Skip to content

Latest commit

 

History

History

data

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 

Specifications of Dataset Download in Geom3D

We provide both the raw and processed data at this HuggingFace link.

PCQM4Mv2

mkdir -p pcqm4mv2/raw
cd pcqm4mv2/raw
wget http://ogb-data.stanford.edu/data/lsc/pcqm4m-v2-train.sdf.tar.gz
tar -xf pcqm4m-v2-train.sdf.tar.gz


wget http://ogb-data.stanford.edu/data/lsc/pcqm4m-v2.zip
unzip pcqm4m-v2.zip
mv pcqm4m-v2/raw/data.csv.gz .
rm pcqm4m-v2.zip
rm -rf pcqm4m-v2 

GEOM

wget https://dataverse.harvard.edu/api/access/datafile/4327252
mv 4327252 rdkit_folder.tar.gz
tar -xvf rdkit_folder.tar.gz

Molecule3D

Install it following the google drive link here.

QM9

Automatically installed under folder .QM9/raw.

MD17

Automatically installed under folder ./MD17.

In March 2023 (or even earlier), they updated the MD17 FTP site, and the previous datasets are missing. We may need to keep and upload a version to the website.

rMD17

Download the dataset from this link, and put the file 12672038.zip under ./rMD17 folder.

  • unzip 12672038.zip
  • tar xjf rmd17.tar.bz2
  • mv rmd17/npz_data .
  • mv rmd17/splits .

COLL

We use this repo: git@github.com:TUM-DAML/gemnet_pytorch.git.

LBA/PDBBind

mkdir -p lba/raw
mkdir -p lba/processed
cd lba/raw
# wget http://www.pdbbind.org.cn/download/pdbbind_v2015_refined_set.tar.gz
# wget http://www.pdbbind.org.cn/download/pdbbind_v2018_refined.tar.gz
# wget http://www.pdbbind.org.cn/download/pdbbind_v2019_refined.tar.gz
# wget https://zenodo.org/record/4914718/files/LBA-split-by-sequence-identity-30-indices.tar.gz

wget http://www.pdbbind.org.cn/download/PDBbind_v2020_refined.tar.gz
tar -xzvf PDBbind_v2020_refined.tar.gz

wget https://zenodo.org/record/4914718/files/LBA-split-by-sequence-identity-30.tar.gz
tar -xzvf LBA-split-by-sequence-identity-30.tar.gz
mv split-by-sequence-identity-30/indices ../processed/
mv split-by-sequence-identity-30/targets ../processed/

LEP

mkdir -p lep/raw
mkdir -p lep/processed
cd lep/raw

wget https://zenodo.org/record/4914734/files/LEP-raw.tar.gz
tar -xzvf LEP-raw.tar.gz
wget https://zenodo.org/record/4914734/files/LEP-split-by-protein.tar.gz
tar -xzvf LEP-split-by-protein.tar.gz

MoleculeNet dataset

wget http://snap.stanford.edu/gnn-pretrain/data/chem_dataset.zip
unzip chem_dataset.zip
dataset_list=(tox21 toxcast clintox bbbp sider muv hiv bace)
for dataset in "${dataset_list[@]}"; do
    mkdir -p molecule_datasets/"$dataset"/raw
    cp dataset/"$dataset"/raw/* molecule_datasets/"$dataset"/raw/
done
rm -rf dataset

wget -O malaria-processed.csv https://raw.githubusercontent.com/HIPS/neural-fingerprint/master/data/2015-06-03-malaria/malaria-processed.csv
mkdir -p ./molecule_datasets/malaria/raw
mv malaria-processed.csv ./molecule_datasets/malaria/raw/malaria.csv

wget -O cep-processed.csv https://raw.githubusercontent.com/HIPS/neural-fingerprint/master/data/2015-06-02-cep-pce/cep-processed.csv
mkdir -p ./molecule_datasets/cep/raw
mv cep-processed.csv ./molecule_datasets/cep/raw/cep.csv

EC & FOLD

Check this link.

  • ProtFunct is for task EC
  • HomologyTAPE is for task FOLD

Or

  • cd EC; python download.py
  • cd FOLD; python download.py

MatBench

mkdir MatBench
cd MatBench

wget https://figshare.com/ndownloader/files/17494820
mv 17494820 expt_is_metal.json.gz
gzip -d expt_is_metal.json.gz

wget https://figshare.com/ndownloader/files/17494814
mv 17494814 expt_gap.json.gz
gzip -d expt_gap.json.gz

wget https://figshare.com/ndownloader/files/17494637
mv 17494637 glass.json.gz
gzip -d glass.json.gz

wget https://figshare.com/ndownloader/articles/9755486/versions/2
mv 2 perovskites.json.gz
unzip perovskites.json.gz
rm perovskites.json.gz
rm 17494805_perovskites.json.gz
gzip -d 17494808_perovskites.json.gz
mv 17494808_perovskites.json perovskites.json

wget https://figshare.com/ndownloader/files/17476067
mv 17476067 dielectric.json.gz
gzip -d dielectric.json.gz

wget https://figshare.com/ndownloader/files/17476064
mv 17476064 log_gvrh.json.gz
gzip -d log_gvrh.json.gz

wget https://figshare.com/ndownloader/files/17476061
mv 17476061 log_kvrh.json.gz
gzip -d log_kvrh.json.gz

wget https://figshare.com/ndownloader/files/17476046
mv 17476046 jdft2d.json.gz
gzip -d jdft2d.json.gz

wget https://figshare.com/ndownloader/files/17476040
mv 17476040 steels.json.gz
gzip -d steels.json.gz

wget https://figshare.com/ndownloader/files/17476037
mv 17476037 phonons.json.gz
gzip -d phonons.json.gz

wget https://figshare.com/ndownloader/files/17476034
mv 17476034 mp_is_metal.json.gz
gzip -d mp_is_metal.json.gz

wget https://figshare.com/ndownloader/files/17476028
mv 17476028 mp_e_form.json.gz
gzip -d mp_e_form.json.gz

wget https://figshare.com/ndownloader/files/17084741
mv 17084741 mp_gap.json.gz
gzip -d mp_gap.json.gz

The dataset size can match with MatBenchmark v0.1.

QMOF

mkdir QMOF
cd QMOF
wget https://figshare.com/ndownloader/articles/13147324/versions/13
mv 13 qmof_database_v13.zip
unzip qmof_database_v13.zip
unzip qmof_database.zip

cd qmof_database
python xyz_to_cifs.py
cd ../..

Or follow this link for prediction on QMOF DB v13.