Maurer-Cartan-Lie frame connections ∇ Grassmann.jl TensorField derivations
Provides TensorField{B,F,N} <: GlobalFiber{LocalTensor{B,F},N}
implementation for both a local ProductSpace
and general ImmersedTopology
specifications on any AbstractFrameBundle
expressed with Grassmann.jl algebra.
Many of these modular methods can work on input meshes or product topologies of any dimension, although there are some methods which are specialized.
Building on this, Cartan
provides an algebra for any GlobalSection
and associated bundles on a manifold, such as general Connection
and CovariantDerivative
operators in terms of Grassmann
elements.
Calculus of Variation
fields can also be generated with the combined topology of a FiberProductBundle
.
Furthermore, the FiberProduct
structure enables construction of HomotopyBundle
types.
Utility package for differential geometry and tensor calculus intended for Adapode.jl.
The Cartan
package is intended to standardize the composition of various methods and functors applied to specialized categories transformed with a unified representation over a product topology, especially having fibers of the Grassmann
algebra.
Initial topologies include ProductSpace
types and in general the ImmersedTopology
.
Positions{P, G} where {P<:Chain, G} (alias for AbstractArray{<:Coordinate{P, G}, 1} where {P<:Chain, G})
Interval{P, G} where {P<:AbstractReal, G} (alias for AbstractArray{<:Coordinate{P, G}, 1} where {P<:Union{Real, Single{V, G, B, <:Real} where {V, G, B}, Chain{V, G, <:Real, 1} where {V, G}}, G})
IntervalRange{P, G, PA, GA} where {P<:Real, G, PA<:AbstractRange, GA} (alias for GridFrameBundle{Coordinate{P, G}, 1, <:PointArray{P, G, 1, PA, GA}} where {P<:Real, G, PA<:AbstractRange, GA})
Rectangle (alias for ProductSpace{V, T, 2, 2} where {V, T})
Hyperrectangle (alias for ProductSpace{V, T, 3, 3} where {V, T})
RealRegion{V, T} where {V, T<:Real} (alias for ProductSpace{V, T, N, N, S} where {V, T<:Real, N, S<:AbstractArray{T, 1}})
RealSpace{N} where N (alias for AbstractArray{<:Coordinate{P, G}, N} where {N, P<:(Chain{V, 1, <:Real} where V), G})
AlignedRegion{N} where N (alias for GridFrameBundle{Coordinate{P, G}, N, PointArray{P, G, N, PA, GA}} where {N, P<:Chain, G<:InducedMetric, PA<:(ProductSpace{V, <:Real, N, N, <:AbstractRange} where V), GA<:Global})
AlignedSpace{N} where N (alias for GridFrameBundle{Coordinate{P, G}, N, PointArray{P, G, N, PA, GA}} where {N, P<:Chain, G<:InducedMetric, PA<:(ProductSpace{V, <:Real, N, N, <:AbstractRange} where V), GA})
GridFrameBundle{P,G,N,PA<:AbstractArray{P,N},GA<:AbstractArray{G,N}} <: AbstractFrameBundle{Coordinate{P,G},N}
SimplexFrameBundle{P,G,PA<:AbstractVector{P},GA<:AbstractVector{G},TA<:ImmersedTopology} <: AbstractFrameBundle{Coordinate{P,G},1}
FacetFrameBundle{P,G,PA,GA,TA<:ImmersedTopology} <: AbstractFrameBundle{Coordinate{P,G},1}
FiberProductBundle{P,N,SA<:AbstractArray,PA<:AbstractArray} <: AbstractFrameBundle{Coordinate{P,InducedMetric},N}
HomotopyBundle{P,N,PA<:AbstractArray{F,N} where F,FA<:AbstractArray,TA<:ImmersedTopology} <: AbstractFrameBundle{Coordinate{P,InducedMetric},N}
AbstractFrameBundle{Coordinate{B,F},N} where {B,F,N}
Visualizing TensorField
reperesentations can be standardized in combination with Makie.jl or UnicodePlots.jl.
Due to the versatility of the TensorField
type instances, it's possible to disambiguate them into these type alias specifications with associated methods:
ScalarMap (alias for TensorField{B, F, 1, BA} where {B, F<:AbstractReal, BA<:SimplexFrameBundle})
IntervalMap (alias for TensorField{B, F, 1, P} where {B, F, P<:(AbstractArray{<:Coordinate{P, G}, 1} where {P<:Union{Real, Single{V, G, B, <:Real} where {V, G, B}, Chain{V, G, <:Real, 1} where {V, G}}, G})})
RectangleMap (alias for TensorField{B, F, 2, P} where {B, F, P<:(AbstractMatrix{<:Coordinate{P, G}} where {P<:(Chain{V, 1, <:Real} where V), G})})
HyperrectangleMap (alias for TensorField{B, F, 3, P} where {B, F, P<:(AbstractArray{<:Coordinate{P, G}, 3} where {P<:(Chain{V, 1, <:Real} where V), G})})
ParametricMap (alias for TensorField{B, F, N, P} where {B, F, N, P<:(AbstractArray{<:Coordinate{P, G}, N} where {N, P<:(Chain{V, 1, <:Real} where V), G})})
Variation (alias for TensorField{B, F, N, P} where {B, F<:TensorField, N, P})
RealFunction (alias for TensorField{B, F, 1, PA} where {B, F<:AbstractReal, PA<:(AbstractVector{<:AbstractReal})})
PlaneCurve (alias for ParametricMap (alias for TensorField{B, F, N, P} where {B, F, N, P<:(AbstractArray{<:Coordinate{P, G}, N} where {N, P<:(Chain{V, 1, <:Real} where V), G})}))
SpaceCurve (alias for TensorField{B, F, 1, P} where {B, F<:(Chain{V, G, Q, 3} where {V, G, Q}), P<:(AbstractVector{<:Coordinate{P, G}} where {P<:AbstractReal, G})})
AbstractCurve (alias for TensorField{B, F, 1, P} where {B, F<:Chain, P<:(AbstractVector{<:Coordinate{P, G}} where {P<:AbstractReal, G})})
SurfaceGrid (alias for TensorField{B, F, 2, P} where {B, F<:AbstractReal, P<:(AbstractMatrix{<:Coordinate{P, G}} where {P<:(Chain{V, 1, <:Real} where V), G})})
VolumeGrid (alias for TensorField{B, F, 3, P} where {B, F<:AbstractReal, P<:(AbstractArray{<:Coordinate{P, G}, 3} where {P<:(Chain{V, 1, <:Real} where V), G})})
ScalarGrid (alias for TensorField{B, F, N, P} where {B, F<:AbstractReal, N, P<:(AbstractArray{<:Coordinate{P, G}, N} where {P<:(Chain{V, 1, <:Real} where V), G})})
GlobalFrame{B, N, N} where {B<:(LocalFiber{P, <:TensorNested} where P), N, N} (alias for Cartan.GlobalSection{B, N, N1, BA, FA} where {B<:(LocalFiber{P, <:TensorNested} where P), N, N1, BA, FA<:AbstractArray{N, N1}})
DiagonalField (alias for TensorField{B, F} where {B, F<:DiagonalOperator})
EndomorphismField (alias for TensorField{B, F} where {B, F<:(TensorOperator{V, V, T} where {V, T<:(TensorAlgebra{V, <:TensorAlgebra{V}})})})
OutermorphismField (alias for TensorField{B, F} where {B, F<:Outermorphism})
CliffordField (alias for TensorField{B, F} where {B, F<:Multivector})
QuaternionField (alias for TensorField{B, F} where {B, F<:(Quaternion)})
ComplexMap (alias for TensorField{B, F} where {B, F<:(Union{Complex{T}, Single{V, G, B, Complex{T}} where {V, G, B}, Chain{V, G, Complex{T}, 1} where {V, G}, Couple{V, B, T} where {V, B}, Phasor{V, B, T} where {V, B}} where T<:Real)})PhasorField (alias for TensorField{B, T, F} where {B, T, F<:Phasor})
SpinorField (alias for TensorField{B, F} where {B, F<:AbstractSpinor})
GradedField{G} where G (alias for TensorField{B, F} where {G, B, F<:(Chain{V, G} where V)})
ScalarField (alias for TensorField{B, F} where {B, F<:Union{Real, Single{V, G, B, <:Real} where {V, G, B}, Chain{V, G, <:Real, 1} where {V, G}}})
VectorField (alias for TensorField{B, F} where {B, F<:(Chain{V, 1} where V)})
BivectorField (alias for TensorField{B, F} where {B, F<:(Chain{V, 2} where V)})
TrivectorField (alias for TensorField{B, F} where {B, F<:(Chain{V, 3} where V)})
In the Cartan
package, a technique is employed where an identity TensorField
is constructed from an interval or product manifold, to generate an algebra of sections which can be used to compose parametric maps on manifolds.
Constructing a TensorField
can be accomplished in various ways,
there are explicit techniques to construct a TensorField
as well as implicit methods.
Additional packages such as Adapode
build on the TensorField
concept by generating them from differential equations.
Many of these methods can automatically generalize to higher dimensional manifolds and are compatible with discrete differential geometry.
_________ __ __________
\_ ___ \_____ ________/ |______ ____ \\ /
/ \ \/\__ \\_ __ \ __\__ \ / \ \\ /
\ \____/ __ \| | \/| | / __ \| | \ \\ /
\______ (____ /__| |__| (____ /___| / \\ /
\/ \/ \/ \/ \/
developed by chakravala with Grassmann.jl