Awesome Graph Papers
I will collect articles about graphs (such as graph neural networks). Welcome to Star.
Powerer by Zotero
In China, this URL will be faster: https://gitee.com/chengsen/Awesome-Graph-Papers
- Introduction to graph neural networks (2020) Liu Z, Zhou J. \\ https://evo.services/introduction-to-graph-neural-networks/
- Graph Learning Approaches to Recommender Systems: A Review (2020) Wang S, Hu L, et al. \\ https://arxiv.org/abs/2004.11718
- Deep Learning on Graphs: A Survey (2020) Zhang Z, Cui P, et al. \\ http://arxiv.org/abs/1812.04202
- Adversarial Attack and Defense on Graph Data: A Survey (2020) Sun L, Dou Y, et al. \\ http://arxiv.org/abs/1812.10528
- A Survey on Knowledge Graph-Based Recommender Systems (2020) Guo Q, Zhuang F, et al. \\ http://arxiv.org/abs/2003.00911
- A Comprehensive Survey on Graph Neural Networks (2020) Wu Z, Pan S, et al. \\ doi: 10.1109/TNNLS.2020.2978386 http://arxiv.org/abs/1901.00596
- Graph Neural Networks: A Review of Methods and Applications (2019) Zhou J, Cui G, et al. \\ http://arxiv.org/abs/1812.08434
- Graph Kernels: A Survey (2019) Nikolentzos G, Siglidis G, et al. \\ http://arxiv.org/abs/1904.12218
- A Survey on Graph Processing Accelerators: Challenges and Opportunities (2019) Gui C, Zheng L, et al. \\ http://arxiv.org/abs/1902.10130
- Representation Learning on Graphs: Methods and Applications (2018) Hamilton WL, Ying R, et al. \\ http://arxiv.org/abs/1709.05584
- Relational inductive biases, deep learning, and graph networks (2018) Battaglia PW, Hamrick JB, et al. \\ http://arxiv.org/abs/1806.01261
- Network Representation Learning: A Survey (2018) Zhang D, Yin J, et al. \\ http://arxiv.org/abs/1801.05852
- Graph Embedding Techniques, Applications, and Performance: A Survey (2018) Goyal P, Ferrara E. \\ doi: 10.1016/j.knosys.2018.03.022 http://arxiv.org/abs/1705.02801
- Attention Models in Graphs: A Survey (2018) Lee JB, Rossi RA, et al. \\ http://arxiv.org/abs/1807.07984
- A Tutorial on Network Embeddings (2018) Chen H, Perozzi B, et al. \\ http://arxiv.org/abs/1808.02590
- A Comprehensive Survey of Graph Embedding: Problems, Techniques and Applications (2018) Cai H, Zheng VW, et al. \\ http://arxiv.org/abs/1709.07604
- Network representation learning: an overview (2017) Yang C, Liu Z, et al. \\ doi: 10.1360/N112017-00145 http://engine.scichina.com/doi/10.1360/N112017-00145
- Knowledge Graph Embedding: A Survey of Approaches and Applications (2017) Wang Q, Mao Z, et al. \\ doi: 10.1109/TKDE.2017.2754499 http://arxiv.org/abs/1611.08097
- Geometric deep learning: going beyond Euclidean data (2017) Bronstein MM, Bruna J, et al. \\ doi: 10.1109/MSP.2017.2693418
- A Survey on Network Embedding (2017) Cui P, Wang X, et al. \\ http://arxiv.org/abs/1711.08752
- Knowledge graph refinement: A survey of approaches and evaluation methods (2016) Paulheim H. \\ doi: 10.3233/SW-160218 https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/SW-160218
- Bridging Knowledge Graphs to Generate Scene Graphs (2020) Zareian A, Karaman S, et al. \\ http://arxiv.org/abs/2001.02314
- Adaptive Graph Convolutional Recurrent Network for Traffic Forecasting (2020) Bai L, Yao L, et al. \\ http://arxiv.org/abs/2007.02842
- Query Graph Generation for Answering Multi-hop Complex Questions from Knowledge Bases (2020) Lan Y, Jiang J. \\ https://www.aclweb.org/anthology/2020.acl-main.91
- GPT-GNN: Generative Pre-Training of Graph Neural Networks (2020) Hu Z, Dong Y, et al. \\ http://arxiv.org/abs/2006.15437
- MoFlow: An Invertible Flow Model for Generating Molecular Graphs (2020) Zang C, Wang F. \\ http://arxiv.org/abs/2006.10137 \\ doi: 10.1145/3394486.3403104
- Learning from the Scene and Borrowing from the Rich: Tackling the Long Tail in Scene Graph Generation (2020) He T, Gao L, et al. \\ http://arxiv.org/abs/2006.07585
- Structural Patterns and Generative Models of Real-world Hypergraphs (2020) Do MT, Yoon S, et al. \\ http://arxiv.org/abs/2006.07060 \\ doi: 10.1145/3394486.3403060
- CycleGT: Unsupervised Graph-to-Text and Text-to-Graph Generation via Cycle Training (2020) Guo Q, Jin Z, et al. \\ http://arxiv.org/abs/2006.04702
- Graph Density-Aware Losses for Novel Compositions in Scene Graph Generation (2020) Knyazev B, de Vries H, et al. \\ http://arxiv.org/abs/2005.08230
- GraphGen: A Scalable Approach to Domain-agnostic Labeled Graph Generation (2020) Goyal N, Jain HV, et al. \\ doi: 10.1145/3366423.3380201
- Hierarchical Generation of Molecular Graphs using Structural Motifs (2020) Jin W, Barzilay R, et al. \\ http://arxiv.org/abs/2002.03230
- Deep Generative Probabilistic Graph Neural Networks for Scene Graph Generation (2020) Khademi M, Schulte O. \\ doi: 10.1609/aaai.v34i07.6783
- Weakly Supervised Visual Semantic Parsing (2020) Zareian A, Karaman S, et al. \\ http://arxiv.org/abs/2001.02359
- GPS-Net: Graph Property Sensing Network for Scene Graph Generation (2020) Lin X, Ding C, et al. \\ http://arxiv.org/abs/2003.12962
- Unbiased Scene Graph Generation from Biased Training (2020) Tang K, Niu Y, et al. \\ http://arxiv.org/abs/2002.11949
- Permutation Invariant Graph Generation via Score-Based Generative Modeling (2020) Niu C, Song Y, et al. \\ http://arxiv.org/abs/2003.00638
- MALOnt: An Ontology for Malware Threat Intelligence (2020) Rastogi N, Dutta S, et al. \\ http://arxiv.org/abs/2006.11446 \\ doi: 10.13140/RG.2.2.16426.64962
- Disentangling Interpretable Generative Parameters of Random and Real-World Graphs (2019) Stoehr N, Yilmaz E, et al. \\ http://arxiv.org/abs/1910.05639
- Understanding the Representation Power of Graph Neural Networks in Learning Graph Topology (2019) Dehmamy N, Barabási A-L, et al. \\ http://arxiv.org/abs/1907.05008
- Image-Conditioned Graph Generation for Road Network Extraction (2019) Belli D, Kipf T. \\ http://arxiv.org/abs/1910.14388
- D-VAE: A Variational Autoencoder for Directed Acyclic Graphs (2019) Zhang M, Jiang S, et al. \\ http://arxiv.org/abs/1904.11088
- The Limited Multi-Label Projection Layer (2019) Amos B, Koltun V, et al. \\ http://arxiv.org/abs/1906.08707
- Graph Residual Flow for Molecular Graph Generation (2019) Honda S, Akita H, et al. \\ http://arxiv.org/abs/1909.13521
- NeVAE: A Deep Generative Model for Molecular Graphs (2019) Samanta B, De A, et al. \\ http://arxiv.org/abs/1802.05283
- TGG: Transferable Graph Generation for Zero-shot and Few-shot Learning (2019) Zhang C, Lyu X, et al. \\ http://arxiv.org/abs/1908.11503
- Encoding Robust Representation for Graph Generation (2019) Zou D, Lerman G. \\ doi: 10.1109/IJCNN.2019.8851705
- Labeled Graph Generative Adversarial Networks (2019) Fan S, Huang B. \\ http://arxiv.org/abs/1906.03220
- GraphNVP: An Invertible Flow Model for Generating Molecular Graphs (2019) Madhawa K, Ishiguro K, et al. \\ http://arxiv.org/abs/1905.11600
- Graphite: Iterative Generative Modeling of Graphs (2019) Grover A, Zweig A, et al. \\ http://arxiv.org/abs/1803.10459
- Junction Tree Variational Autoencoder for Molecular Graph Generation (2019) Jin W, Barzilay R, et al. \\ http://arxiv.org/abs/1802.04364
- Knowledge-Embedded Routing Network for Scene Graph Generation (2019) Chen T, Yu W, et al. \\ http://arxiv.org/abs/1903.03326
- Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation (2019) You J, Liu B, et al. \\ http://arxiv.org/abs/1806.02473
- Efficient Graph Generation with Graph Recurrent Attention Networks (2019) Liao R, Li Y, et al. \\ http://papers.nips.cc/paper/8678-efficient-graph-generation-with-graph-recurrent-attention-networks.pdf
- Learning to Compose Dynamic Tree Structures for Visual Contexts (2018) Tang K, Zhang H, et al. \\ http://arxiv.org/abs/1812.01880
- Visual Graphs from Motion (VGfM): Scene understanding with object geometry reasoning (2018) Gay P, James S, et al. \\ http://arxiv.org/abs/1807.05933
- Aesthetic Discrimination of Graph Layouts (2018) Klammler M, Mchedlidze T, et al. \\ http://arxiv.org/abs/1809.01017
- Sequence-to-Action: End-to-End Semantic Graph Generation for Semantic Parsing (2018) Chen B, Sun L, et al. \\ http://arxiv.org/abs/1809.00773
- Factorizable Net: An Efficient Subgraph-based Framework for Scene Graph Generation (2018) Li Y, Ouyang W, et al. \\ http://arxiv.org/abs/1806.11538
- Graph R-CNN for Scene Graph Generation (2018) Yang J, Lu J, et al. \\ http://arxiv.org/abs/1808.00191
- GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models (2018) You J, Ying R, et al. \\ http://arxiv.org/abs/1802.08773
- NetGAN: Generating Graphs via Random Walks (2018) Bojchevski A, Shchur O, et al. \\ http://arxiv.org/abs/1803.00816
- MolGAN: An implicit generative model for small molecular graphs (2018) De Cao N, Kipf T. \\ http://arxiv.org/abs/1805.11973
- Pixels to Graphs by Associative Embedding (2018) Newell A, Deng J. \\ http://arxiv.org/abs/1706.07365
- Learning Deep Generative Models of Graphs (2018) Li Y, Vinyals O, et al. \\ http://arxiv.org/abs/1803.03324
- GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders (2018) Simonovsky M, Komodakis N. \\ http://arxiv.org/abs/1802.03480
- Constrained Generation of Semantically Valid Graphs via Regularizing Variational Autoencoders (2018) Ma T, Chen J, et al. \\ http://papers.nips.cc/paper/7942-constrained-generation-of-semantically-valid-graphs-via-regularizing-variational-autoencoders.pdf
- Scene Graph Generation from Objects, Phrases and Region Captions (2017) Li Y, Ouyang W, et al. \\ http://arxiv.org/abs/1707.09700
- Node Embedding via Word Embedding for Network Community Discovery (2017) Ding W, Lin C, et al. \\ http://arxiv.org/abs/1611.03028
- Scene Graph Generation by Iterative Message Passing (2017) Xu D, Zhu Y, et al. \\ http://arxiv.org/abs/1701.02426
- Learning graphical state transitions (2017) Johnson DD. \\ https://openreview.net/forum?id=HJ0NvFzxl
- Variational Graph Auto-Encoders (2016) Kipf TN, Welling M. \\ http://arxiv.org/abs/1611.07308
- Graphs over time: densification laws, shrinking diameters and possible explanations (2005) Leskovec J, Kleinberg J, et al. \\ http://portal.acm.org/citation.cfm?doid=1081870.1081893 \\ doi: 10.1145/1081870.1081893
- Spatio-Temporal Graph Routing for Skeleton-Based Action Recognition (2019) Li B, Li X, et al. \\ doi: 10.1609/aaai.v33i01.33018561
- Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting (2019) Guo S, Lin Y, et al. \\ doi: 10.1609/aaai.v33i01.3301922
- Spatiotemporal Multi-Graph Convolution Network for Ride-Hailing Demand Forecasting (2019) Geng X, Li Y, et al. \\ doi: 10.1609/aaai.v33i01.33013656
- Graph WaveNet for Deep Spatial-Temporal Graph Modeling (2019) Wu Z, Pan S, et al. \\ http://arxiv.org/abs/1906.00121
- Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting (2018) Yu B, Yin H, et al. \\ doi: 10.24963/ijcai.2018/505
- Deep Multi-View Spatial-Temporal Network for Taxi Demand Prediction (2018) Yao H, Wu F, et al. \\ http://arxiv.org/abs/1802.08714
- Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting (2018) Li Y, Yu R, et al. \\ http://arxiv.org/abs/1707.01926
- Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition (2018) Yan S, Xiong Y, et al. \\ http://arxiv.org/abs/1801.07455
- Know-Evolve: Deep Temporal Reasoning for Dynamic Knowledge Graphs (2017) Trivedi R, Dai H, et al. \\ http://arxiv.org/abs/1705.05742
- Structured Sequence Modeling with Graph Convolutional Recurrent Networks (2016) Seo Y, Defferrard M, et al. \\ http://arxiv.org/abs/1612.07659
- Structural-RNN: Deep Learning on Spatio-Temporal Graphs (2016) Jain A, Zamir AR, et al. \\ http://arxiv.org/abs/1511.05298
I decided to study in this field. I have also organized a lot of papers on graphs daily. I share them, mainly for these two reasons:
- Hope to promote academic exchanges
- A little help for everyone
At present, I am the only one maintaining it.. Even in the field of graph neural network, there are many conferences and journals every month/year. With limited energy, there is no way to cover the entire field. If I missed an paper, please feel free to let me know.
I am sorry for this situation, please feel free to let me know.
I am also trying more classification methods, such as labeling boxes. Although it seems simple, it will increase my workload. So if you cannot find the paper you want under one category, you can look at more categories.