forked from edwin-pan/uDoppler-Classification
-
Notifications
You must be signed in to change notification settings - Fork 0
/
micro_doppler_classification.py
224 lines (182 loc) · 9.4 KB
/
micro_doppler_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# -*- coding: utf-8 -*-
"""
Created on Wed Dec 4 18:26:06 2019
@author: Edwin
http://users.metu.edu.tr/ccandan//pub_dir/Padar_Ertan_Candan_Micro_Doppler_Classification__IEEE_Radar_2016.pdf
Two approaches to classification problem:
1) Image Classification Problem
2) Frequency Varying Time Sequence Problem (Spectrogram)
"""
import numpy as np
import torch
import func.microdoppler_visualizer as mv
import func.pca as pca
import func.utils as utils
import models.ConvolutionalNeuralNetwork as CNN
import models.GaussianMixtureModel as GMM
import scipy.io as sio
import matplotlib.pyplot as plt
import argparse
plt.close('all')
nSamplesPerClass = 1000
def main(args):
# Load data
trainDataPed = np.load('data/processed/test_data_ped.npy').astype(np.float32)
trainDataBic = np.load('data/processed/test_data_bic.npy').astype(np.float32)
trainLabelPed = np.load('data/processed/test_label_ped.npy')
trainLabelBic = np.load('data/processed/test_label_bic.npy')
testDataPed = np.load('data/processed/train_data_ped.npy').astype(np.float32)
testDataBic = np.load('data/processed/train_data_bic.npy').astype(np.float32)
testLabelPed = np.load('data/processed/train_label_ped.npy')
testLabelBic = np.load('data/processed/train_label_bic.npy')
# Downsample by a factor of 2
trainDataPed_ds = utils.downsampler_2(trainDataPed)
trainDataBic_ds = utils.downsampler_2(trainDataBic)
testDataPed_ds = utils.downsampler_2(testDataPed)
testDataBic_ds = utils.downsampler_2(testDataBic)
# Vectorize "image" data
trainDataPedVec = trainDataPed_ds.reshape((trainDataPed_ds.shape[0],-1), order='F')
trainDataBicVec = trainDataBic_ds.reshape((trainDataBic_ds.shape[0],-1), order='F')
testDataPedVec = testDataPed_ds.reshape((testDataPed_ds.shape[0],-1), order='F')
testDataBicVec = testDataBic_ds.reshape((testDataBic_ds.shape[0],-1), order='F')
# Check out the Downsampled data
#mv.classification_data_visualizer(trainDataPedVec.reshape((trainDataPedVec.shape[0],200,72), order='F'), trainLabelPed)
## # --- Use for Feature Plots (PCA)
#nFeatures = 16
## PCA Feature Extraction -- Compute Features via PCA using Mean Centered Ped & Bic spectrograms
#trainDataPedVecWeights, trainDataPedVecFeatures = pca.PCA(trainDataPedVec-np.mean(trainDataPedVec, axis=0), nFeatures)
#trainDataBicVecWeights, trainDataBicVecFeatures = pca.PCA(trainDataBicVec-np.mean(trainDataBicVec, axis=0), nFeatures)
#
## NMF Feature Extraction -- Compute Features via NMF using Mean Centered Ped & Bic spectrograms
## trainDataPedVecWeightsNMF, trainDataPedVecFeaturesNMF = pca.PCA(trainDataPedVec-np.mean(trainDataPedVec, axis=0), nFeatures)
## trainDataBicVecWeightsNMF, trainDataBicVecFeaturesNMF = pca.PCA(trainDataBicVec-np.mean(trainDataBicVec, axis=0), nFeatures)
#
## Check out the features
## mv.classification_data_visualizer(trainDataPedVecFeatures.reshape((nFeatures,200,72), order='F'), np.array([str(i) for i in range(nFeatures)]))
#mv.feature_viewer(trainDataPedVecFeatures.reshape((nFeatures,200,72), order='F'),nFeatures, trainDataPed_ds.shape[1], trainDataPed_ds.shape[2], title='Pedestrian Features')
#mv.feature_viewer(trainDataBicVecFeatures.reshape((nFeatures,200,72), order='F'),nFeatures, trainDataBic_ds.shape[1], trainDataBic_ds.shape[2], title='Bike Features')
## # --- Use for Feature Plots (PCA)
# =============================================================================
# 1) Gaussian Mixture Model
# =============================================================================
if args.model == 'GMM':
print("[GMM] Begin GMM Training & Testing")
nFeatures = 16
nClasses = 2
# Produce full set
fullSet = np.concatenate((trainDataPedVec,trainDataBicVec), axis=0)
fullSetLabel = np.concatenate((trainLabelPed,trainLabelBic), axis=0)
trainingDataMean = np.mean(fullSet, axis=0)
weights, features = pca.PCA(fullSet-trainingDataMean, nFeatures)
if args.see_features:
print(args.see_features)
mv.feature_viewer(features.reshape((nFeatures,200,72), order='F'),nFeatures, trainDataBic_ds.shape[1], trainDataBic_ds.shape[2], title='GMM Features')
if args.see_weights:
print(args.see_weights)
mv.weight_viewer(weights, fullSetLabel)
# Generate mean and covariance for bike and pedestrian class
gmm_classifier = GMM.GaussianMixtureModel(fullSet, nFeatures, 2, 1000)
results = gmm_classifier.fit(fullSet)
# Make a decision
decision = np.argmax(results, axis=0)
decisionLabeled = []
for sample in decision:
if sample == 0:
decisionLabeled.append('ped ')
elif sample == 1:
decisionLabeled.append('bic ')
decisionLabeled = np.array(decisionLabeled)
# Calculate Statistics
train_accuracy = np.mean(decisionLabeled == fullSetLabel)
print("Training set accuracy: ", train_accuracy)
# -- Now test
testFullSet = np.concatenate((testDataPedVec,testDataBicVec), axis=0)
testFullSetLabel = np.concatenate((testLabelPed,testLabelBic), axis=0)
# Generate mean and covariance for bike and pedestrian class
testResults = gmm_classifier.fit(testFullSet)
# Make a decision
testDecision = np.argmax(testResults, axis=0)
testDecisionLabeled = []
for sample in testDecision:
if sample == 0:
testDecisionLabeled.append('ped ')
elif sample == 1:
testDecisionLabeled.append('bic ')
testDecisionLabeled = np.array(testDecisionLabeled)
# Calculate Statistics
bike_correct = 0
bike_incorrect = 0
ped_correct = 0
ped_incorrect = 0
for i in range(len(testDecisionLabeled)):
if testDecisionLabeled[i] == 'ped ':
if testDecisionLabeled[i] == testFullSetLabel[i]:
ped_correct +=1
else:
ped_incorrect +=1
else:
if testDecisionLabeled[i] == testFullSetLabel[i]:
bike_correct +=1
else:
bike_incorrect +=1
test_accuracy = np.mean(testDecisionLabeled == testFullSetLabel)
print("[GMM] Testing set accuracy: ", test_accuracy)
# =============================================================================
# 2) Convolutional Neural Net
# =============================================================================
elif args.model == 'CNN':
print("[CNN] Begin CNN Training & Testing")
# Produce train set
trainSet = np.concatenate((trainDataPed_ds,trainDataBic_ds), axis=0)
trainSetLabel = np.concatenate((trainLabelPed,trainLabelBic), axis=0)
# Convert train set to torch tensor
trainSet = torch.tensor(trainSet,dtype=torch.float32)
# Answer to the question: Is it a bike?
trainSetLabel_binary = np.array([int('bic '==elem) for elem in trainSetLabel])
trainSetLabel_bool = np.array([('bic '==elem) for elem in trainSetLabel])
# Produce test set
testSet = np.concatenate((testDataPed_ds,testDataBic_ds), axis=0)
testSetLabel = np.concatenate((testLabelPed,testLabelBic), axis=0)
# Convert test set to torch tensor
testSet = torch.tensor(testSet,dtype=torch.float32)
# Answer to the question: Is it a bike?
testSetLabel_bool = np.array(['bic '==elem for elem in testSetLabel])
train_flag = False
if train_flag:
_, net = CNN.fit(trainSet, trainSetLabel_binary, testSet, 10)
else:
loss_fn = torch.nn.CrossEntropyLoss()
in_size = 0
out_size = 2
net = CNN.NeuralNet(0.03, loss_fn, in_size, out_size)
net.load_state_dict(torch.load('net.model'))
net.eval()
batch_size = 10
# Begin - Train
num_batch_train = trainSet.shape[0]//batch_size
result_train = np.zeros((num_batch_train*batch_size,2))
# Evaluate - Train
for i in range(num_batch_train):
result_train[i*10:(i+1)*10] = net(trainSet[i*10:(i+1)*10]).detach().numpy()
# Decide - Train
decision_train = np.array([sample[0]<sample[1] for sample in result_train])
train_accuracy = np.mean(decision_train == trainSetLabel_bool)
print("[CNN] Training set accuracy: ", train_accuracy)
# Begin - Test
num_batch = testSet.shape[0]//batch_size
result = np.zeros((num_batch*batch_size,2))
# Evaluate - Test
for i in range(num_batch):
result[i*10:(i+1)*10] = net(testSet[i*10:(i+1)*10]).detach().numpy()
# Decide - Test
decision = np.array([sample[0]<sample[1] for sample in result])
test_accuracy = np.mean(decision == testSetLabel_bool)
print("[CNN] Testing set accuracy: ", test_accuracy)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='MicroDoppler Classification Main')
parser.add_argument('model', choices=['GMM', 'CNN'])
parser.add_argument('--see_features', action='store_true', help='Allows user to view GMM features')
parser.add_argument('--see_weights', action='store_true', help='Allows user to view GMM weights')
# Call
args = parser.parse_args()
main(args)