Skip to content

A social media analytics platform powered by AI that processes engagement data using DataStax and Langflow and GPT integration.

Notifications You must be signed in to change notification settings

chahatkesh/SuperMind_Assignment

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

53 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Social Media Analytics Platform

Complete Technical Documentation

Table of Contents

  1. Deployment
  2. Project Overview
  3. System Architecture
  4. Frontend Implementation
  5. Backend Implementation
  6. LangFlow Integration
  7. Technical Specifications
  8. API Documentation
  9. Data Structure

Deployment

Live Application

Deployment Infrastructure

  • Frontend: Render Web Services
  • Database: DataStax Astra DB
  • AI Integration: Langflow & OpenAI

Project Overview

Objective

Build an analytics module that analyzes engagement data from mock social media accounts using Langflow and DataStax integration.

Core Components

  • DataStax Astra DB for database operations
  • Langflow for workflow creation and GPT integration
  • React-based frontend
  • Node.js proxy backend
  • OpenAI GPT integration

Key Features

  • Real-time social media analytics
  • GPT-powered insights generation
  • AI Powered Chat Bot
  • Custom metric tracking
  • Data visualization
  • Post performance analysis
  • Engagement metrics calculation

System Architecture

Frontend Layer

  1. Landing Page

    • Header with navigation
    • Features showcase
    • Team information
    • Call-to-action elements
  2. Analytics Dashboard

    • Performance overview cards
    • Data visualization section
    • Analytics insights panel
    • Data grid for detailed view

Backend Layer

  1. Proxy Server

    • WebSocket connections
    • Request handling
    • Response streaming
    • Error management
  2. Data Processing

    • Text splitting and chunking
    • Data parsing
    • Vector store implementation
    • GPT integration

Frontend Implementation

Dashboard Components

Performance Overview Cards

interface EngagementMetrics {
  totalEngagement: number;
  engagementRate: number;
  performanceScore: number;
}

Data Visualization Section

  • Post Performance Chart
  • Post Type Comparison
  • Engagement Summary Card

Data Grid

  • Sortable columns
  • Filtering capabilities
  • Pagination (50 items/page)
  • Search functionality

State Management

interface DashboardState {
  posts: PostData[];
  dateRange: [Date, Date];
  selectedPostTypes: string[];
  sortBy: string;
  sortOrder: 'asc' | 'desc';
  currentPage: number;
  filters: {
    search: string;
    minEngagement?: number;
    maxEngagement?: number;
  };
}

Backend Implementation

Server Setup

const express = require('express');
const http = require('http');
const WebSocket = require('ws');
const cors = require('cors');

const app = express();
const server = http.createServer(app);
const wss = new WebSocket.Server({ server });

WebSocket Management

  • Unique requestId assignment
  • Connection tracking
  • Real-time data streaming
  • Error handling

API Endpoints

  1. Chat Endpoint
    • Handles client requests
    • Forwards to Langflow API
    • Streams responses
    • Error management

LangFlow Integration

Pipeline Components

  1. File Input

    • Loads CSV data
    • Path: mock_social_media_data.csv
  2. Text Processing

    • Chunk size: 1000
    • Overlap: 200
    • Custom separators
  3. Astra DB Integration

    • Database: davedb
    • Collection: engagement
    • Embedding Model: Astra Vectorize
    • Provider: OpenAI
    • Model: text-embedding-3-small
  4. OpenAI Integration

    • Model: gpt-4o-mini
    • Temperature: 0.1
    • Streaming enabled

Technical Specifications

Design Guidelines

  1. Color Palette

    • Primary: #2563EB
    • Secondary: #3B82F6
    • Accent: #EAB308
    • Background: #F8FAFC
    • Text: #1E293B
  2. Typography

    • Headings: Inter
    • Body: Roboto
    • Monospace: Source Code Pro
  3. Responsive Design

    • Mobile: 320px - 480px
    • Tablet: 481px - 768px
    • Desktop: 769px+

Performance Optimizations

  1. Frontend

    • Virtual scrolling
    • Response caching
    • Lazy loading
    • Asset optimization
  2. Backend

    • Connection pooling
    • Request batching
    • Response streaming
    • Error handling

Testing Strategy

  1. Unit Testing

    • Component testing
    • Function testing
    • State management testing
  2. Integration Testing

    • API endpoint testing
    • WebSocket testing
    • Data flow testing
  3. End-to-End Testing

    • User flow testing
    • Performance testing
    • Error handling testing

API Documentation

Endpoints

  1. Chat API
POST /chat
{
  "input_value": string,
  "requestId": string
}
  1. Analytics API
GET /api/posts
Query Parameters:
- startDate: ISO date string
- endDate: ISO date string
- postTypes: string[]
- page: number
- limit: number
- sort: string
- order: 'asc' | 'desc'

Data Structure

Post Data Model

interface PostData {
  Post_ID: string;
  Post_Type: 'Reel' | 'Carousel' | 'Static Image';
  Likes: number;
  Shares: number;
  Comments: number;
  Date_Posted: string;
}

Analytics Data Model

interface AnalyticsData {
  totalEngagement: number;
  engagementRate: number;
  performanceScore: number;
  postTypeDistribution: {
    [key: string]: number;
  };
  timeSeriesData: {
    date: string;
    engagement: number;
    postType: string;
  }[];
}

This documentation provides a comprehensive overview of the Social Media Analytics Platform. For specific implementation details or clarification, please refer to the individual sections or contact the development team.

About

A social media analytics platform powered by AI that processes engagement data using DataStax and Langflow and GPT integration.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • JavaScript 77.8%
  • TypeScript 13.0%
  • HTML 4.2%
  • CSS 3.1%
  • Python 1.9%