshape([-1, 4, 84, 84])
total_reward = np.stack(total_reward).transpose().reshape([-1])
total_action = np.stack(total_action).transpose().reshape([-1])
total_done = np.stack(total_done).transpose().reshape([-1])
value, next_value, policy = agent.forward_transition(
total_state, total_next_state)
total_target = []
total_adv = []
for idx in range(num_worker):
target, adv = make_train_data(total_reward[idx * num_step:(idx + 1) * num_step],
total_done[idx * num_step:(idx + 1) * num_step],
value[idx * num_step:(idx + 1) * num_step],
next_value[idx * num_step:(idx + 1) * num_step])
# print(target.shape)
total_target.append(target)
total_adv.append(adv)
print('training')
agent.train_model(
total_state,
np.hstack(total_target),
total_action,
np.hstack(total_adv))