-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathselfsupervised.py
423 lines (347 loc) · 14.1 KB
/
selfsupervised.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils, datasets
import torch.optim as optim
from torchvision.models import resnet18, resnet34
import torch.nn.functional as F
from resnet import ResNet_22
from prep_dataset import our_dataset
import pdb
import torchvision
class PixelCNN(nn.Module):
def __init__(self, latent_dim):
super(PixelCNN, self).__init__()
# Conv2d: (input_channels, output_channels, kernel_size, padding)
self.relu = nn.ReLU()
self.model = nn.Sequential(
nn.Conv2d(latent_dim, latent_dim, (1, 1)),
nn.ReLU(),
nn.ConstantPad2d((1, 1, 0, 0), 0),
nn.Conv2d(latent_dim, latent_dim, (1, 3)),
nn.ConstantPad2d((0, 0, 0, 1), 0),
nn.Conv2d(latent_dim, latent_dim, (2, 1)),
nn.ReLU(),
nn.Conv2d(latent_dim, latent_dim, (1, 1))
)
def forward(self, latents):
# latents: [B, C, H, W]
cres = latents
for _ in range(5):
c = self.model(cres)
cres = cres + c
cres = self.relu(cres)
return cres
class CPC_loss(nn.Module):
def __init__(self):
super(CPC_loss, self).__init__()
self.pixel_cnn = PixelCNN(2048)
self.target_to_32 = nn.Conv2d(2048, 7, kernel_size=(1, 1))
self.conv_1 = nn.Conv2d(2048, 7, kernel_size=(1, 1))
self.conv_2 = nn.Conv2d(2048, 7, kernel_size=(1, 1))
self.conv_3 = nn.Conv2d(2048, 7, kernel_size=(1, 1))
self.loss_func = nn.CrossEntropyLoss()
def forward(self, latents, device, target_dim=7, steps_to_ignore=2, steps_to_predict=3, emb_scale=0.1):
# latents: [B, D, H, W]
# aka: [B, 512, 6, 6]
loss = 0.0
latents = latents.to(device)
context = self.pixel_cnn(latents) # These are the c's (apply pixelCNN to Z's)#[20,2048,6,6]
targets = self.target_to_32(latents)#32?
# targets = latents
batch_dim, emb_dim, col_dim, row_dim = targets.shape
targets = targets.reshape(-1, target_dim)
# Trying to do the arbitrary context vector
index = np.random.choice(a=[0, 1, 2])
context = context[:, :, index, :].unsqueeze(3) # [2, 2048, 6, 1]
preds_1 = self.conv_1(context).reshape(-1, target_dim) * emb_scale # key
preds_2 = self.conv_2(context).reshape(-1, target_dim) * emb_scale
preds_3 = self.conv_3(context).reshape(-1, target_dim) * emb_scale
logits_1 = torch.matmul(preds_1, targets.permute(1, 0)) # 12 by 512, 512 by 72 --> 12 by 72
logits_2 = torch.matmul(preds_2, targets.permute(1, 0)) # value
logits_3 = torch.matmul(preds_3, targets.permute(1, 0))
total_elements = batch_dim * row_dim
b = np.arange(total_elements) / (row_dim)
b = b.astype(int)
col = np.arange(total_elements) % (row_dim)
labels_1 = b * col_dim * row_dim + 3 * row_dim + col # 直接预测patch的位置吗,太粗暴了
labels_2 = labels_1 + 6
labels_3 = labels_2 + 6
loss += self.loss_func(logits_1, torch.LongTensor(labels_1).to(device))
loss += self.loss_func(logits_2, torch.LongTensor(labels_2).to(device))
loss += self.loss_func(logits_3, torch.LongTensor(labels_3).to(device))
return loss
# Implementation in the paper is unclear.
# I'm going to go with C.
# NCE Loss
# Questions: Is the dimension of Z (B*patches) or (B).
# I think it's (B, 6, 6, 4096)
class CPCLossNCE(nn.Module):
def nce_loss(self, z_hat, pos_scores, negative_samples, mask_mat):
z_hat = z_hat.to(device)
pos_scores = pos_scores.to(device)
negative_samples = negative_samples.to(device)
mask_mat = mask_mat.to(device)
# (b, 1)
pos_scores = pos_scores.float()
batch_size, emb_dim = z_hat.size()
nb_feat_vectors = negative_samples.size(1) // batch_size # 36 of them, if 6 by 6 wireframes.
# (b, b) -> (b, b, nb_feat_vectors)
# all zeros with ones in diagonal tensor... (ie: b1 b1 are all 1s, b1 b2 are all zeros)
mask_pos = mask_mat.unsqueeze(dim=2).expand(-1, -1, nb_feat_vectors).float()
# negative mask
mask_neg = 1. - mask_pos
# ----------------------
# ALL SCORES computation
# (visualize in your mind a batch size of 2, 36-length segments)
# (b, dim) x (dim, nb_feats*b) -> (b, b, nb_feats)
raw_scores = torch.mm(z_hat, negative_samples)
raw_scores = raw_scores.reshape(batch_size, batch_size, nb_feat_vectors).float()
# EXTRACT NEGATIVE SCORES
# (batch_size, batch_size, nb_feat_vectors)
# HE'S TAKING THE NEGATIVE SAMPLES FROM THE OTHER MINIBATCHES
# A GIVEN Z_HAT IS ONLY MULTIPLIED BY Z'S FROM OTHER MINIBATCHES
neg_scores = (mask_neg * raw_scores)
# ----------------------
# (b, b, nb_feat_vectors) -> (batch_size, batch_size * nb_feat_vectors)
neg_scores = neg_scores.reshape(batch_size, -1)
mask_neg = mask_neg.reshape(batch_size, -1)
# STABLE SOFTMAX
# (n_batch_gpu, 1)
neg_maxes = torch.max(neg_scores, dim=1, keepdim=True)[0]
# DENOMINATOR
# sum over only negative samples (none from the diagonal)
neg_sumexp = (mask_neg * torch.exp(neg_scores - neg_maxes)).sum(dim=1, keepdim=True)
all_logsumexp = torch.log(torch.exp(pos_scores - neg_maxes) + neg_sumexp)
# NUMERATOR
# compute numerators for the NCE log-softmaxes
pos_shiftexp = pos_scores - neg_maxes
# FULL NCE
nce_scores = pos_shiftexp - all_logsumexp
nce_scores = -nce_scores.mean()
return nce_scores
def forward(self, Z, C, W_list):
'''
param Z: latent vecs (B, D, H, W)
param C: context vecs (B, D, H, W)
param W_list: list of k-1 W projections
'''
# (b, dim, w, h)
batch_size, emb_dim, h, w = Z.size()
# (10 x 10 identity matrix)
diag_mat = torch.eye(batch_size)
diag_mat = diag_mat.float()
losses = []
# calculate loss for each k
# Below operations preserve raster order (for B, D, H, W) = (1, 5, 2, 2) check.
# Z_neg holds all z vecs.
Z_neg = Z.permute(1, 0, 2, 3).reshape(emb_dim, -1)
for i in range(0, h - 1):
for j in range(0, w):
cij = C[:, :, i, j] # B by D
for k in range(i + 1, h): # predict on all vectors in the same column, but below current wireframe.
Wk = W_list[str(k)]
z_hat_ikj = Wk(cij)
zikj = Z[:, :, k, j]
# BATCH DOT PRODUCT
# (b, d) x (b, d) -> (b, 1)
pos_scores = torch.bmm(z_hat_ikj.unsqueeze(1), zikj.unsqueeze(2))
pos_scores = pos_scores.squeeze(-1).squeeze(-1)
loss = self.nce_loss(z_hat_ikj, pos_scores, Z_neg, diag_mat)
losses.append(loss)
losses = torch.stack(losses)
loss = losses.mean()
if np.isnan(loss.item()):
pdb.set_trace()
print('boom')
return loss
def train_raster_patchify(img, size=80, overlap=32):
'''
Left-to-right, top to bottom.
Assumes img is (3, 240, 240).
'''
patches = []
h = -32
w = -32
for i in range(6):
h = h + 32
for j in range(6):
w = w + 32
channel = np.random.randint(3)
processed_img = np.repeat(np.expand_dims(img[channel, h:h + size, w:w + size], axis=0), 3, axis=0)
if np.random.randint(2):
processed_img = np.flip(processed_img, axis=2)
patches.append(torch.tensor(np.ascontiguousarray(processed_img)))
w = -32
return patches
def raster_patchify(img, size=80, overlap=32):
'''
Left-to-right, top to bottom.
Assumes img is (3, 240, 240).
'''
patches = []
h = -32
w = -32
for i in range(6):
h = h + 32
for j in range(6):
w = w + 32
patches.append(img[:, h:h + size, w:w + size])
w = -32
return patches
def collate_fn(img_list):
patches = []
for img,_ in img_list:
img_patches = raster_patchify(img)
patches.append(torch.stack(img_patches))
return patches#b,36,80,80
def train_collate_fn(img_list):
patches = []
for img,_ in img_list:
img_patches = train_raster_patchify(img)
patches.append(torch.stack(img_patches))
return patches
class Identity(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return x
def remove_batchnorm(model):
model.bn1 = Identity()
model.layer1[0].bn1 = Identity()
model.layer1[0].bn2 = Identity()
model.layer1[0].bn3 = Identity()
model.layer1[0].downsample[1] = Identity()
model.layer1[1].bn1 = Identity()
model.layer1[1].bn2 = Identity()
model.layer1[1].bn3 = Identity()
model.layer1[2].bn1 = Identity()
model.layer1[2].bn2 = Identity()
model.layer1[2].bn3 = Identity()
model.layer2[0].bn1 = Identity()
model.layer2[0].bn2 = Identity()
model.layer2[0].bn3 = Identity()
model.layer2[0].downsample[1] = Identity()
model.layer2[1].bn1 = Identity()
model.layer2[1].bn2 = Identity()
model.layer2[1].bn3 = Identity()
model.layer2[2].bn1 = Identity()
model.layer2[2].bn2 = Identity()
model.layer2[2].bn3 = Identity()
model.layer2[3].bn1 = Identity()
model.layer2[3].bn2 = Identity()
model.layer2[3].bn3 = Identity()
model.layer3[0].bn1 = Identity()
model.layer3[0].bn2 = Identity()
model.layer3[0].bn3 = Identity()
model.layer3[0].downsample[1] = Identity()
model.layer3[1].bn1 = Identity()
model.layer3[1].bn2 = Identity()
model.layer3[1].bn3 = Identity()
model.layer3[2].bn1 = Identity()
model.layer3[2].bn2 = Identity()
model.layer3[2].bn3 = Identity()
model.layer3[3].bn1 = Identity()
model.layer3[3].bn2 = Identity()
model.layer3[3].bn3 = Identity()
model.layer3[4].bn1 = Identity()
model.layer3[4].bn2 = Identity()
model.layer3[4].bn3 = Identity()
model.layer3[5].bn1 = Identity()
model.layer3[5].bn2 = Identity()
model.layer3[5].bn3 = Identity()
# model.layer4 = Identity()
model.layer4[0].bn1 = Identity()
model.layer4[0].bn2 = Identity()
model.layer4[0].bn3 = Identity()
model.layer4[0].downsample[1] = Identity()
model.layer4[1].bn1 = Identity()
model.layer4[1].bn2 = Identity()
model.layer4[1].bn3 = Identity()
model.layer4[2].bn1 = Identity()
model.layer4[2].bn2 = Identity()
model.layer4[2].bn3 = Identity()
class CPC(nn.Module):
def __init__(self):
super(CPC, self).__init__()
self.encoder = torchvision.models.resnet50()
self.encoder.fc = Identity()
remove_batchnorm(self.encoder)
self.nce_loss = CPC_loss()
def forward(self, x, device):
Z = []
for img_patches in x:
img_patches = img_patches.to(device)
z = self.encoder(img_patches).squeeze()
z = z.unsqueeze(0).permute(0, 2, 1).reshape(1, 2048, 6, 6)
Z.append(z)
Z = torch.stack(Z).squeeze(1)#B,2048,60,60
loss = self.nce_loss(Z, device)
return loss
def save_encoder(self,save_dir,iter_ind,loss):
torch.save(self.encoder.state_dict(),'./{}/{}_loss{}_encoder_weights.pt'.format(save_dir,iter_ind,loss))
print('encoder saved ')
class CPC_NCE(nn.Module):
def __init__(self):
super(CPC_NCE, self).__init__()
self.encoder = ResNet_22()
self.pixel_cnn = PixelCNN(256)
self.nce_loss = CPC_loss()
# W transforms (k > 0)
self.W_list = {}
for k in range(1, 6):
w = torch.nn.Linear(256, 256)
self.W_list[str(k)] = w
self.W_list = nn.ModuleDict(self.W_list).to(device)
def forward(self, x):
Z = []
C = []
for img_patches in x:
img_patches = img_patches.to(device)
z = self.encoder(img_patches).squeeze()
z = z.unsqueeze(0).permute(0, 2, 1).reshape(1, 256, 6, 6)
Z.append(z)
c = self.pixel_cnn(z)
C.append(c)
Z = torch.stack(Z).squeeze(1)
C = torch.stack(C).squeeze(1)
loss = self.nce_loss(Z, C, self.W_list)
return loss
def save_encoder(self,save_dir,iter_ind):
torch.save(self.encoder.state_dict(),'./{}/{}_encoder_weights.pt'.format(save_dir,iter_ind))
print('encoder saved ')
def run_eppoch(iter_num):
n_imgs=20
img_num=n_imgs//4
batch_size=n_imgs
data_transform = transforms.Compose([
transforms.Resize(256),
transforms.RandomCrop(240),
transforms.ColorJitter(brightness=(0.55, 1), contrast=(0.5, 1), saturation=(0.5, 1), hue=0.1),
transforms.ToTensor(),
])
model = CPC().to(device)
optimizer = optim.Adam(model.parameters(), lr = 2e-4, weight_decay=1e-5, eps=1e-8)
imageNet_dataset=our_dataset(data_dir='data/ILSVRC2012_img_val', data_csv='data/selected_data.csv', mode='train',
img_num=img_num, transform=data_transform)
loader = DataLoader(imageNet_dataset, batch_size=batch_size, shuffle=False,collate_fn=train_collate_fn)
for i, list in enumerate(loader):#list:tuple 2({img list:B},{label list:B})
if not 0<=i<1:
continue
best_loss=10000
for iter in range(iter_num):
optimizer.zero_grad()
loss = model(list,device)
loss.backward()
#torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
optimizer.step()
if iter % 10 == 0:
if loss < 2.:
model.save_encoder('trained_model', i, loss)
print("Iter: {}/{}, Loss: {}".format(iter, iter_num, loss.item()))
model.save_encoder('trained_model',i,loss)
if __name__=='__main__':
torch.cuda.set_device(4)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
run_eppoch(500)