-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
80 lines (64 loc) · 2.29 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
"""
Copyright (C) 2018 NVIDIA Corporation. All rights reserved.
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
"""
import torch.utils.data as data
import os.path
import numpy as np
def numpy_loader(path):
data = np.load(path)
data = data.astype("float32")
if len(data.shape) > 2:
data = np.swapaxes(data, 0, 1)
data = np.swapaxes(data, 1, 2)
return data
###############################################################################
# Code from
# https://github.com/pytorch/vision/blob/master/torchvision/datasets/folder.py
# Modified the original code so that it also loads images from the current
# directory as well as the subdirectories
###############################################################################
import torch.utils.data as data
from PIL import Image
import os
import os.path
VALID_EXTENSIONS = [
# '.jpg', '.JPG', '.jpeg', '.JPEG',
# '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP',
'.npy',
]
def is_valid_file(filename):
return any(filename.endswith(extension) for extension in VALID_EXTENSIONS)
def make_dataset(dir):
dataset = []
assert os.path.isdir(dir), '%s is not a valid directory' % dir
for root, _, fnames in sorted(os.walk(dir)):
for fname in fnames:
if is_valid_file(fname):
path = os.path.join(root, fname)
dataset.append(path)
return dataset
class ImageFolder(data.Dataset):
def __init__(self, root, transform=None, return_paths=False,
loader=numpy_loader):
npys = sorted(make_dataset(root))
if len(npys) == 0:
raise(RuntimeError("Found 0 file in: " + root + "\n"
"Supported extensions are: " +
",".join(IMG_EXTENSIONS)))
self.root = root
self.npys = npys
self.transform = transform
self.return_paths = return_paths
self.loader = loader
def __getitem__(self, index):
path = self.npys[index]
npy = self.loader(path)
if self.transform is not None:
npy = self.transform(npy)
if self.return_paths:
return npy, path
else:
return npy
def __len__(self):
return len(self.npys)