-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfit_vca_model.m
156 lines (112 loc) · 4.75 KB
/
fit_vca_model.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
function [fitparams, fval] = fit_vca_model(raw, pOnTimes, model)
% inputs:
%
% raw: The PSC amplitudes {cell array}
% pOnTimes: Stimulus times in seconds, {cell array, one for each stim type}
% model: a string indicating the number of facilitating and depressing
% terms. Examples: 'DF', 'DDF', 'DDFF'
% assert an ERR_TYPE
ERR_TYPE = 'L1'; % can be 'RMS', 'LnQ', 'SSE', 'L1'
% check input args
assert(~isempty(raw), 'ERROR: no data were supplied')
assert(~isempty(pOnTimes), 'ERROR: no pulse times were supplied')
check_vca_model(model); % will throw and error if there are problems
%
% find the best fitting STP parameters.
%
%%%%%%%%%%%%%%%%%%%%
% make a function called parse_model_coeffs that takes a vector of all
% coefficients (like the one returned from generate_guesses_and_bounds or
% from FMINUNC and returns vectors for D, F, tauD, tauF
%
[guesses, upper_bounds, lower_bounds] = generate_vca_guesses_and_bounds(model);
N_pts_per_dim = 2;
custpts = get_vca_startpoints(lower_bounds, upper_bounds, N_pts_per_dim);
opts = optimoptions(@fmincon, 'Algorithm', 'interior-point',...
'TolFun', 1e-12,...
'TolX', 1e-12);
problem = createOptimProblem('fmincon', 'objective', @fit_vca_err,...
'x0', guesses,...
'lb', lower_bounds,...
'ub', upper_bounds,...
'options', opts);
ms = MultiStart;
ms.UseParallel = 'always';
[fitparams, fval, exitflag, output, manymins] = run(ms, problem, 500);
% fix the fitparams if the output was junk
if exitflag <= 0
fitparams = nan(size(fitparams));
end
function err = fit_vca_err(params)
[d, tau_d, f, tau_f] = parse_vca_model_coeffs(params, model);
pred = cellfun(@(x) nan(size(x)), raw, 'uniformoutput', false);
for i_cond = 1:numel(raw)
for i_trl = 1:size(raw{i_cond}, 3)
A0 = raw{i_cond}(1,1,i_trl);
pred{i_cond}(:,1,i_trl) = predict_vca_psc(pOnTimes{i_cond}, d, tau_d, f, tau_f, A0);
end
end
% pool the errors across pulse train types. Ingore the first pulse
% (becuse the error is artifactually = zero). Do some error
% checking along the way.
switch ERR_TYPE
case 'LnQ'
err = cellfun(@(x,y) abs(log(x./y)), raw, pred, 'uniformoutput', false); % log of ratios
case {'RMS', 'SSE'}
err = cellfun(@(x,y) (x-y).^2, raw, pred, 'uniformoutput', false); % squared error
case {'L1'}
err = cellfun(@(x,y) abs(x-y), raw, pred, 'uniformoutput', false); % squared error
end
sizeMatch = cellfun(@(x,y) numel(x)==numel(y), err, raw); % subtracting off 1 to account for the fact that I'm ignoring the first pulse
assert(all(sizeMatch), 'ERROR: unexpected dimensions after step 1')
% compute the log of the fractional error. When the data match the
% prediction, the ratio will be 1 and the log(ratio) will be zero.
% This means we want the sum of the log(ratios) to be as close as
% possible to zero. Take the ABS(log(ratio)) to force the code to
% minimize the difference from zero b/c deviations on the low and
% high side are both bad.
err = cellfun(@(x) x(:), err, 'uniformoutput', false);
err = cat(1, err{:});
switch ERR_TYPE
case {'LnQ', 'SSE', 'L1'}
err = sum(err); % for log of ratios
case 'RMS'
err = sqrt(mean(err)); % for RMS error
end
% warning('using L2 regularization')
% err = err + (0.05 .* norm(params));
end
end %main function
%
%
% TESTING ROUTINES
%
%
function test_recovery() %#ok<*DEFNU>
% this simulation just verifies that the dynamical variables (D1, D2,
% F1) recover according to 1st order kinetics
D1o = 0.5; % i.e., 1 * d1
D2o = 0.8; % i.e., 1 * d2
tau_d1 = 0.5;
tau_d2 = 1;
F1o = 1.8; % i.e., 1 + f1
tau_f1 = 0.8;
% The simulation assumes that a presynaptic action potential occurs at
% time zero, and then keeps track of D1, D2, and F1 following the
% spike.
dt = 0.001;
tt = 0:dt:5;
[D1, D2, F1] = deal(nan(1, numel(tt)));
D1(1) = D1o;
D2(1) = D2o;
F1(1) = F1o;
for i_t = 2:numel(tt);
% let the system recover according to the time constants and the
% asympototic values of D and F (all = 0)
D1(i_t) = 1 - ((1-D1o) .* exp(-tt(i_t)./tau_d1));
D2(i_t) = 1 - ((1-D2o) .* exp(-tt(i_t)./tau_d2));
F1(i_t) = 1 + ((F1o-1) .* exp(-tt(i_t)./tau_f1));
end
figure, hold on,
plot(tt, [D1(:), D2(:), F1(:)])
end