-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
193 lines (157 loc) · 7.84 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import argparse
import torch
import torch.nn as nn
import numpy as np
import os
import pickle
import random
from data_loader import get_loader
from build_vocab import Vocabulary
from model import EncoderStory, DecoderStory
from torch.autograd import Variable
from torchvision import transforms
from PIL import Image
def to_var(x):
if torch.cuda.is_available():
x = x.cuda()
return Variable(x)
def main(args):
# Create model directory
if not os.path.exists(args.model_path):
os.makedirs(args.model_path)
# Image preprocessing
train_transform = transforms.Compose([
transforms.Resize(args.image_size, interpolation=Image.LANCZOS),
transforms.RandomCrop(args.image_size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406),
(0.229, 0.224, 0.225))])
val_transform = transforms.Compose([
transforms.Resize(args.image_size, interpolation=Image.LANCZOS),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406),
(0.229, 0.224, 0.225))])
# Load vocabulary wrapper.
with open(args.vocab_path, 'rb') as f:
vocab = pickle.load(f)
# Build data loader
train_data_loader = get_loader(args.train_image_dir, args.train_sis_path, vocab, train_transform, args.batch_size, shuffle=True, num_workers=args.num_workers)
val_data_loader = get_loader(args.val_image_dir, args.val_sis_path, vocab, val_transform, args.batch_size, shuffle=False, num_workers=args.num_workers)
encoder = EncoderStory(args.img_feature_size, args.hidden_size, args.num_layers)
decoder = DecoderStory(args.embed_size, args.hidden_size, vocab)
pretrained_epoch = 0
if args.pretrained_epoch > 0:
pretrained_epoch = args.pretrained_epoch
encoder.load_state_dict(torch.load('./models/encoder-' + str(pretrained_epoch) + '.pkl'))
decoder.load_state_dict(torch.load('./models/decoder-' + str(pretrained_epoch) + '.pkl'))
if torch.cuda.is_available():
encoder.cuda()
decoder.cuda()
print("Cuda is enabled...")
criterion = nn.CrossEntropyLoss()
params = decoder.get_params() + encoder.get_params()
optimizer = torch.optim.Adam(params, lr=args.learning_rate, weight_decay=args.weight_decay)
total_train_step = len(train_data_loader)
total_val_step = len(val_data_loader)
min_avg_loss = float("inf")
overfit_warn = 0
for epoch in range(args.num_epochs):
if epoch < pretrained_epoch:
continue
encoder.train()
decoder.train()
avg_loss = 0.0
for bi, (image_stories, targets_set, lengths_set, photo_squence_set, album_ids_set) in enumerate(train_data_loader):
decoder.zero_grad()
encoder.zero_grad()
loss = 0
images = to_var(torch.stack(image_stories))
features, _ = encoder(images)
for si, data in enumerate(zip(features, targets_set, lengths_set)):
feature = data[0]
captions = to_var(data[1])
lengths = data[2]
outputs = decoder(feature, captions, lengths)
for sj, result in enumerate(zip(outputs, captions, lengths)):
loss += criterion(result[0], result[1][0:result[2]])
avg_loss += loss.item()
loss /= (args.batch_size * 5)
loss.backward()
optimizer.step()
# Print log info
if bi % args.log_step == 0:
print('Epoch [%d/%d], Train Step [%d/%d], Loss: %.4f, Perplexity: %5.4f'
%(epoch + 1, args.num_epochs, bi, total_train_step,
loss.item(), np.exp(loss.item())))
avg_loss /= (args.batch_size * total_train_step * 5)
print('Epoch [%d/%d], Average Train Loss: %.4f, Average Train Perplexity: %5.4f' %(epoch + 1, args.num_epochs, avg_loss, np.exp(avg_loss)))
# Save the models
torch.save(decoder.state_dict(), os.path.join(args.model_path, 'decoder-%d.pkl' %(epoch+1)))
torch.save(encoder.state_dict(), os.path.join(args.model_path, 'encoder-%d.pkl' %(epoch+1)))
# Validation
encoder.eval()
decoder.eval()
avg_loss = 0.0
for bi, (image_stories, targets_set, lengths_set, photo_sequence_set, album_ids_set) in enumerate(val_data_loader):
loss = 0
images = to_var(torch.stack(image_stories))
features, _ = encoder(images)
for si, data in enumerate(zip(features, targets_set, lengths_set)):
feature = data[0]
captions = to_var(data[1])
lengths = data[2]
outputs = decoder(feature, captions, lengths)
for sj, result in enumerate(zip(outputs, captions, lengths)):
loss += criterion(result[0], result[1][0:result[2]])
avg_loss += loss.item()
loss /= (args.batch_size * 5)
# Print log info
if bi % args.log_step == 0:
print('Epoch [%d/%d], Val Step [%d/%d], Loss: %.4f, Perplexity: %5.4f'
%(epoch + 1, args.num_epochs, bi, total_val_step,
loss.item(), np.exp(loss.item())))
avg_loss /= (args.batch_size * total_val_step * 5)
print('Epoch [%d/%d], Average Val Loss: %.4f, Average Val Perplexity: %5.4f' %(epoch + 1, args.num_epochs, avg_loss, np.exp(avg_loss)))
#Termination Condition
overfit_warn = overfit_warn + 1 if (min_avg_loss < avg_loss) else 0
min_avg_loss = min(min_avg_loss, avg_loss)
if overfit_warn >= 5:
break
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--model_path', type=str, default='./models/' ,
help='path for saving trained models')
parser.add_argument('--image_size', type=int, default=224 ,
help='size for input images')
parser.add_argument('--vocab_path', type=str, default='./models/vocab.pkl',
help='path for vocabulary wrapper')
parser.add_argument('--train_image_dir', type=str, default='./data/train' ,
help='directory for resized train images')
parser.add_argument('--val_image_dir', type=str, default='./data/val' ,
help='directory for resized val images')
parser.add_argument('--train_sis_path', type=str,
default='./data/sis/train.story-in-sequence.json',
help='path for train sis json file')
parser.add_argument('--val_sis_path', type=str,
default='./data/sis/val.story-in-sequence.json',
help='path for val sis json file')
parser.add_argument('--log_step', type=int , default=20,
help='step size for prining log info')
parser.add_argument('--img_feature_size', type=int , default=1024 ,
help='dimension of image feature')
parser.add_argument('--embed_size', type=int , default=256 ,
help='dimension of word embedding vectors')
parser.add_argument('--hidden_size', type=int , default=1024 ,
help='dimension of lstm hidden states')
parser.add_argument('--num_layers', type=int , default=2 ,
help='number of layers in lstm')
parser.add_argument('--pretrained_epoch', type=int, default=0)
parser.add_argument('--num_epochs', type=int, default=100)
parser.add_argument('--batch_size', type=int, default=64)
parser.add_argument('--num_workers', type=int, default=0)
parser.add_argument('--learning_rate', type=float, default=0.001)
parser.add_argument('--weight_decay', type=float, default=1e-5)
args = parser.parse_args()
print(args)
main(args)