-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel_gcn.py
285 lines (217 loc) · 10.1 KB
/
model_gcn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import torch
import torch.nn as nn
import numpy as np
import torchvision.models as models
from torch.autograd import Variable
import torch.nn.functional as F
import itertools
import operator
from multiprocessing.dummy import Pool as ThreadPool
from multiprocessing import Pool
from collections import Counter
from GCN_lib.Rs_GCN import Rs_GCN
class EncoderCNN(nn.Module):
def __init__(self, target_size):
super(EncoderCNN, self).__init__()
resnet = models.resnet152(pretrained=True)
modules = list(resnet.children())[:-1]
self.resnet = nn.Sequential(*modules)
for param in self.resnet.parameters():
param.requires_grad = False
self.linear = nn.Linear(resnet.fc.in_features, target_size)
self.bn = nn.BatchNorm1d(target_size, momentum=0.01)
self.init_weights()
def get_params(self):
return list(self.linear.parameters()) + list(self.bn.parameters())
def init_weights(self):
self.linear.weight.data.normal_(0.0, 0.02)
self.linear.bias.data.fill_(0)
def forward(self, images):
features = self.resnet(images)
features = Variable(features.data)
features = features.view(features.size(0), -1)
features = self.linear(features)
features = self.bn(features)
return features
class EncoderGCN(nn.Module):
def __init__(self, img_dim, embed_size, use_abs=False, no_imgnorm=False):
super(EncoderGCN, self).__init__()
self.embed_size = embed_size
self.no_imgnorm = no_imgnorm
self.use_abs = use_abs
self.fc = nn.Linear(img_dim, embed_size)
self.init_weights()
# GCN reasoning
self.Rs_GCN_1 = Rs_GCN(in_channels=embed_size, inter_channels=embed_size)
self.Rs_GCN_2 = Rs_GCN(in_channels=embed_size, inter_channels=embed_size)
self.Rs_GCN_3 = Rs_GCN(in_channels=embed_size, inter_channels=embed_size)
self.Rs_GCN_4 = Rs_GCN(in_channels=embed_size, inter_channels=embed_size)
def init_weights(self):
"""Xavier initialization for the fully connected layer
"""
r = np.sqrt(6.) / np.sqrt(self.fc.in_features +
self.fc.out_features)
self.fc.weight.data.uniform_(-r, r)
self.fc.bias.data.fill_(0)
def forward(self, images):
"""Extract image feature vectors."""
fc_img_emd = self.fc(images)
fc_img_emd = l2norm(fc_img_emd)
# GCN reasoning
# -> B,D,N
GCN_img_emd = fc_img_emd.permute(0, 2, 1)
GCN_img_emd = self.Rs_GCN_1(GCN_img_emd)
GCN_img_emd = self.Rs_GCN_2(GCN_img_emd)
GCN_img_emd = self.Rs_GCN_3(GCN_img_emd)
GCN_img_emd = self.Rs_GCN_4(GCN_img_emd)
# -> B,N,D
GCN_img_emd = GCN_img_emd.permute(0, 2, 1)
GCN_img_emd = l2norm(GCN_img_emd)
return GCN_img_emd
class EncoderStory(nn.Module):
def __init__(self, img_feature_size, hidden_size, n_layers):
super(EncoderStory, self).__init__()
self.hidden_size = hidden_size
self.n_layers = n_layers
self.cnn = EncoderCNN(img_feature_size)
self.lstm = nn.LSTM(img_feature_size, hidden_size, n_layers, batch_first=True, bidirectional=True, dropout=0.5)
self.linear = nn.Linear(hidden_size * 2 + img_feature_size, hidden_size * 2)
self.dropout = nn.Dropout(p=0.5)
self.bn = nn.BatchNorm1d(hidden_size * 2, momentum=0.01)
self.init_weights()
def get_params(self):
return self.cnn.get_params() + list(self.lstm.parameters()) + list(self.linear.parameters()) + list(self.bn.parameters())
def init_weights(self):
self.linear.weight.data.normal_(0.0, 0.02)
self.linear.bias.data.fill_(0)
def forward(self, story_images):
data_size = story_images.size()
local_cnn = self.cnn(story_images.view(-1, data_size[2], data_size[3], data_size[4]))
global_rnn, (hn, cn) = self.lstm(local_cnn.view(data_size[0], data_size[1], -1))
glocal = torch.cat((local_cnn.view(data_size[0], data_size[1], -1), global_rnn), 2)
output = self.linear(glocal)
output = self.dropout(output)
output = self.bn(output.contiguous().view(-1, self.hidden_size * 2)).view(data_size[0], data_size[1], -1)
return output, (hn, cn)
class DecoderStory(nn.Module):
def __init__(self, embed_size, hidden_size, vocab):
super(DecoderStory, self).__init__()
self.embed_size = embed_size
self.linear = nn.Linear(hidden_size * 2, hidden_size)
self.dropout = nn.Dropout(p=0.5)
self.rnn = DecoderRNN(embed_size, hidden_size, 2, vocab)
self.init_weights()
def get_params(self):
return list(self.parameters())
def init_weights(self):
self.linear.weight.data.normal_(0.0, 0.02)
self.linear.bias.data.fill_(0)
def forward(self, story_feature, captions, lengths):
story_feature = self.linear(story_feature)
story_feature = self.dropout(story_feature)
story_feature = F.relu(story_feature)
result = self.rnn(story_feature, captions, lengths)
return result
def inference(self, story_feature):
story_feature = self.linear(story_feature)
story_feature = F.relu(story_feature)
result = self.rnn.inference(story_feature)
return result
class DecoderRNN(nn.Module):
def __init__(self, embed_size, hidden_size, n_layers, vocab):
super(DecoderRNN, self).__init__()
self.vocab = vocab
vocab_size = len(vocab)
self.embed = nn.Embedding(vocab_size, embed_size)
self.dropout1 = nn.Dropout(p=0.1)
self.lstm = nn.LSTM(embed_size + hidden_size, hidden_size, n_layers, batch_first=True, dropout=0.5)
self.dropout2 = nn.Dropout(p=0.5)
self.linear = nn.Linear(hidden_size, vocab_size)
self.n_layers = n_layers
self.hidden_size = hidden_size
self.softmax = nn.Softmax(0)
self.brobs = []
self.init_input = torch.zeros([5, 1, embed_size], dtype=torch.float32)
if torch.cuda.is_available():
self.init_input = self.init_input.cuda()
self.start_vec = torch.zeros([1, vocab_size], dtype=torch.float32)
self.start_vec[0][1] = 10000
if torch.cuda.is_available():
self.start_vec = self.start_vec.cuda()
self.init_weights()
def get_params(self):
return list(self.parameters())
def init_hidden(self):
h0 = torch.zeros(1 * self.n_layers, 1, self.hidden_size)
c0 = torch.zeros(1 * self.n_layers, 1, self.hidden_size)
h0 = torch.zeros(1 * self.n_layers, 1, self.hidden_size)
c0 = torch.zeros(1 * self.n_layers, 1, self.hidden_size)
if torch.cuda.is_available():
h0 = h0.cuda()
c0 = c0.cuda()
return (h0, c0)
def init_weights(self):
self.linear.weight.data.normal_(0.0, 0.02)
self.linear.bias.data.fill_(0)
def forward(self, features, captions, lengths):
embeddings = self.embed(captions)
embeddings = self.dropout1(embeddings)
features = features.unsqueeze(1).expand(-1, np.amax(lengths), -1)
embeddings = torch.cat((features, embeddings), 2)
outputs = []
(hn, cn) = self.init_hidden()
for i, length in enumerate(lengths):
lstm_input = embeddings[i][0:length - 1]
output, (hn, cn) = self.lstm(lstm_input.unsqueeze(0), (hn, cn))
output = self.dropout2(output)
output = self.linear(output[0])
output = torch.cat((self.start_vec, output), 0)
outputs.append(output)
return outputs
def inference(self, features):
results = []
(hn, cn) = self.init_hidden()
vocab = self.vocab
end_vocab = vocab('<end>')
forbidden_list = [vocab('<pad>'), vocab('<start>'), vocab('<unk>')]
termination_list = [vocab('.'), vocab('?'), vocab('!')]
function_list = [vocab('<end>'), vocab('.'), vocab('?'), vocab('!'), vocab('a'), vocab('an'), vocab('am'), vocab('is'), vocab('was'), vocab('are'), vocab('were'), vocab('do'), vocab('does'), vocab('did')]
cumulated_word = []
for feature in features:
feature = feature.unsqueeze(0).unsqueeze(0)
predicted = torch.tensor([1], dtype=torch.long).cuda()
lstm_input = torch.cat((feature, self.embed(predicted).unsqueeze(1)), 2)
sampled_ids = [predicted,]
count = 0
prob_sum = 1.0
for i in range(50):
outputs, (hn, cn) = self.lstm(lstm_input, (hn, cn))
outputs = self.linear(outputs.squeeze(1))
if predicted not in termination_list:
outputs[0][end_vocab] = -100.0
for forbidden in forbidden_list:
outputs[0][forbidden] = -100.0
cumulated_counter = Counter()
cumulated_counter.update(cumulated_word)
prob_res = outputs[0]
prob_res = self.softmax(prob_res)
for word, cnt in cumulated_counter.items():
if cnt > 0 and word not in function_list:
prob_res[word] = prob_res[word] / (1.0 + cnt * 5.0)
prob_res = prob_res * (1.0 / prob_res.sum())
candidate = []
for i in range(100):
index = np.random.choice(prob_res.size()[0], 1, p=prob_res.cpu().detach().numpy())[0]
candidate.append(index)
counter = Counter()
counter.update(candidate)
sorted_candidate = sorted(counter.items(), key=operator.itemgetter(1), reverse=True)
predicted, _ = counter.most_common(1)[0]
cumulated_word.append(predicted)
predicted = torch.from_numpy(np.array([predicted])).cuda()
sampled_ids.append(predicted)
if predicted == 2:
break
lstm_input = torch.cat((feature, self.embed(predicted).unsqueeze(1)), 2)
results.append(sampled_ids)
return results