PyTorch 1.6 and Python 3.7 implementation of Graph Convolutional Networks for Text Classification [1].
Tested on the 20NG/R8/R52/Ohsumed/MR data set, the code on this repository can achieve the effect of the paper.
dataset | 20NG | R8 | R52 | Ohsumed | MR |
---|---|---|---|---|---|
TextGCN(official) | 0.8634 | 0.9707 | 0.9356 | 0.6836 | 0.7674 |
This repo. | 0.8618 | 0.9704 | 0.9354 | 0.6827 | 0.7643 |
NOTE: The result of the experiment is to repeat the run 10 times, and then take the average of accuracy.
- fastai==2.0.15
- PyTorch==1.6.0
- scipy==1.5.2
- pandas==1.0.1
- spacy==2.3.1
- nltk==3.5
- prettytable==1.0.0
- numpy==1.18.5
- networkx==2.5
- tqdm==4.49.0
- scikit_learn==0.23.2
- Process the data first, run
data_processor.py
(Already done) - Generate graph, run
build_graph.py
(Already done) - Training model, run
trainer.py
[1] Yao, L. , Mao, C. , & Luo, Y. . (2018). Graph convolutional networks for text classification.