y : m by 1, x : n by 1; A : m by n
rule |
variable |
derivative |
V to V |
$\frac{\part y}{\part x}$ |
$\left[\begin{array}{cccc}\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{1}} & \cdots & \frac{\partial y_{m}}{\partial x_{1}} \\frac{\partial y_{1}}{\partial x_{2}} & \frac{\partial y_{2}}{\partial x_{2}} & \cdots & \frac{\partial y_{m}}{\partial x_{2}} \\vdots & \vdots & \ddots & \vdots \\frac{\partial y_{1}}{\partial x_{n}} & \frac{\partial y_{2}}{\partial x_{n}} & \cdots & \frac{\partial y_{m}}{\partial x_{n}}\end{array}\right]$ |
S to V |
$\frac{\part y}{\part x}$ |
$\left[\begin{array}{c}\frac{\partial y}{\partial x_{1}} \\frac{\partial y}{\partial x_{2}} \\vdots \\frac{\partial y}{\partial x_{n}}\end{array}\right]$ |
V to S |
$\frac{\part y}{\part x}$ |
$\left[\begin{array}{llll}\frac{\partial y_{1}}{\partial x} & \frac{\partial y_{2}}{\partial x} & \ldots & \frac{\partial y_{m}}{\partial x}\end{array}\right]$ |
S to M |
$\frac{\part y}{\part x}$ |
$\left[\begin{array}{cccc}\frac{\partial y}{\partial x_{11}} & \frac{\partial y}{\partial x_{12}} & \ldots & \frac{\partial y}{\partial x_{1 n}} \\frac{\partial y}{\partial x_{21}} & \frac{\partial y}{\partial x_{22}} & \cdots & \frac{\partial y}{\partial x_{2 n}} \\vdots & \vdots & & \vdots \\frac{\partial y}{\partial x_{m 1}} & \frac{\partial y}{\partial x_{m 2}} & \ldots & \frac{\partial y}{\partial x_{m n}}\end{array}\right]$ |
Chain rule: $z=f(y),y=g(x)$
|
$\frac{\part z}{\part x}$ |
$\frac{\part y}{\part x} \frac{\part z}{\part y}$ |
Chain rule: $w=h(z), z=f(y),y=g(x)$
|
$\frac{\part w}{\part x}$ |
$\frac{\part y}{\part x} \frac{\part z}{\part y} \frac{\part w}{\part z}$ |
Trace $y= tr(X), X\in R^{n\times n}$
|
$\frac{\part y}{\part X}$ |
$I$ |
$X \quad and \quad Y$ are matrix |
- |
$d(\mathbf{X Y})=(d \mathbf{X}) \mathbf{Y}+\mathbf{X}(d \mathbf{Y})d(\mathbf{X Y})=(d \mathbf{X}) \mathbf{Y}+\mathbf{X}(d \mathbf{Y})$ |
$X$ are matrix |
$d \mathbf{X^{-1}}$ |
$d\left(\mathbf{X}^{-1}\right) \mathbf{X}+\mathbf{X}^{-1} d \mathbf{X}=\mathbf{0}$ $\rightarrow$ $d\left(\mathbf{X}^{-1}\right) =-\mathbf{X}^{-1} d \mathbf{X}\mathbf{X}^{-1}$
|
$x$ is vector, $A$ is matrix $f = x^T A x$
|
$df/dA$ |
$xx^T$ |
convention |
variable |
partial differentiation |
$ y =Ax$ |
$\partial y/ \partial x$ |
$A^T$ |
$ y =Ax,x=f(z)$ |
$\partial y/ \partial z$ |
$\partial y/ \partial x * \partial x/ \partial z = A^T*\partial x/ \partial z$ |
$\alpha =y^TAx$ |
$\partial \alpha/ \partial y$ |
$Ax$ |
$\alpha = x^TAx$ , $m=n$
|
$\partial \alpha/ \partial x$ |
$(A+A^T)x$ |
$\alpha = x^TAx$ , $m=n$, $A^T = A$
|
$\partial \alpha/ \partial y$ |
$2Ax$ |
$\alpha=y^Tx, x =f(z) y=f(z)\quad m=n$ |
$\partial \alpha/ \partial z$ |
$x\frac{\partial y}{\partial z}+y\frac{\partial x}{\partial z}$ |
$\alpha = y^TAx, y=f(z),x=f(z)$ |
$\partial \alpha/ \partial z$ |
$Ax\frac{\part y}{\part z}+A^ty\frac{\part x}{\part z}$ |
Matrix calculus