-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_loader.py
90 lines (74 loc) · 3.24 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# -*- coding: utf-8 -*-
import pickle
import string
import torch
import random
import torchtext
import torch
import codecs
import random
import torch.utils.data as Data
import pandas as pd
import numpy as np
# input: a sequence of tokens, and a token_to_index dictionary
# output: a LongTensor variable to encode the sequence of idxs
def prepare_sequence(seq, to_ix, cuda=False):
var = torch.LongTensor([to_ix[w] for w in seq.split(' ')])
return var
def prepare_label(label,label_to_ix, cuda=False):
var = torch.LongTensor([label_to_ix[label]])
return var
def build_token_to_ix(sentences):
token_to_ix = dict()
for sent in sentences:
if sent != sent:
continue
for token in sent.split(' '):
if token not in token_to_ix:
token_to_ix[token] = len(token_to_ix)
token_to_ix['<pad>'] = len(token_to_ix)
return token_to_ix
def clean_str(data):
for example in data.examples:
text = [x.lower() for x in vars(example)['text']] # 소문자
text = [x.replace("<br", "") for x in text] # <br 제거
text = [''.join(c for c in s if c not in string.punctuation) for s in text] # 문장부호
text = [s for s in text if s and not s == " " and not s == " "] # 공란제거
vars(example)['text'] = text
return data
def load_data():
label_to_ix = {'negative': 0, 'neutral': 1, 'positive': 2}
# already tokenized and there is no standard split
# the size follow the Mou et al. 2016 instead
test_data = []
test = pd.read_csv(r"C:\Users\Administrator\Desktop\듀오비스\sentimental\test.csv")
# for idx in range(len(test)):
# data.append(torchtext.data.Example.fromlist([test[idx], labels[idx]], datafields))
# data = torchtext.data.Dataset(data, datafields)
TEXT = torchtext.data.Field(tokenize='spacy')
LABEL = torchtext.data.LabelField()
datafields = [('text', TEXT), ('label', LABEL)]
temp = []
for data in test.values:
if data[1] != data[1]:
continue
test_data.append(torchtext.data.Example.fromlist([data[1], label_to_ix[data[2]]],datafields))
train_data = []
train = pd.read_csv(r"C:\Users\Administrator\Desktop\듀오비스\sentimental\train.csv")
for data in train.values:
if data[2] != data[2]:
continue
train_data.append(torchtext.data.Example.fromlist([data[2], label_to_ix[data[3]]], datafields))
train_data = torchtext.data.Dataset(train_data, datafields)
test_data = torchtext.data.Dataset(test_data, datafields)
train_data = clean_str(train_data)
test_data = clean_str(test_data)
train_data, valid_data = train_data.split(random_state=random.seed(0), split_ratio=0.8)
TEXT.build_vocab(train_data, test_data,valid_data, max_size=50000)
LABEL.build_vocab(train_data,test_data,valid_data)
# word_to_ix = build_token_to_ix([s for s, _ in test_data + train_data])
pickle.dump(TEXT, open("text.pkl", "wb"))
pickle.dump(LABEL, open("label.pkl", "wb"))
print('vocab size:',len(TEXT.vocab),'label size:',len(label_to_ix))
print('loading data done!')
return TEXT,LABEL,train_data,valid_data,test_data,label_to_ix