Skip to content

Latest commit

 

History

History
35 lines (28 loc) · 1.31 KB

README.md

File metadata and controls

35 lines (28 loc) · 1.31 KB

Parallel GMRES

Parallel GMRES for solving sparse linear systems $Ax=b$

Algorithm (GMRES with Givens)

$Ax=b,\ where\ A\ is\ square\ matrix,\ given\ an\ initial\ guess\ x^{(0)}, tol\ \epsilon>0,\ and\ maxiter$

  1. $r_0=b-Ax^{(0)}\ is\ the\ initial\ residual,\ \beta:=||r_0||_2,\ v_1:=r_0/\beta$

  2. $For\ j=1,2,...,maxiter\ Do:$

  3. $\ \ \ \ \ \ \ \ w=Av_j$ % Matrix-vector multiplication

  4. $\ \ \ \ \ \ \ \ For\ i=1,2,...,j\ Do:$ % Arnoldi Part (MGS)

  5. $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ h_{i,j}=dot(v_i,w)$

  6. $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ w=w-h_{i,j}v_i$

  7. $\ \ \ \ \ \ \ \ End\ for$

  8. $\ \ \ \ \ \ \ \ h_{j+1,j}=||w||_2$

  9. $\ \ \ \ \ \ \ \ If\ h_{j+1,j}\ \neq 0\ then:$

  10. $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ v_{j+1}=w/h_{j+1,j}$

  11. $\ \ \ \ \ \ \ \ End\ if$

  12. $\ \ \ \ \ \ \ \ [H, c, s]=GivensRotate(H, c, s, j)$ % Apply Givens rotations to upper Hessenberg matrix H

  13. $\ \ \ \ \ \ \ \ Eliminate H(j+1, i)$

  14. $\ \ \ \ \ \ \ \ Update\ the\ residual$

  15. $\ \ \ \ \ \ \ \ If\ residual < \epsilon\ then:\ break$

  16. $End\ for$

  17. $Solve\ least-squares\ problem (back\ substitution)$

Parts

  • matlab/: MATLAB version
  • omp/: OpenMP version

TODO

  • MPI version
  • Preconditioner